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[1] The majority of the eddy kinetic energy (EKE) in the
ocean is found on scales of 50 km to 500 km, encompassed
by mesoscale eddies and the meanders and rings of the
boundary currents. Mesoscale eddies play a critical role in
the dynamics of the ocean circulation with instabilities of
the strong mean currents generating eddies in the upper
ocean. Interactions between eddies transfer energy from
the upper ocean to the deep ocean where eddies interact with
bottom topography to generate abyssal mean flows and
eddies transfer momentum back to the mean currents. The
kinetic energy in a global Hybrid Coordinate Ocean Circu-
lation Model (HYCOM) is compared with long‐term obser-
vations from surface drifters, geostrophic currents from
satellite altimetry, subsurface floats and deep current meter
moorings. HYCOM, configured at 1/12.5° (∼9 km, typical of
the present generation of high resolution models), is defi-
cient in EKE in both the upper and abyssal ocean (depths
greater than 3000 m) by ∼21% and ∼24% respectively com-
pared to surface drifting buoys and deep current meters.
Increasing the model resolution to 1/25° (∼4.4 km) or inject-
ing mesoscale eddies through the assimilation of surface
observations in a 1/12.5° model increases the surface and
the abyssal EKE to levels consistent with the observations.
In these models, the surface (abyssal) EKE is increased by
23% (51%) and 15% (46%) for the higher resolution or data‐
assimilative models, respectively, compared to the 1/12.5°
non‐assimilative model. While data assimilation increases
the EKE in both the upper and abyssal ocean, the kinetic
energy of the mean flow in the upper ocean is decreased
in the data‐assimilative hindcast. Citation: Thoppil, P. G.,
J. G. Richman, and P. J. Hogan (2011), Energetics of a global
ocean circulation model compared to observations, Geophys.
Res. Lett., 38, L15607, doi:10.1029/2011GL048347.

1. Introduction

[2] The eddy kinetic energy (EKE) in the upper ocean,
encompassed by mesoscale eddies, meanders and rings of
the boundary currents [Stammer, 1997; Ferrari and Wunsch,
2009, 2010], is generated by instabilities of the mean flow
and direct wind forcing. The present eddy‐resolving global
ocean general circulation models (OGCMs), running at
∼1/10° horizontal grid resolution, appear to underestimate
EKE at the surface compared to observations, indicating that
the mean circulation is not inertial enough to generate vig-
orous upper ocean instabilities, which in turn is responsible
for the generation of meanders and eddies. Maltrud and

McClean [2005] noted problems with too weak eddy energy
in the western boundary currents and relatively quiescent
regions of the global 1/10° Parallel Ocean Program OGCM
when compared to sea surface height altimetry observations.
The eddy energy in the upper ocean is transferred down to
the abyssal ocean by nonlinear interactions from vertically‐
sheared baroclinic to depth‐independent barotropic states
[Rhines, 1979; Hurlburt and Hogan, 2008; Ferrari and
Wunsch, 2009]. In the abyssal ocean, eddies interact with
bottom topography to generate a strong eddy‐driven mean
circulation [Holland, 1978; Rhines, 1979].
[3] Adequately representing mesoscale eddies and the

energy and enstrophy (mean square vorticity) cascades in
ocean models is key to simulating the mean circulation with
studies suggesting that horizontal resolution around 1/10°
are sufficient [Smith et al., 2000; Oschlies, 2002; Maltrud
and McClean, 2005]. However, at this resolution the mod-
els significantly underestimate the EKE in the abyssal ocean
(depths greater than 3000 m) [Scott et al., 2010]. The eddy‐
driven mean abyssal circulation, which is constrained by
the topography, can steer the mean pathways of the upper‐
ocean currents through a dynamical process known as upper
ocean ‐ topographic coupling [Holland, 1978; Hogan and
Hurlburt, 2000; Hurlburt et al., 2008]. Recent model studies
suggest that a strong eddy‐driven mean abyssal circulation
is sufficient to obtain a realistic Gulf Stream pathway and its
separation from the western boundary [Hurlburt et al.,
2008]. Thus, a strong abyssal circulation plays a critical role
in the maintenance of mean circulation over the entire depth
of the ocean, especially in regions dominated by intrinsic
instability rather than atmospheric forcing. An intriguing
question then becomes; how can we achieve a realistic repre-
sentation of the abyssal ocean circulation in the OGCMs?
[4] Resolution studies [Bryan et al., 2007; Smith et al.,

