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ABSTRACT

A hybrid background error covariance (BEC) model for three-dimensional variational data assimilation of

glider data into the Navy Coastal Ocean Model (NCOM) is introduced. Similar to existing atmospheric hybrid

BEC models, the proposed model combines low-rank ensemble covariances Bm with the heuristic Gaussian-

shaped covariances B0 to estimate forecast error statistics. The distinctive features of the proposed BEC

model are the following: (i) formulation in terms of inverse error covariances, (ii) adaptive determination of

the rank m of Bm with information criterion based on the innovation error statistics, (iii) restriction of the

heuristic covariance operator B0 to the null space of Bm, and (iv) definition of the BEC magnitudes through

separate analyses of the innovation error statistics in the state space and the null space of B0.

The BEC model is validated by assimilation experiments with simulated and real data obtained during

a glider survey of the Monterey Bay in August 2003. It is shown that the proposed hybrid scheme substantially

improves the forecast skill of the heuristic covariance model.

1. Introduction

In recent years, development of hybrid background

error covariance (BEC) models has been an area of active

research in atmospheric data assimilation (Hamill and

Snyder 2000; Etherton and Bishop 2004; Wang et al.

2007). It has been shown in particular that hybrid models

tend to be more robust than conventional ensemble-

based data assimilation schemes, especially when the

model errors are larger than observational ones (Wang

et al. 2007, 2008, 2009). This feature is attractive for the

regional assimilation problems in oceanography, where

information on the background state is often scant and

incomplete.

Sequential data assimilation schemes developed so far

for regional oceanographic studies can be classified in

two categories. The first one is the Kalman filter (KF)-

type algorithms with low-rank BEC matrices Bm derived

from ensemble statistics. These applications encompass

many flavors of the reduced-order KF techniques (e.g.,

Evensen 2003; Tippett et al. 2003; Brasseur and Verron

2006). They proved to be especially useful for monitor-

ing comparatively large domains continuously covered

by sea surface height/sea surface temperature (SSH/

SST) observations at the surface with sporadic vertical

temperature/salinity (T/S) soundings by Argo drifters

and ships. The second type of assimilation algorithms em-

ploy steady-state covariances B0 derived from long-term

model integrations (Yin et al. 2011) or heuristic Gaussian-

shaped covariance operators with simple dynamical con-

straints (Weaver and Courtier 2001; Pannekoucke and

Massart 2008). The latter type of the BEC models has

recently gained considerable attention because of its flex-

ibility and convenience in introducing prior information

into the covariance model in cases when the back-

ground model solutions are biased and/or contain large

errors.

A typical oceanographic setting of such kind is a

near-coastal survey by autonomous gliders, which have

recently become a fast-developing operational technol-

ogy in oceanography (Rudnick et al. 2004). Gliders are
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capable of making remotely controllable surveys of lim-

ited areas at high spatiotemporal resolution. Such a dense

4D coverage is usually accompanied by a relatively poor

knowledge of the background ocean state: near-coastal

regions are often affected by poorly known peculiari-

ties of the bottom topography and the associated tidal/

inertial motions that cannot be resolved by global OGCMs.

Considerable model error covariances also persist at scales

comparable with the size of the domain due to incon-

sistencies in the boundary conditions and/or local atmo-

spheric forcing.

Because of the relative novelty of glider technology, ex-

amples of glider assimilation are rare in literature (Heaney

et al. 2007; Shulman et al. 2009). Recently, Dobricic et al.

(2010) have shown that three-dimensional variational

data assimilation (3DVar) assimilation of glider data

significantly improves the forecast skill of a regional

model. Most importantly, glider data were able to cap-

ture basin-scale BE correlations, which improved the

model’s forecast skill several weeks after termination of

glider observations. Dobricic et al. utilized the second

category 3DVar algorithm based on stationary Gaussian-

shaped BECs in the horizontal combined with EOF de-

composition in the vertical (Dobricic and Pinardi 2008)

and did not explicitly include adaptive error covariances

inferred from model statistics.

In this study we propose a hybrid 3DVar assimilation

system specifically targeted on preserving survey-scale

correlations that could be resolved by gliders in coastal

areas. Similar to the existing atmospheric hybrid models,

the ‘‘flow dependent’’ part of the covariance Bm is defined

as a low-rank matrix derived from ensemble statistics.

The heuristic part of the covariance B0 is represented by

the propagator of the diffusion equation for temperature

and salinity. To gain extra computational efficiency, the

action of the propagator is modeled by a semi-implicit

scheme (Weaver and Ricchi 2004; Yaremchuk et al. 2011,

manuscript submitted to Ocean Modell.). For that reason

the proposed BEC model is formulated in terms of the

inverse covariances and the assimilation problem is

solved in the state space RM.

