
Naval Research Laboratory
Stennis Space Center, MS 39529-5004

NRL/MR/7320--11-9353

Implementation of the Automated
Numerical Model Performance
Metrics System

September 26, 2011

Approved for public release; distribution is unlimited.

James D. Dykes

Ocean Dynamics and Prediction Branch
Oceanography Division

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
	 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
	 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Implementation of the Automated Numerical Model Performance
Metrics System

James D. Dykes

Naval Research Laboratory
Oceanography Division
Stennis Space Center, MS 39529-5004

NRL/MR/7320--11-9353

Approved for public release; distribution is unlimited.

Unclassified Unclassified Unclassified
Unclassified
Unlimited

31

James D. Dykes

(288) 688-5787

 Known as AutoMetrics, this set of software modules was developed to provide model-observation and model-model comparison matchups and
statistics to help modellers and forecasters assess the performance of the ocean circulation models, primarily the Navy Coastal Ocean Model and
the Hybrid Coordinate Ocean Model. This system is fully automatic and gives users much flexibility in what model runs to be evaluated by this
system, in real-time operations or for long-term historical model runs.

26-09-2011 Memorandum Report

Office of Naval Research
One Liberty Center
875 North Randolph Street, Suite 1425
Arlington, VA 22203

73-4320-01-5

0602435N

ONR

Model performance
Model performance statistics

Automated model performance metrics

This page intentionally left blank.

ii

iii

Table of Contents
Abstract ... 1

1. Introduction ... 1

2. Input and output data files ... 2

2.1 Model Prediction Output ... 2

2.2 Observations .. 2

2.3 Matchup files .. 3

3. Software components .. 3

3.1 MatchUp ... 3

3.2 OcnObs .. 5

3.3 Stats.. 5

3.4 CompareModels .. 6

4. Automated System .. 6

4.1 Run Environment ... 6

4.2 AutoMetrics Scripts ... 7

4.3 Real-time and Hindcast Automation .. 8

4.4 User Hints .. 10

Acknowledgements .. 10

References .. 11

Appendix A – General Automation System ... 12

A.1 General Environment .. 12

A.2 Looping Manager .. 12

A.3 Run Locking ... 19

A.4 Implementation ... 21

Appendix B – AutoMetrics Scripts .. 23

1

Abstract

Known as AutoMetrics, this set of software modules was developed to provide model-

observation and model-model comparison matchups and statistics to help modelers and

forecasters assess the performance of the ocean circulation models, primarily the Navy Coastal

Ocean Model and the Hybrid Coordinate Ocean Model. This system is fully automatic and gives

users much flexibility in what model runs to be evaluated by this system, in real-time operations or

for long-term historical model runs.

1. Introduction

The AutoMetrics system was the result of a project under the Rapid Transition Program to

transition to NAVOCEANO software that provided information to the oceanographers so that they

can assess the performance of numerical ocean prediction models run at NAVOCEANO. The Navy

Coastal Ocean Model (NCOM) (Rowley et al., 2002; Martin, 2000) was initially the primary target,

but also the Hybrid Coordinate Ocean Model (HYCOM) (Wallcraft, 2007) can be used in this system

as well. In fact, any ocean circulation model output in the format described below can be used in

AutoMetrics.

Primarily ocean profiles of observed temperature and salinity are collected and matched with

profiles of modeled same parameters corresponding to same location and time. This also applies to

surface –only observations. The relationship between observations and model output consists of

one-to-many, because from a given model domain and its several runs there exists multiple

forecasts for a given time and place. To further complicate matters, the availability time of both

observations and model output are considered arbitrary and the system must continually check for

both to provide the most up-to-date matches in a timely manner. Ultimately a data base is built

with a set of matches that can be analysed statistically in a variety of ways.

Based on the observed parameters, sound speed is calculated using the observation profiles and the

associated modelled profiles, resulting in matches of sound speed profiles. From that RP33

(NAVOCEANO, 1999) parameters including sonic layer depth (SLD) and below-layer gradient (BLG)

are computed forming additional sets of matches, all of which can be statistically analysed. More

RP33 parameters are being considered for addition.

For the assessment of model performance that do not involve comparisons to observations there

are procedures which take differences between any two fields of like parameters. A simpler

implementation is used for fields of like domain size which is useful to compare a current analysis

or prediction to a previously predicted field for the same target time. A more involved routine can

handle two fields on different grids.

Also, described here are other utilities to be used to check the data. Scripts were formulated for

refitting into a general automation system which is also described.

For readers of this document a working knowledge of UNIX-like operating systems is assumed. _______________
Manuscript approved August 31, 2011.

2

2. Input and output data files

2.1 Model Prediction Output

These files typically from NCOM or HYCOM are netCDF (network Common Data Format)1 files

whose arrangement follow a convention prescribed by NAVOCEANO and augment the NetCDF

COARDS convention2 which is registered with Unidata and is available at the University

Corporation for Atmospheric Research (UCAR).

Files consist of predictions up to 96 hours or more. All the prediction hours or TAUs may be

contained in one file or in separate files. The file naming convention as specified by NAVOCEANO

consists of terminology for the type of model, the domain over which the model ran, a 10-digit date-

time group and, if applicable, the one TAU. The date-time group consists of a four-digit year, a two-

digit month, a two-digit day of the month, and a two-digit hour of the 24-hour clock. All the terms

in the name are connected with underscores. An extension, .nc, is attached. An example of such a

file follows:

ncom_relo_okrwtrgh_v4_sub1_2009051100_t012.nc

This file is output from a regional NCOM as indicated by ncom_relo run over a domain called

okrwtgh_v4_sub1. No particular number of terms that are delimited by the underscores is required.