2000; Hogan and Hurlburt, 2000; Oschlies, 2002] show
that increasing the horizontal resolution for an OGCM gen-
erates a stronger mean flow and thereby additional instabil-
ities in the upper ocean which in turn can lead to a stronger
eddy‐driven abyssal circulation by vertically transferring the
energy downward. Here we show that increasing the hori-
zontal resolution from 1/12.5° to 1/25° yielded the most
realistic representation of the ocean EKE from the surface to
the abyssal ocean. All of the models clearly resolve the
scales of the dominant eddies, typically the Rossby radius
of deformation. Barnier et al. [2006] show that improving
the representation of vorticity in eddy‐permitting models
improves the performance and energetics of those models.
Vorticity and enstrophy are dominated by smaller scales,
which benefit from an increase in resolution. Alternately,
one can increase the EKE in the upper ocean indirectly by
injecting eddies via assimilating ocean surface observations
in a 1/12.5° model. In this case, the additional EKE is
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generated by eddies introduced through data assimilation
rather than intrinsic instability of the ocean dynamics. Our
results indicate a significant increase in the abyssal ocean
EKE when data assimilation is included. The major focus of
attention in this paper is the comparative global ocean ener-
getics from observations, employing four independent sets
of observations representing the entire water column, and
twin model experiments, only varying in horizontal resolu-
tion, horizontal eddy viscosity and data assimilation.

2. Model and Data

[5] To explore why the current generation of eddy‐
resolving OGCMs at ∼1/10° resolution are deficient in EKE,
we set‐up three model experiments differing only in hori-
zontal resolution and data assimilation. The models are
a 1/12.5° (∼9 km at the Equator) and a 1/25° (∼4.4 km at
the Equator) horizontal resolution non‐assimilative models,
denoted respectively as 1/12.5° FR and 1/25° FR and a
1/12.5° with data assimilation, denoted as 1/12.5° DA. The
numerical model is the HYbrid Coordinate Ocean Model
(HYCOM) [Bleck, 2002], which has 32 hybrid layers in
the vertical and is forced with three‐hourly, 0.5° NOGAPS
atmospheric fields. The model is spun‐up from rest using
the GDEM3 climatology for 10 years. Thereafter, the model
is forced with interannually varying NOGAPS atmospheric
fields from 2003 to 2009. The analysis is performed with the
last five years of the model run (2005–2009). The impact of
data assimilation is examined in a 1/12.5° model for the
period 2008–2009, where observations of satellite derived
sea surface height (SSH) and vertical profiles of tempera-
ture are incrementally updated using a MultiVariate Optimal
Interpolation scheme [Cummings, 2005]. The SSH anoma-

lies are not directly assimilated, but converted into synthetic
profiles of temperature and salinity in the upper ocean for
assimilation.
[6] The modeled energetics are compared to four inde-

pendent sets of observations for four different dynamical
regimes representing (1) surface (2) below the wind‐driven
mixed layer (150 m) (3) near the permanent thermocline
(1000 m) and (4) abyssal ocean. At the surface, the instabil-
ities of the mean flow and direct wind forcing dominate
the energetics while quasi‐geostrophy controls the energy
below the mixed‐layer and in the thermocline. In the abyssal
ocean the interaction of mean flow with the topography gen-
erates an eddy‐driven abyssal circulation. We use surface
drifter observations [Lumpkin and Pazos, 2007], satellite
altimetry (150 m) [Ducet et al., 2000], ARGO floats at
1000 m [Lebedev et al., 2007], and deep current moorings
[Scott et al., 2010] for model comparison to observations.

3. Results

[7] A comparison of surface EKE among the models show
high levels of EKE (>800 cm2 s−2) concentrated in the
vicinity of the major current systems associated with the
Gulf Stream and its continuation as the North Atlantic
Current, the Loop Current in the Gulf of Mexico, the Brazil
Current, the Kuroshio (off Japan), the equatorial current sys-
tem and, in the southern hemisphere, the Antarctic Circum-
polar Current (ACC), Agulhas Current (off southeast Africa),
Eastern Australian Current, and Leeuwin Current near the
western coast of Australia (Figure 1). The models reproduce
the major circulation features observed with the drifting
buoys (Figure 1d), as indicated by the high spatial correla-
tion (∼0.8) between the model and observed EKE (Table 1).