Another distinctive feature of the BEC model is an

explicit separation of the covariance components inRM:

the action of B0 is restricted to the null space of Bm. This is

done to better preserve the above-mentioned regional-

scale error correlations. Since low-rank approximations

of large covariance matrices tend to be more uncertain at

larger distances (Hamill et al. 2001), we paid special at-

tention to the determination of the statistically reliable

number of modes m and the magnitudes (scaling co-

efficients) for both Bm and B0. The respective algorithms

are based upon the Bayesian information criterion and

analyses of the innovation statistics.

The rest of the paper is organized as follows. We start

with the description of the hybrid BEC model (section 2),

then briefly review the Navy Coastal Ocean Model

(NCOM) forecast model and the experimental design

for the Monterey Bay area (section 3). We continue with

an examination of the forecast skills of the assimilation

system for the twin-data experimental setting and sub-

sequent real-data experiment (section 4). Section 5

concludes the paper.

2. A hybrid 3DVar assimilation scheme

a. The BEC model

The analysis increment dx of the sequential data as-

similation scheme considered here is obtained by mini-

mizing the cost function:

J(dx)5
1

2
[dxTB�1dx1(Hdx�dy)TR�1(Hdx�dy)]!min

dx
,

(1)

where B is the BEC matrix, R is the K 3 K observation

error covariance matrix, T denotes transposition, and H

is the linear operator projecting model state x 2 RM on

the innovation vector dy2RK, whose K components are

the model-data misfits of the background solution.

To define linear operations with multivariate vectors

dx, we introduce a diagonal matrix G approximating the

background error variance. Elements of G depend on the

physical nature of the fields contributing to dx and spatial

coordinates. Farther below we will assume that all the

quantities in (1) are normalized by the respective error

variances and introduce new variables:

dx* 5 G�1/2
dx, dy* 5 R�1/2dy.

The matrices B, H are appropriately transformed to

keep J invariant:

B�1
* 5 G1/2B�1G1/2, H* 5 R�1/2HG1/2.

Dropping the asterisks for convenience of further treat-

ment, the cost function (1) and the normal equation

›J/›dx 5 0 now take the following form:

J(dx) 5
1

2
[dxTB�1dx 1 (Hdx� dy)T(Hdx� dy)], (2)

[B�1 1 HTH]dx 5 HTdy. (3)

Farther below we assume R to be known and focus on

the structure of the BEC matrix B.

The hybrid covariance models developed so far (Hamill

and Snyder 2000; Etherton and Bishop 2004; Wang et al.
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2007) utilize linear combinations of the heuristic or

‘‘static’’ covariance operator B0 and the flow-dependent

operator Bm derived from the statistics of an ensemble

of analyses/forecasts:

B 5 a�1B
m

1 b�1B
0
. (4)

Here a21 and b21 are empirically defined positive scalar

parameters often constrained by the requirement a21 1

b21 5 1 (e.g., Wang et al. 2008). We adopt the tradi-

tional representation of Bm in the form of a matrix de-

fined on a subspaceRm 2RM spanned by an orthogonal

basis fekg derived from the eigenvector analysis of the

ensemble covariance:

B
m

5 PL
m

P
T

. (5)

Here P is a rectangular m 3 M matrix with the columns

ek, k 5 1, . . . , m and Lm is the diagonal m 3 m matrix

whose nonzero elements represent the variances of ek.

In the absence of the additional prior information, B0

is often represented by the propagator of the diffusion

equation (e.g., Weaver and Courtier 2001; Pannekoucke

and Massart 2008):

B
0

5 exp(tD); D 5�=Tn$, (6)

where the diffusion tensor n depends on spatial coordi-

nates to simulate inhomogeneity and anisotropy of the

background flow and t is the scalar parameter, specifying

in 3D the local correlation radii ri via the eigenvalues

ln
i of n: ri ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2li

nt
q

, i 5 1, 2, 3. The parameter t can be

also interpreted as ‘‘integration time’’ of the corresponding

finite-difference diffusion equation.

In the present study, we adopt the diffusion model (6)

and define the inverse of the BEC operator as

B�1 5 aPL�1
m PT 1 bP?B�1

0 PT
?, (7)

where P?5 IM 2 PPT is the projector on the orthogonal

supplement ofRm and IM is the identity operator inRM.

This definition statistically separates the ensemble-

generated components of the increment PPTdx from

those described by the heuristic BEC model B0. Another

reason for formulating the BEC model (7) in terms of the

inverse covariances are computational advantages of the

numerical approximation of (6) and solving the normal

equation (3) in state space (Yaremchuk et al. 2011, man-

uscript submitted to Ocean Modell.).

Since B21 has a two-cell structure in an orthogonal

basis containing ek, the respective background error

covariance matrix can be readily written as

B 5
1

a
PL

m
P

T

1
1

b
[P? exp(�tD)PT

?]�1, (8)

with inversion in the second term standing for the gen-

eralized (Moore–Penrose) inverse. The normal equation

(3) takes the following form:

[aPL�1
m P

T

1 bP? exp(�tD)PT
?1 HTH]dx 5 H

T

dy. (9)

Among other parameters, the BEC model (8) depends

on the inverse magnitudes a, b of its components and the

number of eigenvectors m spanning the Rm. In the pro-

posed algorithm a, b, and m are determined from the

model states and the data.

b. Definition of m and a

Accurate determination of the first term in the BEC

model in (8) is important because this term is responsible

for capturing error correlations on scales comparable

with the size of the domain. In oceanographic applica-

tions these errors are generated by poorly known open

boundary conditions and errors in atmospheric forcing,

which tend to have larger scales than those of the in-

ternal oceanic variability. In addition, Bm may contain

valuable information on the dynamical structure of the

model error field because it is derived from the prior

statistics of the forecast errors.