The cycle time (or run time) was 11 May 2009, at 00 GMT. The one prediction contained in this file

is at TAU 12 or the 12th forecast hour from the cycle time. Other examples of combinations of model

and domain in the terminology in the prefix of the file name include ncom_glb_regp01 and

hycom_glb_908_reg01, which are cut-outs from model runs that covered the global domain.

2.2 Observations

The data in these files come from satellites, ships, XBTs, gliders, and ARGO floats and are first

processed through OcnQC, a component of the Navy Coupled Ocean Data Assimilation (NCODA)

system (Cummings, 2005) to form the files used in the matchup utilities. A version of the NCODA

OcnQC system operates on-site at NAVOCEANO (Lunde and Coelho, 2010) providing files locally in

real-time processed from a data feed. Observational data accumulate in each 24-hour period file,

during and even beyond the24-hour period as data is received.

The files with the .profile, .ship, and .altim extensions are used in this software package. The root

part of the name is a 10-digit date-time group with the same layout as described above.

Observations contained in the files were taken within the 24-hour period after the date indicated by

the 10-digit date-time group. The .profile files contain, as the name implies, observation profiles of

temperature and salinity among other things. The .ship files are focused on the sea surface

temperatures. The .altim files are all about the sea surface height anomalies. Data times in all these

files always start at 00 GMT.

1
 University Corporation for Atmospheric Research—Unidata NetCDF. http://www.unidata.ucar.edu/netCDF.

2
 University Corporation for Atmospheric Research—NetCDF Conventions. http://www.unidata.ucar.edu/netCDF/Conventions.html.

http://www.unidata.ucar.edu/netCDF
http://www.unidata.ucar.edu/netCDF/Conventions.html

3

The data in the files are in binary structure written by FORTRAN programmes. Software functions

written for this system are described later in this report showing how these files are read.

2.3 Matchup files

These files are results from the MatchUp utility described below. They consist of the pairs of

observations and model output (or derived components) in a binary structure which includes

metadata.

3. Software components

The components described here consist of stand-alone utilities and the functions that are included
in these utilities. This is not a full software design description.

For all the components listed below the same pattern for compiling the code is followed assuming
that a UNIX-type operating system is used. Source code for the utilities are organised in each of
their related named subdirectories in $ARTP_HOME/src, where $ARTP_HOME is the root directory
for all the software discussed in this document. The source code for the functions reside in
$ARTP_HOME/libsrc. Each directory has a Makefile in which is included a conf-[Cray-XT|IBM|Linux]
file which contains architecture specific settings. Where applicable, the path to the netCDF library
file must be included in the Makefile. Compiled utilities get installed in $ARTP_HOME/bin and the
library is $ARTP_HOME/lib/libartp.a which must be built first. The interfaces for the functions are
in files located in $ARTP_HOME/include.

After editing the Makefile for the appropriate conf-* file, checking paths, and compiling the
AutoMetrics library, the command make executed in the directory where the utilities reside will
compile the utilities in that directory right away. Executing make install will put the executables
into $ARTP_HOME/bin.

Source code is updated on the NRL SVN server. Below are the utilities described in sections named
just as they are organised in directories for the source code.

3.1 MatchUp

The one utility is called matchup_drvr.x and matches OcnQC data to parameters of multi-

dimensional model output, up to four dimensions. Two observation file types can be used: .ship and

.profile (.altim not at this time). Usage is as follows:

% matchup_drvr.x list_ncfiles list_obfiles mafile

The first argument, list_ncfiles is a file containing a list of netCDF files. The second argument,

list_obfiles, is a list of observation files to be operated with the netCDF files in the first list. For

either of these lists of files, absolute or relative directory paths can be used. The final argument,

mafile, is the binary, direct access output file with the resulting matchups. Although there is no

technical limit to the number of files that can be listed in either list file, in practice there are limits

in time and memory.

4

The programme goes through the list of netCDF files and for each one tests for matches to the

observations stored in the files listed in the other list file. Naturally, many times the programme

loops through data with nothing to match where a netCDF file does not cover the time frame of the

observation file. Since the relationship between observations and forecasts is one-to-many, there

will be many redundant instances of any observation as they are matched and saved together with

each forecast for the same target time and place.

There are two ways to treat finding the time of the data in the netCDF file to match the time of the

observation. If a netCDF file contains one time dimension, i.e. a single TAU, then automatically

matchup_drvr.x compares observations at their measurement times to a 1.5 hour window around

the TAUs in the netCDF file to form the matchup if within the window. Otherwise, the times are

interpolated between TAUs in the same netCDF file. If the latter method is preferred and the

netCDF files to be used all contain single TAUs, then they can be combined with the ncrcat

command which is part of the NCO (netCDF Operators) (Zender, 2007) software package. Often

due to file sizes, files may only be combined to as many as two TAUs at one time.

Interpolation is linear along horizontal space within the fields of model output and as stated above

may also be so along time if more than one TAU is present. Vertically, interpolation is done on a

piece-wise Hermite curve along the profile of an observation resulting in data pairs at each

modelled level. The matchup pairs are contained in a record with the following structure:

 float btm; // bottom depth

 float lat; // latitude of observation

 float lon; // longitude of observation

 int nlvls; // number of levels

 char parm[12]; // name of the parameter

 float *lvl; // array of levels (depths for ocean) based on model

 float *obm_val; // observed value at each level

 float *mdm_val; // model value at each level

 float *diffm_val; // difference – modelled minus observed

 char ob_dtg [12]; // date-time group of the time of observation

 char md_dtg [12]; // date-time group of the time of model value

 double tau; // forecast hour since model cycle start

 char sign[72]; // call sign/name of the observation platform

 char id[72]; // unique identifier of observation

 char model[72]; // name of the model with region

For each cycle in a model run, many records may be stored in one file. Many cycles of a model may

be combined together which may result in very large files. A header four bytes long is placed at the

beginning of each file. This is a float value indicating the version of the data structure used, which

helps interpreting software distinguish between older and new, improved versions of this

structure.