Figure 1. Surface eddy kinetic energy (EKE in cm2 s−2) from the three numerical experiments (a) 1/25° FR (2005–2009),
(b) 1/12.5° DA (2008–2009), and (c) 1/12.5° FR (2005–2009) and (d) drifter observations encompassing the period 1983–
2009. The surface drift observations are binned into 1° × 1° grids using daily values and those grid points with at least 100
observations are considered. The EKE is computed from the daily velocity fields using the equation (hu′2i + hv′2i)/2, where
brackets indicate time means and primes denote deviations from the time‐mean velocities, (u′, v′) = (u, v) − (hui, hvi).
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However, quantitatively the global mean E
models differ significantly from the drifter
1/25° FR being the closest. The 1/12.5° FR
estimates the global mean EKE by 21%
drifting buoys (Table 1) implying weaker fl
and fewer meanders. For the higher resolut
surface EKE increases by 23% from 343
1/12.5° FR to 423 cm2 s−2, which is 97% o
EKE (436 cm2 s−2). Since the models are forc
atmospheric fields, the increase in EKE w
arises primarily from increased baroclinic
instability of the stronger mean flow in the hi
model, which generates more meanders and
corresponding increase in EKE. Interestingly,
1/12.5° DA experiment increases by 15% to
which is 90% of the observed EKE, through
and insertion of eddies via assimilation of su
tions. Thus, both the resolution and the da
increase the overall global mean surface EK
15% respectively.
[8] There are, however, obvious model‐dat

of the spatial distribution of EKE in the si
example, a band of high EKE associated w
clonic rings from the Agulhas Current (AC
flection, occurs in non‐assimilative simulati
observed. The model tends to shed AC rings
vals which follow a wrong pathway northwe
South Atlantic with little dissipation. The
gated band of high EKE is a known artifac
[and in other global models as well, e.g.
2006], although the exact cause remains to
Exclusion of this region (20°W–10°E, 40°–2
global EKE statistics presented in Table 1 ha
Two other regions with significant departure f
vations are the large EKE off Java/Indonesia
east Indian Ocean (seen only in 1/25° FR). A
of altimeter derived EKE in these regions d
patterns but with much lower amplitudes, su
equate coverage by the drifting buoys. The mo
ferences in relatively quiescent regions (e.g
lower EKE in the southeast Pacific ∼30°S) ca

Table 1. Observed and Modeled Eddy and Mean Kinetic Energya

              Surfaceb 

1000 mc

Abyssal Oceanb Abyssal Oceane

EKEf

(cm2 s−2)
KEM

(cm2 s−2)
EKEf KEM EKEf KEM

1/12.5° FR
(2005–2009)

343
(0.81)g

171
(0.69)

1/25° FR
(2005–09)

423
(0.82)

193
(0.67)

1/12.5° DA
(2008–09)

393
(0.77)

160
(0.67)

Observations 436 135

aAbbreviations used: EKE, eddy kinetic energy; KEM
time means; FR, non‐assimilative simulation; DA, data

bMean over the global ocean (70°S–70°N).
cMean over the global ocean (60°S–60°N) excluding
dMean over the global ocean (70°S–70°N) using 3° ×
eMean values obtained at the 712 current meter moo
fDue to the unrealistic Agulhas overshooting into the

mean.
gThe correlation coefficient between the model and o
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in part, to the atmospheric forcing. Overall the 1/25° FR
model appears to be somewhat too energetic in those regions
where intrinsic instability dominates the mesoscale eddies.
In these highly energetic regions, the estimated drifter EKE
may be underestimated due to the tendency of the drifting
buoys to accumulate in regions of weak flow [Pasquero et al.,
2007].
[9] The increase in EKE with resolution is associated with