In many applications, the domain surveyed by gliders

is rarely well-observed beforehand and the first-guess es-

timate of the background state may be far from reality. So

the leading eigenvectors ek of the first-guess BEC esti-

mate provide poor approximation to the true eigenvectors

of the background error covariance. To assess reliabil-

ity of ek we employ the Bayesian information criterion

(Schwarz 1978) and define the optimal number of ‘‘trus-

ted’’ eigenvectors as the minimum of

C(m) 5 m 1
N

lnN
lns2

m ! min
m

, (10)

where

s2
m 5 �

K
n

k51
�
m

i51
f n

i e
i
(rn

k )� dx(rn
k)

" #2

�
K

n

k51
dx2(rn

k)

,
(11)

is the relative residual approximation error of N data

samples by m modes. Here rk
n denotes the kth obser-

vation location at the nth analysis time, the coefficients

f i
n are obtained by minimizing the numerator in (11) at

a time layer n for a given number of modes m�Kn, and

the overbar denotes averaging over N time layers.
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The relationship in (10) gives an asymptotic (N� 1)

approximation to the Bayesian posterior probability for

a model with m parameters (linear regression on m ei-

genfunctions) given N observations (T/S fields sampled

by gliders at the analysis times) under the assumption

that model-data misfits are normally distributed. A

similar, but less restrictive m criteria could be also used

(Akaike 1974; Hannah and Quinn 1979).

The magnitude of Bm is determined by considering

the optimization problem (1) in the m-dimensional sub-

space Rm spanned by fekg. Because the Gaussian part

of B is defined in the orthogonal supplement of Rm,

an approximate formula for the covariance matrix be-

tween the projections of dx on ek can be obtained (see

the appendix):

hdedeTi5 [aL�1
m 1 Q]�1 1

a
QL

m
QT

1 Q

� �
[aL�1

m 1 Q]�1.

(12)

Here Q 5 PTHTHP and de is the m-dimensional vector

of the expansion coefficients such that dx 5 Pde.

Equation (12) can be used to compute a in several

ways. The matrices Q and L are known and the matrix

on the left-hand side can be estimated by approximating

dy by the linear combinations of ek at N analysis times and

computing the time-averaged covariances between the

vectors de of the optimal fit coefficients. Optimal a can be

then computed by minimizing a norm of the difference

between the left- and right-hand sides of (12). Since all the

matrices in (12) are positive definite, a convenient option

is to set the difference between their traces to zero. In the

application considered below, the background model er-

rors are much larger than observational errors (jQj �
ajLm

21j), and we use the simplified relationship

hdedeTi ’ 1

a
L

m
(13)

to estimate a: its value is found by minimizing the mean

squared difference between the diagonal elements of

hdedeTi and Lm/a.

In principle, one can generalize the covariance model

inRm and exactly fit the observed variances, diaghdedeTi,
by adjusting the diagonal elements of Lm. In oceano-

graphic applications, however, there is no reason to refine

the covariance model by finetuning the eigenvalues be-

cause even the leading eigenvectors of Bm are known

very poorly. Besides, the minimization problem is non-

linear and computationally expensive. We therefore choose

a simpler model (13) with a single scaling factor a.

c. Definition of b

Having established the structure of the dynamical part

of the covariance model (7) we can now determine the

magnitude b of the Gaussian part by equating the trace of

the sample forecast error covariance TrhdydyTi derived

form the innovation statistics to the trace of HBHT 1 IK,

a technique routinely used in computation of the inflation

factor in the Kalman filtering schemes (e.g., Wang et al.

2007). Substituting B from (8) into the expression HBHT,

we obtain

hdyTdyi5 Tr
1

a
HPL

m
PTHT

�

1
1

b
H[P? exp(�tD)PT

?]�1HT

�
1 K, (14)

so that

b 5
Tr H[P? exp(�tD)PT

?]�1HT
n o
hdyTdyi �K � Tr[HB

m
HT]/a

. (15)

The numerator of this expression can be computed by

the Monte Carlo technique (Bai and Golub 1997) at the

expense of several iterative solutions of the M 3 M

system of equations with random right-hand sides.

d. Numerical implementation

In the present study we used a simple diagonal model

of the diffusion tensor n 5 diag ni, assuming that local

decorrelation radii ri are directly proportional to the

model grid steps Dxi, i 5 1, 2, 3 spatially varying in 3D:

ffiffiffiffi
ni
p

5 Dxi/
ffiffiffi
2
p

. (16)

Since gliders directly measure only the temperature and

salinity fields, the operator B0 was only applied to the T/S

components of the state vector under the prior assump-

tion of zero correlations between them. The temperature/

salinity background error correlations were taken into

the account by the Bm, which was also operating in the

reduced space (i.e., eigenvectors ek were only estimated

for the temperature and salinity fields).