5

3.2 OcnObs

A utility called ocnobs.x reads the OcnQC files (.ship, .profile, or .altim) and returns contents to

stdout. This is a handy way to dump out the contents of a file for verification. Usage follows:

% ocnobs.x obsfile | more

The argument is an observation file. It is advisable to pipe the stdout to more or redirect it to a file.

3.3 Stats

The main one of two utilities in this section is called stats.x and computes statistics from a set of

matchup files resulting from the matchup_drvr.x reporting results in a table in stdout. Usage

follows:

% stats.x list_mafiles parameter TAU1 TAU2

The first argument, list_mafiles, is a list of matchup files. The lists of files may include absolute or

relative directory paths. The second argument is the parameter of interest, which may include

values like, water_temp, salinity, sound_speed, SonicLayerDepth, and BelowLayerGradient as

precisely spelled out. The last two arguments specify the beginning and ending TAUs in which the

desired statistics are to be computed. An example of a table output follows:

stats.x: opening matchup file: ../../data/matchups/daily_0_72_profile_ncom_relo_wpac_2_u-2011051600-interp.matchup

stats.x: reading matchup file

Version: 1

stats.x: all matches read.

 nc_level MB RMSD StdDev R mdlmean obsmean Bcond Buncond SS N

 0.0 0.155 1.483 1.476 0.979 23.869 23.714 0.002 66.281 -65.324 480

 2.0 0.112 1.480 1.478 0.979 23.721 23.609 0.001 35.491 -34.532 467

 4.0 0.150 1.574 1.569 0.977 22.847 22.697 0.000 68.385 -67.430 407

 6.0 0.159 1.561 1.555 0.978 22.823 22.664 0.000 77.224 -76.269 407

 8.0 0.171 1.546 1.538 0.978 22.791 22.620 0.001 89.650 -88.694 407

 10.0 0.174 1.536 1.528 0.979 22.789 22.615 0.001 92.920 -91.963 405

 12.0 0.186 1.530 1.520 0.979 22.742 22.557 0.001 107.530 -106.572 405

 15.0 0.197 1.558 1.548 0.979 22.662 22.465 0.001 122.655 -121.699 404

 20.0 0.189 1.578 1.568 0.978 22.488 22.299 0.002 116.202 -115.247 402

 25.0 0.160 1.589 1.583 0.978 22.237 22.078 0.002 85.117 -84.162 401

 30.0 0.151 1.593 1.587 0.978 21.994 21.843 0.002 76.689 -75.734 399

 35.0 0.142 1.601 1.596 0.978 21.779 21.637 0.002 68.185 -67.231 395

 40.0 0.142 1.610 1.606 0.977 21.518 21.376 0.002 66.826 -65.873 393

 45.0 0.127 1.604 1.601 0.977 21.285 21.159 0.001 50.816 -49.862 389

 50.0 0.104 1.648 1.647 0.975 21.034 20.931 0.000 33.612 -32.661 385

 60.0 0.067 1.720 1.721 0.972 20.461 20.394 0.000 13.039 -12.095 380

 70.0 0.051 1.739 1.740 0.970 19.935 19.884 0.001 6.594 -5.655 373

 80.0 0.094 1.757 1.757 0.968 19.325 19.231 0.004 20.015 -19.081 363

 90.0 0.105 1.764 1.764 0.966 18.709 18.604 0.006 21.524 -20.596 357

 100.0 0.185 1.756 1.748 0.965 18.191 18.007 0.008 60.482 -59.559 344

 125.0 0.192 1.712 1.704 0.964 16.728 16.536 0.003 58.870 -57.943 316

 150.0 0.152 1.548 1.543 0.968 15.120 14.968 0.000 32.546 -31.609 296

 200.0 0.106 1.287 1.285 0.975 12.862 12.756 0.000 11.962 -11.013 278

 250.0 -0.061 1.155 1.156 0.978 11.125 11.186 0.000 3.363 -2.407 266

 300.0 -0.072 0.911 0.910 0.985 9.754 9.826 0.001 3.944 -2.975 257

 350.0 -0.056 0.772 0.771 0.987 8.953 9.009 0.000 1.686 -0.711 255

 400.0 -0.009 0.710 0.712 0.987 8.323 8.332 0.000 0.030 0.944 252

 500.0 0.044 0.563 0.562 0.988 7.168 7.123 0.007 0.275 0.694 246

 600.0 0.098 0.459 0.449 0.988 6.184 6.086 0.019 0.438 0.518 239

 700.0 0.105 0.446 0.435 0.978 5.500 5.395 0.051 0.115 0.790 232

 800.0 0.232 0.488 0.432 0.932 5.445 5.213 0.124 0.062 0.683 124

 900.0 0.119 0.319 0.298 0.947 4.624 4.505 0.023 0.008 0.865 103

 1000.0 0.030 0.204 0.203 0.944 3.843 3.813 0.003 0.000 0.888 49

 1250.0 0.012 0.127 0.128 0.935 3.067 3.055 0.050 0.000 0.825 39

 1500.0 0.028 0.093 0.090 0.906 2.577 2.548 0.033 0.000 0.788 33

 2000.0 -0.015 0.039 0.039 0.875 2.024 2.038 0.372 0.000 0.394 7

 2500.0 -0.007 -999.000 -999.000 -999.000 1.748 1.755 -999.000 -999.000 -999.000 1

 3000.0 0.047 -999.000 -999.000 -999.000 1.679 1.632 -999.000 -999.000 -999.000 1

stats.x: summary file written.