a stronger mean circulation. Narrow bands of high kinetic
energy of the mean flow (KEM >700 cm2 s−2) are evident in
the regions of large EKE with moderate spatial correlation
of ∼0.67 between the model energy levels and the drifter
observations (Table 1). The KEM, also, increases by 13%
in the higher resolution simulation, from 171 cm2 s−2 in
1/12.5° FR to 193 cm2 s−2 in 1/25° FR, indicating a stronger
mean circulation with increased generation of meanders and
eddies through flow instabilities. The simulated KEM, how-
ever, is systematically higher than the drifter estimates by
21% and 42% respectively. The model‐observation differ-
ence may arise from two possible sources; (1) drifting buoys
tend to accumulate in regions of weak flow leading to a
low bias in the mean flow and (2) the analysis period for
the models (2005–2009) is much shorter than the 22 years
of buoy history. While data assimilation increases the sur-
face EKE, the KEM is weaker in 1/12.5° DA compared to
the other simulations. Among the models, the spatial pattern
of KEM in the 1/12.5° DA depicts a better agreement with
the drifter observations with a mean value of 160 cm2 s−2.
[10] Below the wind‐driven mixed layer, quasi‐geostrophic

flow dominates the EKE, while Ekman currents add to the
surface EKE. Geostrophic velocity estimates from mapped
satellite altimeter SSH [Ducet et al., 2000] need to be com-
pared to the model currents below the mixed layer rather
than the surface flow. At 150 m, which is below the wind‐
driven mixed layer, the EKE of the 1/25° FR is the highest
at 181 cm2 s−2, exceeding the altimeter estimate by 14%.
Both 1/12.5° FR and 1/12.5° DA have nearly the same EKE
(122 cm2 s−2), approximately 23% below the altimeter esti-
mate (159 cm2 s−2). The 1/12.5° models rapidly attenuate
the EKE with depth which makes a quantitative comparison
with the surface geostrophic velocity difficult. Among the

(cm2 s−2)) (cm2 s−2) (cm2 s−2) (cm2 s−2) (cm2 s−2)

26.4
(0.77)

8.37 2.81 13.27
(0.71)

6.84
(0.51)

37.9
(0.77)

12.61 4.44 18.28
(0.80)

8.54
(0.54)

33.7
(0.71)

12.24 3.48 14.17
(0.80)

6.83
(0.33)

27.5 17.73 8.21

energy of mean flow computed using the equation (hu2i + hv2i)/2, where brackets denote
tive hindcast.

al ocean (5°S–5°N) where the assumption of geostrophy leads to potentially large errors.
.
tions.
lantic in the simulations, the region bounded by 20°W–10°E, 40°–20°S is excluded from

kinetic energy.
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models, 1/12.5° DA is most highly correlated with the altim-
eter EKE with a correlation coefficient of 0.79. It should
be noted that the energy estimates from the SSH are affected
by sampling artifacts. The mapped geostrophic velocity
estimates will be lower than the true geostrophic velocity
due to the removal of variability on times shorter than
approximately 10 days and horizontal scales smaller than
approximately 50 km.
[11] We use subsurface drift vectors at 1000 m from the

ARGO floats [Lebedev et al., 2007] to examine the EKE
near the thermocline. Again, the energy estimates from the
ARGO float are subjected to sampling errors. The number of
ARGO floats is much smaller than the number of surface
drifters. For the past 5 years, approximately 3000 ARGO
floats have returned a position observation every 10 days.
Thus, the sampling of the ARGO floats is coarser in space and
time with a shorter history than surface drifters. The drift
vectors are binned on a 3° × 3° grid to get at least 100
observations in each grid box. Given the small sample size,
the ARGO EKE estimates are expected to be biased low. At
1000 m, the higher resolution and data assimilative model
EKE exceed the 1/12.5° FR by 44% (26.4 to 37.9 cm2 s−2)
and 28% (26.4 to 33.7 cm2 s−2) respectively, similar to the
surface EKE (Table 1). The 1/12.5° FR underestimates the
observed EKE by 4%.
[12] Eddies in the upper ocean have a significant impact

on the abyssal circulation (depths greater than 3000 m), as
abyssal eddies are created via vertical transfer of eddy
energy into the abyssal ocean. In the models, high abyssal
ocean EKE (80–300 cm2 s−2) is located beneath the regions
of high surface EKE such as western boundary currents and
the ACC (Figure 2), a strong indicator of vertical transfer of
EKE from the surface to the abyssal ocean. For the global