The BEC operator B0 in (6) was approximated by an

implicit ‘‘time integration scheme’’ (see, e.g., Yaremchuk

et al. 2011, manuscript submitted to Ocean Modell.):

exp(tD) ’ I
M
� tD

n

� ��n

, (17)

where t/n is the length of the implicit ‘‘time step’’ and n

is the number of explicit time steps. With the definition

(16), the square root of the integration time t has the
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meaning of the proportionality coefficient between the

local decorrelation scales ri and the grid steps in the cor-

responding directions: ri 5
ffiffiffiffiffiffiffiffiffi
2nit

p
5 Dxi

ffiffiffi
t
p

. The value

of t 5 20 was determined through preliminary experi-

ments described in section 3. The second parameter n in

(17) was chosen as a compromise between the numerical

complexity and accuracy in approximation of exp(tD).

For n 5 2 the approximation error is close to 15% (Fig. 1),

which is quite reasonable given the overall uncertainty in

the definition of the heuristic covariance operator B0. At

the boundaries, the operator D was specified by pre-

scribing zero normal derivatives.

The analysis increment dx was obtained by solving (9)

with a generalized minimum residual solver (Saad 2003).

In correspondence with the approximation (17), the in-

verse of exp(tD) was represented by

exp(�tD) ’ I
M
� tD

n

� �n
. (18)

Depending on the number of analyzed observations K,

the solution of (9) required, as a rule, 150–300 iterations,

keeping the computational cost of the analysis well below

the cost of a 12-h model run between the assimilations. In

the reported experiments, the state space dimension M

was 515 102, which is the number of observations K

varied between 1500 and 3000, and m never exceeded 2.

Within these ranges of K and m the CPU time required

for the estimation of a and m was negligible compared to

the time tcpu of solving the normal equation. Conversely,

estimation of b required several (usually 4–7) iterative

inversions of P? exp(2tD)P?
T at the expense of 3–5tcpu,

and was the most expensive part of the analysis.

The only type of data used in the present study were

temperature and salinity profiles from gliders. Therefore,

balance constraints were introduced by applying the lin-

earized equation of state and the geostrophic–hydrostatic

relationships directly to the temperature and salinity in-

crements (e.g., Li et al. 2008) obtained from minimization

of the cost function (1).

3. Experiment design

The BEC model was verified by 3DVar assimilation ex-

periments with the Navy Coastal Ocean Model (NCOM)

configured in the Monterey Bay (Fig. 2) for processing

of the data acquired during the Autonomous Ocean

Sampling Network (AOSN II) experiment (Ramp et al.

2008). The experiment was conducted in the summer of

2003 with the ultimate goal of developing an adaptive

sampling technique that combines numerical forecasts

with the data flows from controllable observation plat-

forms. Observations were performed by several types

of autonomous underwater vehicles (AUVs) including

gliders, high-frequency radars, two moorings, bottom-

mounted ADCPs, surface drifters, and CTD casts. In the

present study, we focus the analysis on the temperature/

salinity data from gliders only: space–time coordinates of

the gliders are used to define observation operators H(t)

in both twin- and real-data assimilation experiments with

the hybrid 3DVar scheme.

FIG. 1. 2D slices of the rows of the numerical approximations

of exp(Dt). The patterns were obtained by applying (a) the high-

order explicit approximation (I 1 Dt/100)100 and (b) the implicit

approximation in (16) with n 5 2 to the d-shaped disturbances of

the temperature field at three points shown by white circles. The

bathymetry contours are in m.
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a. Numerical model, observations, and validation
technique

To simulate oceanic variability during the experiment

we used a version of NCOM forced by the Coupled Ocean–

Atmosphere Mesoscale Prediction System (COAMPS;

Hodur et al. 2002) winds in the time period between

1 August (t 5 0) and 27 August (t 5 27) of 2003. The

model was configured on a curvilinear orthogonal grid

(Fig. 2) with horizontal resolution ranging from 1 to

4 km, and a hybrid s/z vertical coordinate system with 9

s levels in the upper ocean and 32 z levels below. At the

open boundaries, the model was one-way coupled to the

global NCOM model (Shulman et al. 2009).

Glider observations during the experiment covered

the central part of the model domain (Fig. 2). With a typ-

ical dive cycle of about 1 h, a glider would travel approx-

imately 0.5 km between surfacings, which is well below

the grid resolution. For that reason we prescribed obser-

vational operators H to measure instantaneous vertical

profiles of temperature and salinity at the model grid point

closest to the average of the surface locations of a glider

before and after a dive. In the assimilation experiments we

used a 12-h analysis cycle, so only those glider profiles

occurring within 1-h window around 0000 and 1200 PST

were assimilated. On average, the model domain was

covered by 20–40 profiles every 12 h.