6

Labels of each column and their meaning follow:

nc_level – netCDF model level in meters, depth for ocean circulation models

MB – mean bias or mean difference, model minus observation

RMSD – root mean squared difference

StdDev – Standard deviation of differences.

R – correlation coefficient

Mdlmean – mean of modelled values

Obsmean – mean of observed values

Bcond – conditional bias

Buncond – unconditional bias

SS – skill score

N – number of points

The formulations for RMSD, R, Bcond, Buncond, and SS are computed and used as described in Bara

et al., 2006.

A subset of stats.x is rd_matchup.x which simply reads a match-up file and dumps the contents to

stdout, which is useful for verifying the performance of matchup_drvr.x. It also provides the exact

spelling of the parameters which can be used as an argument for stats.x. The usage is much

simpler:

% rd_matchup.x mafile | more

where mafile is the matchup file that was generated by matchup_drvr.x. It is advisable to pipe the

stdout to more or redirect it to a file.

3.4 CompareModels

A utility called compare_models.x takes the differences between two different models of fields of like

parameters. Usage follows:

% compare_models.x ncfile1 ncfile2 [dtime]

The first two arguments are the two netCDF model output files with which a difference is taken,

ncfile1 minus ncfile2. These two files do not need to have the same resolution domain grids, but

they should be covering the same area, but not necessarily exactly. The optional dtime argument is

the increment in time desired. The default is that all times are done. The resulting netCDF files are

named with a combination of the names of the input files plus an additional extension tacked on.

4. Automated System

4.1 Run Environment

The running system described here is set up using these environment variables:

 $ARTP_HOME ~someone/models/ARTP

 $ARTP_OPS $OPS/models/ARTP

 $LISTS $ARTP_OPS/lists

7

 $LOGS $ARTP_OPS/logs

 $LOCKS $ARTP_OPS/locks

 $PATH ${PATH}:${ARTP_OPS}/bin

See Appendix A, General Automation, for information on how the general environment is applied

and where variables such as $OPS are defined. The $ARTP_HOME is in ~someone, a home directory,

likely to be /u/home/ooc for NAVOCEANO, where the AutoMetrics system permanently resides.

The $LISTS, $LOGS, and $LOCKS directories are set for convenience, but they otherwise can remain

their defaults in accordance with the general automation system setup. After setting up your own

general environment, the user can set up an AutoMetrics run environment like this:

% source ~someone/models/ARTP/etc/setup.csh

when in tcsh, or csh shell. And for for sh, ksh, or bash shell:

% . ~someone/models/ARTP/etc/setup.sh

Along with the environment set up, user directories and links are made in $ARTP_OPS. This

environment will be expected and referenced by the AutoMetrics system. System directories that

are used:

 $ARTP_HOME/bin AutoMetrics-specific scripts and executables

 $ARTP_HOME/etc set-up info files and templates

 $ARTP_HOME/lists do- and done-lists for daily automation

 $ARTP_OPS/logs log files for automation

 $ARTP_OPS/locks lock files for automation

 $ARTP_OPS/data model and observational input data and results

For each of these directories on $ARTP_HOME and $ARTP_OPS is a corresponding link from the

other directory result, in effect, the entire structure available on both sides. Consider the content

on $ARTP_HOME to be permanent data and that on $ARTP_OPS temporary/scratch data. For the list

above, the first three physically reside in the permanent space whilst the last three reside on the

scratch directory where files are scrubbed after a few days. Note that on the archive machine

where the results are stored the same structure exists as in the scratch directory of the

computational machine except that the storage is permanent, of course.

4.2 AutoMetrics Scripts

Two main scripts are implemented in the automated system at NAVOCEANO: 1) matchup_set which

submits a PBS batch job script, matchup_agent.job which runs matchup_drvr.x ; and 2) ncdiffr which

takes the difference between two model output fields of same-size mesh using NCO utilities. All

these scripts are listed in Appendix B.

These script names are really links to scripts with the .sh extenstion located in $ARTP_HOME/bin.

The arguments are $dtg, a 10-digit date-time group of the cycle run, and $item consisting of the

domain and other pieces of information. This argument list complies with the requirements of the

general automation system.

Here is an example of running on the command line matchup_set for cycle time 2010 April 01 00

GMT for the regional NCOM domain, ncom_relo_wpac_2_u:

8

 % matchup_set 2010040100 ncom_relo_wpac_2_u:0:3:72

working from TAU 00 through 72 every 3 hours. The second argument is a combination of

parameters that will be parsed in the script. When this script is successful, a job is submitted, after

which a file, jobdone-$dtg, indicating completion is written. When this script attempts to run for

this particular task and date again, it will see this file and call it a successful completion for the

purposes of the general automated system. Note that it is possible for models to run at times other

than 00 GMT e.g. 06, 12, or 18 GMT, in which cases the script knows to grab the first 00 GMT

observation file and others after to cover the time frame in question.

As of this writing, the DSRC IBM AIX machines DaVinci and Pascal, and the Cray XT Einstein all use

the PBS batch queuing system for submitting jobs.