abyssal ocean, the EKE increases by 51% from 8.4 cm2 s−2

to 12.6 cm2 s−2 when the resolution is doubled (Table 1). In
the 1/12.5° DA, with additional surface eddies introduced
by the assimilation of sea surface height driving a stronger
eddy‐driven abyssal circulation, the EKE increases by a
comparable extent of 46% to 12.2 cm2 s−2. A comparison of
model EKE with 712 moored current meter records (from a
collection described by Scott et al. [2010]) indicates that the
1/25° FR has the most realistic representation of abyssal
ocean EKE and the 1/12.5° FR underestimates the EKE by
24%. At these locations, the EKE increased from 13.3 cm2 s−2

in 1/12.5° FR to 18.3 cm2 s−2 in the 1/25° FR, comparable
with the observed current meter measurements (17.7 cm2 s−2,
Table 1). When correlated spatially with the current meter
observations, both 1/25° FR and 1/12.5° DA EKE have
higher correlation (∼0.8) compared to 1/12.5° FR (0.71). For
the mean global abyssal circulation, the KEM increases by
58% for 1/25° FR and 24% with data assimilation. How-
ever, at the current meter locations the KEM increases by
25% for the higher resolution simulation, but remains vir-
tually unchanged with data assimilation.
[13] Noting that the abyssal EKE is greatest beneath the

regions of high surface EKE, we have extracted the Gulf
Stream region (80°W–30°W, 10°N–60°N) for closer exami-
nation. The overall patterns of surface EKE in both 1/12.5°
DA and 1/25° FR are similar to the drifter observations
(Figures 3a–3d). In 1/12.5° FR, the simulated EKE along the
North Atlantic Current between 55°W and 35°W is signifi-
cantly underestimated. In the abyssal ocean, it is clear from the
superimposed current meter observations in Figures 3e–3g
that both the higher resolution and data assimilative mod-
els have realistic EKE below the Gulf Stream. The 1/12.5°
FR EKE is too low east of 60°W, typically by a factor of

Figure 2. Abyssal ocean EKE (cm2 s−2) averaged below 3000 m from the three numerical experiments (a) 1/25° FR,
(b) 1/12.5° DA, and (c) 1/12.5° FR and (d) locations of the 712 deep current meter moorings used to validate the model
kinetic energy (see Scott et al. [2010] for details). Moorings with a record at least 180 days are considered. Depths less
than 3000 m are masked grey.
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two and too weak farther to the west consistent with the
weaker surface EKE.

4. Conclusions

[14] We compare the energetics of a global ocean general
circulation model with a variety of observations from sur-
face to the abyssal ocean. The surface and abyssal circula-
tion of the ocean are strongly coupled through the energy
cascades that vertically redistribute the energy and vorticity
throughout the entire water column. The surface kinetic
energy of ocean circulation is dominated by eddy kinetic
energy (EKE) associated with the instabilities of the mean
flow and direct wind forcing. The eddy‐eddy interactions
transfer energy, initially, from large scales towards the
Rossby radius scale and vorticity towards small scales. At
scales near the Rossby radius, energy is transferred from
the upper ocean into the abyssal ocean. The abyssal eddies
interact with topography to generate mean flows. The EKE in
a 1/12.5° non‐assimilative model is deficient and accounts for
only about 79% and 76% of the observations at the surface
and at the abyssal ocean, respectively. Increasing the model
resolution (1/25°) which generates a stronger mean flow and
thereby additional instabilities with a corresponding impact
on the nonlinear cascades of energy or injecting eddies via
assimilating ocean surface observations improves the model
energetics to be consistent with independent observations
from the surface to the abyssal ocean. In the models, high
abyssal ocean EKE (80–300 cm2 s−2) is located beneath the
regions of high surface EKE such as western boundary cur-
rents and the ACC, a strong indicator of vertical transfer of
EKE from the surface to the abyssal ocean. A comparison of
model EKE with 712 moored current meter records indicates

that the 1/25° FR has the most realistic representation of
abyssal ocean EKE with a correlation coefficient of 0.8. An
increase in the surface EKE by 23% (15%) and a corre-
sponding 51% (46%) increase in the abyssal EKE in the 1/25°
FR (1/12.5° DA) model clearly demonstrates the need for
better representation of upper ocean EKE as a prerequisite
for strong eddy‐driven abyssal circulation. Although the
present generation of eddy‐resolving global OGCMs at 1/10°
resolve the dominant eddy scale, our model experiments
suggest resolving the nonlinear eddy interactions and associ-
ated transfer of energy significantly affects the performance of
the models.
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