To measure distances between the model states, a di-

agonal metric g was used. The diagonal elements of g (gT,

gS, gu, gy, and gz) were depth dependent and were ob-

tained as horizontally averaged time variances of tem-

perature T, salinity S, horizontal velocity fu, yg, and SSH

z, respectively, at a grid point r:

g
j
(z) 5 h[j(r)� j(r)]2

1/2

i
z
.

In the above equation, j stands for either T, S, u, y, or z

and angular brackets denote the horizontal average at

level z.

Distances r s and rg between the model states were

computed in both observational and state spaces:

rs
j(x

1
, x

2
) 5 h(j

1
� j

2
)2g�2

j i
1/2;

r
g
j(x

1
, x

2
) 5 h(j

1
� j

2
)2R�1

j i
1/2
g . (19)

Here the angular brackets denote averaging over the 3D

model domain covered by gliders (Fig. 2) and over the

glider locations rk
g, respectively.

In the twin-data experiments, glider ‘‘observations’’

of temperature yT and salinity yS were extracted from

the ‘‘true’’ fields Tt, St (Fig. 3, left panel) at glider lo-

cations rk
g every 12 h and contaminated by white noise «

with zero mean and 0.1 rms variation:

y
T

5 H(Tt 1 «g
T

); y
S

5 H(St 1 «g
S
).

To simulate model errors and assess the impact of as-

similation in the twin-data experiments, the ‘‘first guess’’

model solution xfg(t) was generated by integrating the

model for 27 days starting from the initial condition

specified by x t(t 5 8.5) (Fig. 3, right panel).

Using xfg(0) as the background state at t 5 0, a series

of 3DVar assimilation experiments were performed: on

every 12-h assimilation cycle, model forecasts x f were

updated with the analyses increment xa 5 x f 1 dx and

the next 12-h integration was started from xa. The skill

of assimilation q(t) was assessed in both observational

and state spaces by calculating the normalized distances

between the 12-h model forecasts and the true states:

q
g,s
j (t) 5

r
g,s
j (xt, x f )j

t

r
g,s
j (xt, xfg)j

0

. (20)

Experiments with real data were conducted and the

results were validated in a similar manner, except that xt

was taken as the first guess and qj
s values were not com-

puted because the true state was unknown. Instead of qj
s, we

assessed the forecast skill of the model using indepen-

dent temperature, salinity, and velocity observations at

FIG. 2. Locations of glider profiles during the experiment (solid

dots) and model grid (smaller dots). The bathymetry contours are

in m. The domain used for estimation of the distances rj
s between

the model states in twin-data experiments is shown by the solid

black line. Circles denote locations of the two moorings used for

validation of the real-data experiments.
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two moorings shown in Fig. 2. The respective distances

rj
m and skills qj

m were computed similarly to (19) and

(20), but the spatial average was taken over two moor-

ings and the differences between variables in (19) were

normalized by the respective rms temporal variations

observed at the moorings.

b. Parameters of the hybrid covariance model

In contrast to atmospheric applications, regional ocean-

ographic problems have more difficulties with the BEC

estimation from ensembles. The reason is that realistic

ensembles simulating ocean variability on regional scales

are rarely available. In the present study, the first-guess

background error statistics was obtained from the en-

semble of the differences dxl
0 between the first-guess

states xl
fg at times enumerated by l and the respective 12-h

forecasts (background states) xl
f derived from the assim-

ilation run with a 5 0. The latter were treated as a rough

approximation to the ensemble of the true ocean states.

Since the number of ensemble members (l 5 1, . . . , 55)

was limited by the duration of the glider survey, the

expected number of statistically sensible eigenvectors of

the ensemble covariance matrix was rather small and

never exceeded 2 (see section 4).

In the hybrid assimilation runs (with a 6¼ 0) this first-

guess ensemble fdxl
0g of the background errors was

continuously updated: its members on the time layers l

preceding the current analysis time were replaced by the

members derived from the forecasts already made with

the hybrid scheme. The quality of updated ensembles

was monitored by the number of eigenvectors accepted

by the information criterion (10) and by the percentage

of dy variance explained by these eigenvectors.

To increase the robustness in estimating a and b, we

utilized the method of Wang et al. (2007) and performed

additional time averaging while computing the sample

variances in (13) and (15). This averaging was done over

the ensemble of 30 states (15 days) preceding the anal-

ysis time. In the initial 15 days of the assimilation run,

the missing background states were taken from the re-

spective forecasts xfg(t) generated by the first-guess so-

lution. Similar averaging over N 5 30 samples following

the analysis time was done when estimating sm in (11).

There are two parameters in the definition of B0 that

may affect the performance of the assimilation scheme.

One is the ‘‘time of integration’’ t controlling decorre-

lation length scales, and the other is the order n of ap-

proximation of the exponent in (17). These parameters

were tuned by numerical experimentation.