The $item input for ncdiffr consists of a colon-delimited set of additional numbers appended to the

domain which is parsed and used to control the TAUs used in making the difference, e.g.:

% ncdiffr 2010040100 ncom_relo_anex32:24:48

where the difference will be made between fields for TAU 24 of cycle 2010040100 and TAU 48

2010033100, i.e. two fields for the same valid time of 2010040200. This is an example of a typical

comparison desired by the modelers at NAVOCEANO. Note that this script, though it has a similar

role, is not the same software as, nor does it use, the utility, compare_model.x, described above.

4.3 Real-time and Hindcast Automation

The matchup_set and ncdiffr scripts are run by a $ARTP_HOME/bin/cronpanel. Located in

$ARTP_OPS/logs are loop_mgr log files for the corresponding instances of these scripts. The

following is partial listing of a sample cronpanel:

Matchups and differences for NCOM

export days_back=1

export instance=matchup

run_lock loop_mgr matchup_set &

export instance=ncdiffr

run_lock loop_mgr ncdiffr &

Appendix A on General Automation describes how this application is set into motion for each $item and
$dtg for automation. To apply the loop_mgr utility the user can add an entry into the do-list, e.g.
$LISTS/do_matchup, as in this example:

ncom_relo_wpac_2_u:0:3:72 00 24

ncom_relo_socal_u:0:3:72 00 24

ncom_relo_useast_u:0:3:72 00 24

ncom_relo_amseas:0:3:72 00 24

ncom_relo_ecskur:0:3:72 00 24

ncom_relo_fukushima_1km_tmp:0:3:72 00 24

ncom_relo_sendai:0:3:72 00 24

ncom_relo_spss:0:3:72 00 24

#ncom_relo_psea:0:3:72 00 24

One item is commented out with #, so it is ignored. The two numerals following each $item control the
start time and period of time between each run. Without those the default is 00 and 12. Normally,
models run starting with 00 GMT and every 12 hours, but NCOM is an example of 24-hourly runs.

9

In addition to the do-lists in the $LISTS directory are the done-lists that keep a record of all items for
completed cycles and the time of completion. For the matchup_set and ncdiffr scripts are the lists,
do_matchup and done_matchup, and do_ncdiffr and done_ncdffir, respectively.

Model output in real-time from OOC that will be used in the scripts described above are located in
various directories as prescribed by the model operations and their working file systems. Locally, netCDF
files can be thrown into the hopper at $ARTP_OPS/data/netCDF. Observational profiles in real-time
from NAVOCEANO operations are located in /u/home/ooc/models/ncoda/etc/$dist/$filetype where $dist
is either navoqc_public, navoqc_rstrct, or navoqc_secret, and $filetype is either profile, ship, or altim.
These same types of data are also available on the GODAE server,
http://www.usgodae.org/ftp/outgoing/fnmoc/data/ocn/. Locally, observational files can be thrown into
the hopper at $ARTP_OPS/data/ocnqc.

Directories are created in $ARTP_OPS/run for each $item on the list named the same. Their log files and
various work files pertaining to the $item are created and used within these work directories.

Results from matchup_agent.job arrive at $ARTP_OPS/data/matchups. Results from ncdiffr arrive at
$ARTP_OPS/data/model-model. Monthly tar files are accumulated in $ARTP_OPS/data/tarfiles. These
files end up on the archive machine which as of this writing is Newton.

Here is an important note regarding real-time matchups and completeness of data sets. Since
observational files are accumulating during the 24-hour period of that file and beyond even for days, the
most complete set of matchups is collected only after a significant period of time after initial model cycle
time. If more current sets of matchups were needed, then users would have to accept the possibility of
missing many observations that had not been received yet. If continual updates are called for, then
deleting the done-list after every run will allow the scripts to process the same matchups over and over
allowing for new observations to get included as they are received, though this is considered “brute

force”. Naturally, this is not an issue for “hindcast” runs.

Running in “hindcast” mode means rerunning for a period of time in the past. The cronpanel and/or the
do-list would need to be set up with the date in the past and the time beyond. For example, if matchups
are required for the month of July 2011, then entries in the cronpanel might look like this:

Rerun for matchups and differences for NCOM

export dtg=2011070100

export days_for=31

export instance=matchup_rerun

run_lock loop_mgr matchup_set &

export instance=ncdiffr_rerun

run_lock loop_mgr ncdiffr &

In this example the do-lists and done-lists would be named do_matchup_rerun, done_matchup_rerun,
do_ncdiffr_rerun, and done_ncdiffr_rerun. The value of instance variable and the resulting name of the
do- and done-lists are up to the user.

Or, leaving the cronpanel as originally set up for real-time, the do-list (like the example listed above) can
be edited with additional entries on each line indicating the date start and the days of duration as follows:

ncom_relo_wpac_2_u:0:3:72 00 24 2011070100 0 31

ncom_relo_socal_u:0:3:72 00 24 2011070100 0 31

ncom_relo_useast_u:0:3:72 00 24 2011070100 0 31

ncom_relo_amseas:0:3:72 00 24 2011070100 0 31

ncom_relo_ecskur:0:3:72 00 24 2011070100 0 31

http://www.usgodae.org/ftp/outgoing/fnmoc/data/ocn/

10

ncom_relo_fukushima_1km_tmp:0:3:72 00 24 2011070100 0 31

ncom_relo_sendai:0:3:72 00 24 2011070100 0 31

ncom_relo_spss:0:3:72 00 24 2011070100 0 31

#ncom_relo_psea:0:3:72 00 24 2011070100 0 31

Everything else functions the same. The done-list will keep the system from redoing those items for

those times as before.

4.4 User Hints

Usually the system can run automatically without user intervention. But, there are a few things that

may help users to diagnose the situation if something goes wrong, and usually it is for some

external reason. If there are no results showing up, check that the computer system is functioning

as it should such as the cron and the batch queuing system. Check that the file system is in place,

possibility deleted in the /scr directory or not mounted. Make sure the paths to executables and

libraries are in place. This is important when relying on a general environment where commands

like timecalc and add_digits on which so much relies might become unavailable.

A good place to start in the AutoMetrics system itself is looking at the log files. The files in

$ARTP_OPS/logs are indicative of the behaviour of the matchup_set or ncdiffr scripts and may point

out some deficiencies which again are external to AutoMetrics, such as data not arriving as it

should. The log-ARTP file in $ARTP_OPS/run for each $item indicate the behaviour of the queued

job and the various long-named log files show what the matchup_drvr.x programme is doing.

Also, within those $item directories are the jobrunning and jobready files indicating that there is a

job submitted in the queue that is either running or waiting ready to run, respectively. If there is a

jobrunning file whose jobid contained in that file does not exist in the queue, the automated system

knows to replace the jobrunning file with the correct one the next time around. But, this not the

case for the jobready file, so the removal of this file is necessary for it to resume for that $item.

When the task is done for a particular $item and $dtg, then a jobdone-$dtg file is written which

matchup_set recognizes and calls this task done for the automated system to list in the done-list.

Progress can be easily monitored by checking out the $ARTP_OPS/tarfiles directory. There each tar

file contains the running total of all the matchups made for the month in a model.

Acknowledgements

This project was funded by ONR Program Element 0602435N. Thanks go to NAVOCEANO

personnel for their requirements inputs and valuable feedback. Philip Fanguy from QinetiQ North

America and Josie Fabre from the Naval Research Laboratory contributed to the source code of the

utilities. Thanks go to Rachel Bourg at NAVOCEANO for her assistance setting up the software

system on all the operational machines and assuring their proper functioning.

11

References

Kara, A.B., C.N. Barron, P.J. Martin, L.F. Smedstad, and R.C. Rhodes, 2006: Validation of interannual
simulations from the 1/8: global Navy Coastal Ocean Model (NCOM), Ocean Modelling 11, 376-
398.

Cummings, J.A., 2005: Operational multivariate ocean data assimilation. Q J R Meteorol. Soc 131,

3583–3604.

Hodur, R.M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmopheric Mesoscale

Prediction System (COAMPS). Mon. Wea. Rev., 125, 1414-1430.

Lunde, B. and E. F. Coelho, 2009: Implementations of the Navy Coupled Ocean Data Assimilation

System at the Naval Oceanographic Office. Marine Tech. Soc., Oct. 26-29, Oceans 2009, Biloxi,
Mississippi.

Martin, P.J., 2000: Description of the Navy Coastal Ocean Model Version 1.0. NRL Formal Report,

NLR/FM/7320--00-9962. Naval Research Laboratory, Stennis Space Center, Mississippi, 45 pp.

Naval Oceanographic Office, Code N72, Claimancy Training Division, Tactical Support Branch, 1999: Fleet

Oceanographic and Acoustic Reference Manual, RP33, April 1999, 216 pp.

Rowley, C., C. Barron, L. Smedstad, R. Rhodes, 2002: Real-time ocean data assimilation and

prediction with global NCOM, Marine Tech. Soc., Oct. 29-31, Oceans 2002, Biloxi, Mississippi.

Wallcraft, A., H. Hurlburt, E.J. Metzger, E. Chassignet, J. Cummings, and O.M. Smedstad, 2007: Global

Ocean Prediction Using HYCOM, HPCMP-UGC. 2007 DoD High Performance Computing
Modernization Program Users Group Conference, 259-262.

Zender, C.S., NCO User's Guide, Version 3.9.3 (2007) Available from: http://nco.sf.net/nco.pdf (1, 3,

3.3).

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=6063&_issn=13648152&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fnco.sf.net%252Fnco.pdf

12

Appendix A – General Automation System

This system provides general purpose tools and a general way to automatically run applications on

a cycle. Applications are typically scripts that prepare for, run, and process output for numerical

models that run every day.

A.1 General Environment

The system described here is set up using these general environment variables:

$USR ~someone/usr
$OPS $scratch/someone

$ETC $USR/etc

$LIB $USR/lib

$BIN $USR/bin

$LISTS $USR/lists

$LOCKS $OPS/locks

$LOGS $OPS/logs

$WORK $OPS/work

$PATH $PATH:$BIN

$OPS is created for the user (~someone) in some temporary space on scratch directories which

could be /tmp or /scr whilst $USR is located permanently at ~someone, a home directory. The user

can set up the environment like this:

% source ~someone/usr/etc/setup.csh

when in csh, or tcsh shell, And for in sh, ksh, or bash shell use:

 % . ~someone/usr/etc/setup.sh

Along with the environment set up, user directories and links are made in $OPS. This environment

will be expected and referenced by the automation system. There is facility to allow a different user

use someone’s environment as their own and implement the software in someone’s user account.

A.2 Looping Manager

Figure 1 illustrates how loop_mgr.pl (linked to loop_mgr), a Perl program, is used to automate

applications on a cyclical basis. For example, COAMPS®, a numerical meteorological model

operationally run at FNMOC (Hodur, 1997), can be run for certain domains every 12 hours. Any

application used by loop_mgr would be required to take two arguments: 1) a 10-digit date-time

group consisting of four digits for the year, two digits for the month of the year, two digits for the

day of the month and two digits for the hour of the day (YYYYMMDDHH); and 2) a unique item

identifier which can be parsed in a script. For example, a script that sets up and runs COAMPS®,

coampsset, could take the arguments: 2007040100 Adriatic:48, which loop_mgr would formulate

from checking the do-list and the done-list. The second argument in this example might have some

delimiter, a colon in this case, which could be parsed by a script designed to parse for a domain

name, Adriatic, and a forecast period, 48.