Comparison of the model solutions (Fig. 3) with the

grid (Fig. 2) gives an indication that horizontal correla-

tions are likely to decay at 3–6 grid steps. We checked

this hypothesis by twin experiments with a 5 0 and

computed the forecast skill of the assimilated solutions

with various values of
ffiffiffi
t
p

. In these experiments, n was

also varied in the range between 1 and 4. The best overall

result was obtained with t 5 20 (ri ; 4.5Dxi) and n 5 2.

Although assimilation quality (with t 5 15, n 5 3) was

similar and in some periods slightly better, the compu-

tational cost appeared to be much larger. We therefore

selected t 5 20, and n 5 2 as basic parameters for the

assimilation experiments.

4. Results

a. Twin-data experiments

Figure 4 compares the skill of 3DVar assimilation runs

performed with the Gaussian and hybrid BEC models.

During the first 8 days of assimilation, the hybrid scheme

FIG. 3. An example of temperature and velocity fields for the (a)

true and (b) first-guess solutions (z 5 28 m, t 5 1.5 days).
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was unable to detect any statistically reliable modes.

Between days 8 and 11 the first mode was detected, ac-

counting for 8% of the forecast error on day 8, 14% on day

11 (Fig. 4), and 17% on day 17. On day 12 the second mode

was detected, accounting for 4% of the forecast error var-

iance. Contribution of the second mode increased to

almost 10% on day 18. Later, the modes appear to lose

their predictive skill with the contributions dropping to

12% and 7%, respectively, on day 25.

The 12-h forecast errors measured in terms of the

normalized distances qj
s from the true state are found to

be approximately 15% smaller than for the assimilation

run with a 5 0 (thin lines in Fig. 4). A similar level of error

reduction was observed by Wang et al. (2008) in twin-data

experiments with a hybrid assimilation into the Weather

Research and Forecasting (WRF) model. In terms of the

12-h forecasts of temperature and salinity in glider ob-

servation points the error reduction is somewhat smaller

(11% for temperature and 13% for salinity), but can still

be considered as a satisfactory improvement (Fig. 5).

Assimilation experiments with different noise in ob-

servations have shown that the patterns in Figs. 4–5 are

robust up to the noise levels of 0.5. At higher noise levels,

the approximation (13) becomes less accurate and it is

necessary to use the relationship (12) for estimating a.

Larger errors in estimating a result in the loss of accuracy

in estimating the number of modes m and the magnitude b

of the Gaussian part of the covariance. We therefore as-

sume that the proposed algorithm is valid when observa-

tion errors are considerably smaller than the background

errors. This is not a severe restriction for regional assim-

ilation problems in oceanography where the first-guess/

background model solutions are rarely preconditioned by

data and often appear to be rather far from reality.

b. Real-data experiments

Figure 6 shows a typical situation we encountered in

the experiments with real data in the Monterey Bay: The

first-guess model solution does not have much in common

with the mooring record at 40 m (left panel). Moreover,

FIG. 4. Normalized distances qS
s and qy

s between the true solution and the 12-h forecasts of

assimilated solutions with a 5 0 (thin lines) and a 6¼ 0 (hybrid model, thick lines). The plot

below shows the number of detected eigenvectors (bars, right axis) and the portion of the

model/data misfit variance explained by those modes (thin line above the bars, left axis).

FIG. 5. Normalized distances qT
g and qS

g between the true solution and the 12-h forecasts of

assimilated solutions with a 5 0 (thin lines) and a 6¼ 0 (hybrid model, thick lines). Distances in

observational space are normalized by the value at t 5 0. The thin vertical line marks the

detection time of the first mode (see Fig. 4).
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the mean profiles in the right panel demonstrate consid-

erable salinity biases above 30 m and in the depth range

between 50 and 200 m. The rms variations of salinity

measured by gliders and moorings are generally consis-

tent with each other in magnitude (cf. horizontal bars and

the width of light shading around the thick profile in the

right panel). A noticeable bias between the mean sa-

linity measured by moorings (solid dots) and gliders

(thick line) could be attributed to differences in aver-

aging: the glider profile is obtained by averaging over all

the glider positions (Fig. 2), whereas the mooring profile

(solid dots) is obtained as the mean of only two moor-

ings. Similar biases between the first-guess solution and

observations were obtained for the temperature field

(not shown).

To estimate observation errors, we compiled the glider

T/S records at times when gliders passed closer than

200 m of either of the moorings and compared these data

with the corresponding observations at moorings. In to-

tal, 168 of such ‘‘pass-by events’’ were found. Comparison

of these observations has shown that the rms discrep-

ancies in temperature and salinity were fairly stable with

depth and varied within 0.26–0.35 after normalization by

the rms variances sm(z) recorded at the moorings (hori-

zontal bars in the right panel of Fig. 6). Based on these

computations, the observation error variances were esti-

mated as R1/2(z) 5 0.3sm(z) and assumed not to vary in

the horizontal.