13

Figure 1 Diagram of Looping Manager Procedure.

It is cleaner to keep applications named without an extension, since the names of the do- and done-

lists are named after the application by default. Note that the general environment variables may

be used as-is or some can be redefined to confine the work someplace else. Here is an example

command sequence (in a ''sh'' script kicked off in a cron) to run COAMPS® in real-time without

checking back or forward in time:

export days_for=0.0

export days_back=0.0

loop_mgr coampsset

To override the current real-time date for a 6-month hindcast starting at 01 Jan 2010 00 GMT:

export dtg=2010010100

export days_forward=181.0

export days_back=0.0

The do-list, do_coampsset, could contain these sample entries:

Adriatic:48 00 12

Gulf_of_Mexico:72 00 12

14

where the second and third entries are offset time and frequency both in hours, these values being

the defaults.

When the application being applied by loop_mgr exits with return 0, then this job is considered

done and added into the done-list. No more attempts will be made to apply the application for this

$dtg group and $item unless that line item is removed and the $days_back, $days_for, and $dtg are

set to allow that time to be attempted again. The $do_lists and $done_lists variables can also be

defined over the defaults.

Another way to do the hindcast runs is to provide these additional entries in the do-list as follows:

Adriatic:12 00 12 2010010100 0 181

Gulf_of_Mexico:12 00 12 1997010100 0 181

which has the same effect as assigning the environment variables $dtg, $days_back, and $day_for,

respectively, the same added entries in this do-list example.

Listing of the loop_mgr Perl script is as follows:

#!/usr/bin/perl -w

See documentation below

use Env;

require "$USR/lib/General.pm";

$program = $ARGV[0];

if ($ENV{"dtg"}) {

 $curr_dtg = $ENV{"dtg"};

 print "loop_mgr: Using dtg = $curr_dtg\n";

} else {

 $curr_date = get_date ();

 $curr_dtg = "$curr_date"."00";

}

system("date");

Define control variables from the environment or use defaults

$instance = definevar("instance", "$program");

$LISTS = definevar("LISTS", ".");

$dolist = definevar("dolist", "$LISTS/do_$instance");

$donelist = definevar("donelist", "$LISTS/done_$instance");

$notdonelist = definevar("notdonelist", "$LISTS/notdone_$instance");

system ("touch $notdonelist");

system ("rm $notdonelist");

system ("touch $notdonelist");

$days_back = definevar("days_back", 1);

$days_for = definevar("days_for", 0);

$lsequence = definevar("lsequence", "true");

Loop for each day from $days_back till $days_for

if(open(DOFILE, "$dolist")) {

 @do_array = <DOFILE>;

 close (DOFILE);

} else {

 @do_array = "all";

}

if(open(DONEFILE, "$donelist")) {

 @done_array = <DONEFILE>;

 close (DONEFILE);

}

foreach $do_record (@do_array) {

 # Also, we need to add logic to account for blank lines.

 unless ($do_record =~ /^\#/) {

 chomp ($do_record);

 @do_record_list = split(/[\s]+/, $do_record);

 $item_label = $do_record_list[0];

 $hour_phase = 0;

 if (defined ($do_record_list[1])) { $hour_phase = $do_record_list[1]; }

15

 $hour_freq = 12;

 if (defined ($do_record_list[2])) { $hour_freq = $do_record_list[2]; }

 if (defined ($do_record_list[3])) { $curr_dtg = $do_record_list[3]; }

 if (defined ($do_record_list[4])) { $days_back = $do_record_list[4]; }

 if (defined ($do_record_list[5])) { $days_for = $do_record_list[5]; }

 # Initialize date-time group variables

 $hours_back = $days_back * -24;

 $init_dtg = timecalc ($curr_dtg, $hours_back);

 $hours_for = $days_for * 24;

 $final_dtg = timecalc ($curr_dtg, $hours_for);

 $dtg = timecalc ($init_dtg, $hour_phase);

 $final_dtg = timecalc ($final_dtg, $hour_phase);

 print "# for record: $do_record: begins $dtg and ends $final_dtg ########################\n";

 # Loop through all date-time groups

 $flag = 0;

 while($dtg <= $final_dtg && $flag != 2) {

 print "- checking for $dtg $item_label --\n";

 # Initialize completion flag

 $flag = 0;

 # Check with all the done list items

 foreach $done_record (@done_array) {

 chomp ($done_record); # removes carriage return

 @done_item_label = split " ", $done_record ;

 $count = split " ", $done_record ;

 if ($done_item_label[$count - 2] eq $dtg && $done_item_label[$count - 1] eq $item_label) {

 print "loop_mgr: $program $dtg $item_label already completed\n";

 $flag = 1;

 }

 }

 if($flag == 0) {

 $exit_flag = system("$program $dtg $item_label");

 $date = scalar localtime;

 chomp ($date);

 if($exit_flag == 0) {

 open (DONEFILE, ">>$donelist");

 print DONEFILE "$date $dtg $item_label\n";

 close (DONEFILE);

 print "loop_mgr: $program $dtg $item_label exited as completed.\n";

 } else {

 open (NOTDONEFILE, ">>$notdonelist");

 print NOTDONEFILE "$date $dtg $item_label\n";

 close (NOTDONEFILE);

 print "loop_mgr: $program $dtg $item_label exited as incomplete -- will be back again

later\n";

 if($lsequence eq "true") {

 print "loop_mgr: $program $dtg $item_label not completed yet -- cannot go on\n";