In all other aspects (the first guess, the background

error variance G, etc.), assimilation experiments with

real data were configured in the same way as the twin-

data experiments. Because the ‘‘true ocean state’’ in the

real-data experiments was unavailable, we introduced

an additional parameter rj
m to gauge the algorithm’s

performance. Similar to rj
g rj

m was computed as the

normalized distance between the model forecast field jf

and temperature, salinity, or velocity jm measured at the

points of moored observations:

rm
j 5 h(j

f
� jm)2

s�2
m i

1/2.

Angular brackets denote averaging in the vertical (11

levels of T/S observations or 18 levels of ADCP data)

and over two moorings shown in Fig. 2.

Figure 7 demonstrates the differences dq between the

salinity forecast skills qS
m,g of the assimilation run with

a 5 0 and similar forecast skills obtained with the hybrid

BEC model. Although the skill improvement does not

look as good as in twin-data experiments (Fig. 4), it

appears to be robust: the differences in skill dqS
m and dqS

g

remain positive for most of the time after detection of

the first mode on day 3. The time mean values for dqT
m,

dqy
m, and dqT

g were found to be 1.3%, 2.8%, and 2.0%,

respectively.

Compared with the time-averaged assimilation skill in

twin-data experiments (e.g., qs
S ; 0.4 for salinity in Fig. 4),

the values of q
j

in real-data experiments were much

higher (0.6–0.7 for temperature/salinity and 0.9 for ve-

locity). This difference is due to larger observation noise,

its more complex structure, and a considerable bias (left

panel in Fig. 6) inconsistent with the prior statistical as-

sumptions. The Bayesian algorithm (10) indicated an

occasional presence of only one informative mode: de-

tection events disappeared on day 14 and reemerged only

at the end of the assimilation period (Fig. 7). Such be-

havior could be attributed to the poor quality of the first-

guess solution and insufficient statistics of the 30-member

ensemble in use. Experiments with changing the ensem-

ble size ne (20–55 members) have shown that with ne 5

20, the number of detection events dropped to 3, whereas

with ne 5 50, it increased from 30 (Fig. 7) to 35 without

any substantial improvement of the forecast skill. Further

FIG. 6. (left) Salinity recorded by the offshore mooring in Fig. 2 (black line) and the corresponding salinity of the first-guess NCOM

solution (gray line). (right) Profiles of the average salinity measured by gliders (solid bold line), moorings (dashed line), and extracted

from the first-guess model solution (solid thin line). Shading and horizontal bars show rms variability.
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increase of the ensemble size was limited by the duration

of the assimilation experiments.

In principle, the ensemble could be expanded, for ex-

ample, by the breeding technique, but the problem with

the poor quality of the first-guess solution (Fig. 6) may

still persist, because the bred vectors would still show

unstable modes of the background state that is rather far

from reality. In the present study, we used a simple ap-

proximation to the error fields by considering an en-

semble of differences between a free model run and an

assimilation run with the Gaussian covariance model.

This ensemble was able to generate just a few members in

the 27-day period. One may hope, however, that for

longer observation periods the BEC model will gain

enough skill to show better performance.

Figure 8 shows the time evolution of the ratio between

the weighting parameters a and b in the twin- and real-

data experiments. By an order of magnitude, the ratio g is

consistent with the results of Wang et al. (2008) who set

g 5 b/a 5 const in time and found the optimal g to vary

between 1 and 4 in a series of twin-data experiments with

the WRF model. In our case, the relative weight b of the

Gaussian term in the cost function appeared to be ap-

proximately 2 times smaller in the twin-data experiment

(thin curve in Fig. 7). This is consistent with a better skill

in explaining model-data misfits by the modes retrieved

in the twin-data experiment (cf. Figs. 4 and 7). Larger

relative values of a on days 10–13 (before the mode re-

jection) can be explained by the tendency of the algo-

rithm to keep the deteriorating mode ‘‘alive.’’

We also investigated the impact of the algorithms for

definition of m and a on the forecast skill. In the twin-data

experiments with fixed m the 27-day-averaged skill was

always worse than that in Fig. 4 for 3 tested values of g 5

0.5, 1, and 2. When m was computed through (10) and

g was kept constant at 0.95, the forecast skill was virtually

the same as in Fig. 4, but somewhat below using other

values of g. Similar results were obtained with real data:

keeping m 5 const degraded the forecast skill, often be-

low the one obtained with Gaussian BEC model. Several

runs with an adjustable m and g 5 const were difficult to

interpret as the skill improvements were small, highly

variable, and did not show any deterministic dependence

on the value of g 2 [0.5, 2.5].

5. Summary and discussion

In this study we proposed a hybrid BEC model spe-

cifically designed for 3DVar analysis of regional circula-

tions supported by glider surveys. The model is supplied

by an algorithm for weighting the ensemble-generated

error covariance Bm against the heuristic covariance B0

represented by the propagator of the diffusion equation.

Another distinctive feature of the algorithm is the de-

tection of the statistically confident eigenvectors of Bm by

means of the Bayesian information criterion (Schwarz

1978). The method is based on the assessment of the

modes’ skill in approximation of the forecast error fields

accumulated in the course of the assimilation run.

The proposed BEC model is formulated in terms of the

inverse covariances with the restriction of B0 to the null

space of Bm. This is done to better preserve the covari-

ances detected by the information criterion and captured

by Bm. Formulation of the minimization problem in the

state space allows us to gain extra computational effi-

ciency by approximating the action of B0 via a semi-

implicit scheme.

The hybrid BEC model was validated by numerical

experiments with simulated and real data. In the twin-

data setting, the hybrid formulation was capable of im-

proving the model’s forecast skill by 15%–20%, which is

comparable with the improvement reported by Wang

et al. (2008) for a hybrid scheme with the atmospheric

WRF model. Results of the experiments with real data

FIG. 7. Improvement of the 12-h salinity forecasts at glider observation points (gray line) and

at the moorings (black line). Positive values correspond to smaller forecast errors for the hybrid

scheme. Vertical bars indicate occasional detection of only one mode and the thick black line

shows the percentage of the error variance that the mode explains.
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showed a few percent improvement with sporadic de-

tection of only one mode. We attribute this to a poor

quality of the background solution, which was heavily bi-

ased and demonstrated considerably lower time variation

in the temperature and salinity fields (left panel in Fig. 6).

Thus, finding a better background solution appears to be

the first priority in upcoming studies of the algorithm.

Other developments may include elaboration of the

structure of the diffusion tensor in B0 and improvement

of the ensemble generation technique. In particular,

diffusion could be enhanced along the f/H contours and/

or isopycnals of the geostrophically balanced modes if

the latter are detected. The ensemble could be enriched

by the vectors bred from the eigenvectors of Bm or just

using a standard breeding technique, if the background

state acquires a reasonable forecast skill in the course of

assimilation. Finally, detected eigenvectors can be prop-

agated by the model with the methods used in Kalman

filtering schemes. This approach will naturally combine

the advantages of statistical and dynamical methods and

increase versatility of the hybrid algorithm.

One of the drawbacks of the proposed model is the

computational cost of estimating the weight b of the static

covariance [(15)]. Our experience shows, however, that

the numerator in (15) weakly depends on the structure of

H for a given number of eigenvectors and can be effi-

ciently parameterized by a linear function of the number

of observations. In fact, the predictive skill of the system

did not change when such a linear parameterization was

used. A similar kind of parameterization could also be

employed to estimate a and b when the background er-

rors are comparable with the observation errors.

The benefit of the proposed hybrid model may also

be diminished for global assimilation problems where

some sort of localization is needed and the impact of the

ensemble-generated covariances may be smaller with

higher observation density (e.g., Whitaker et al. 2008).

Nevertheless, we assume that the proposed approach may

have a prospect for further development for regional data

assimilation problems with poorly known background

states.
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APPENDIX

Derivation of Equation (12)

Consider the optimization problem (1) in Rm [

spanfekgby introducing a new variable de such that dx 5

Pde:

J 5
1

2
[deTPTB�1Pde 1 (HPde � dy)T

3 (HPde � dy)]! min
de2Rm

. (A1)

The normal equation (3) is now reduced to

[PTB�1P 1 Q]de 5 Edy, (A2)

where the operator E [ PTHT projects the data on Rm

and Q 5 EET. Substituting the adopted inverse co-

variance model (7) into (A2) and taking into account the

identities PTP 5 Im, P?P 5 0, the normal equation is

further simplified to

[aL�1
m 1 Q]de 5 Edy. (A3)

Introducing the notation Y 5 hdydyTi for dy covariance,

covariances of de could be written as follows:

hdedeTi5 (aL�1
m 1 Q)�1EYET(aL�1

m 1 Q)�1. (A4)

On the other hand, in accordance with the observation

model, misfits dy between the background state and the

data have the following covariance:

Y 5 HBHT 1 I
K

, (A5)

which, after projecting on the eigenvectors ek, is

FIG. 8. Time variation of the ratio b/a in the twin-data (thin line) and real-data experiments.
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EYET 5 EHBHT 1 EET

5
1

a
QL

m
Q

T

1
1

b
EH[P?B�1

0 P?]�1HTET 1 Q.

(A6)

Consider now the middle term in the rhs of (A6):

EH[P?B�1
0 P?]�1HTET

5 PTHTH[P?B�1
0 P?]�1HTHP [ ~Q.

For ‘‘pointwise’’ observations (local observational op-

erators) the matrix HTH is equal to the identity matrix IM
with diagonal elements masked by zeroes in the points

without observations. Therefore, in the limit of a per-

fectly observed state (HTH 5 IM), this term vanishes. For

glider observations, which densely populate the domain

during the survey, one may assume that hHTHi ; IM and

neglect this term in the time average. We checked the

validity of this assumption by estimating the ratio j ~Qj/jQj
for all the values of H(t) and several Ps containing the first

10 eigenmodes. The ratio was found to be on the order of

1022, allowing the relationship in (A6) to be reduced to

EYET 5
1

a
QL

m
QT

1 Q. (A7)

Substitution of (A7) into (A4) yields (12).
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