 $flag = 2; # means that no more checking for this item

 }

 }

 }

 $dtg = timecalc($dtg, $hour_freq);

 }

 }

 @do_record_list = "";

}

Limit done-list size

if(open(DONEFILE, $donelist)) {

 @lines = <DONEFILE>;

 close (DONEFILE);

 if (@lines>50000) {

 $number_to_delete = (@lines-1);

 for ($i=0; $i<$number_to_delete; $i++) {

 shift (@lines);

 }

 open (TEMPFILE, ">${donelist}.tmp");

 for ($i=0; $i<@lines; $i++) {

 $line = $lines[$i];

 print TEMPFILE "$line";

 }

 close (TEMPFILE);

 system ("cp ${donelist}.tmp $donelist");

 unlink ("${donelist}.tmp");

 }

}

exit 0;

16

Authors:

- James D. Dykes, NAVO, N212, 23 August 1999

- Pat Wilz, PSI

Revised:

19 November 2003

15 Sep 06

Changed size limit on done-list and delete always only one at a time

28 Dec 06

Added mail message sent when catching up to curr_dtg

05 Oct 07, J Dykes

Added $instance environmental variable to simplify specifiying different do-lists, etc.

14 May 08, J Dykes

Added $lsequence environemnt variable to control whether or not runs can run ahead of sequence.

Added additional options to the do-list to define dtg, days_back, and days_for for each item.

11 June 08, J Dykes

Streamlined control variable definitions with the definevar function

Purpose:

- Using a do- and done-list, runs a program until successful completion

for each listed item over a few days

Method:

- Normally used non-interactively

Usage: loop_mgr <program>

- <program>

-- depending upon success of completion, should return appropriate exit

status for loop_mgr to respond on

-- accepts these two arguments in this order

--- first arg - base date time YYYYMMDDHH e.g. 1999092300

--- second arg - reference ID

Control/input/output files:

- do-list (edited by user)

-- file naming: do_<program>

-- contents: reference ID, hour phase, hour interval, base dtg, days back, days forward

--- reference ID identifies unique item or task usually a key in a

par file used by <program>

--- hour phase is the first hour of the day to use for a base

date and time (default: 00)

--- hour interval e.g. 12 is every 12 hours

(default: 12 i.e. twice per day)

--- Last three items are the same as defined in the environment variables.

- done-list (edited by user and <program>, user delete lines to do again)

-- file naming: done_<program>

-- contents: results from date command, base date and time, reference ID

- notdone-list (output from <program> only)

-- file naming: notdone_<program>

-- contents: results from date command, base date and time, reference ID

Environment variables: (user can define to override defaults using the definevar function)

- LISTS - directory where do-, done-, and notdone list files are located

(default: current dir)

- days_back - number of days to go back to start

- days_for - number of days to go forward to end

- dtg - base date and time i.e. YYYYMMDDHH (default: current date and time

- dolist

- donelist

- notdonelist

- instance - as in run_lock used to distiguish processes for lists

- lsequence - True if items need to be done in sequence

Platform Dependencies:

- Check the path for perl

- Works on everything unix

Software Dependencies:

- $LIB/General.pm contains these perl utilities

-- timecalc - adds hours to date and time group returning a new date and

time group

-- get_date - gets current year, month, day

-- definevar - Control variables are defined from the environment

or a default is used.

Bugs/Notes

- If only the current date for the base data is required, specify 0.0 vice

just 0 for the variable days_back, otherwise it will not get defined

17

Listing of dependencies in $USR/lib/General.pm are as follows:

sub get_date

Gets the current date in this format: YYYYMMDD

YYYY - year since AD

MM - month of the year

DD - day of the month

{

 my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst)=

 localtime (time);

 $mon++;

 if ($mon < 10) {

 $mon="0$mon";

 }

 if ($mday < 10) {

 $mday ="0$mday";

 }

 $year+=1900;

 return("$year"."$mon"."$mday");

}

sub definevar

Control variables are defined from the environment

or a default is used.

Created: 11 June 2008, J Dykes, NRL-SSC, 7322

{

 local($controlvar) = "$_[0]";

 local($default) = "$_[1]";

 if($ENV{"$controlvar"}) {

 $$controlvar = $ENV{"$controlvar"};

 print "loop_mgr: Using $controlvar = $$controlvar by override\n";

 } else {

 $$controlvar = $default;

 $ENV{"$controlvar"} = $$controlvar;

 print "loop_mgr: Using $controlvar = $$controlvar by default\n";

 }

 return($$controlvar);

}

sub timecalc #

This is a PERL version of the script that will send out #

a DTG subtracting hours from another DTG. For instance #

97121312 -18 (Dec. 13, 1997 1200 hrs minus 18 hours) #

will return 97121218 (Dec 12, 1997 1800 hrs.) #

{

local $indate="$_[0]";

local $hrchng="$_[1]";

chomp ($indate);

chomp ($hrchng);

local (@dyinmo)=(31,28,31,30,31,30,31,31,30,31,30,31);

my $i;

@indate=split(//,$indate);

if (length($indate) == 8)

{

 $ct="";

 @yr=@indate[0..1];

 $yr=join("",@yr);

 @mo=@indate[2..3];

 $mo=join("",@mo);

 @dy=@indate[4..5];

 $dy=join("",@dy);

 @hr=@indate[6..7];

 $hr=join("",@hr);

}

else

{

 if (length($indate) == 10)

 {

 @ct=@indate[0..1];

 $ct=join("",@ct);

 @yr=@indate[2..3];

 $yr=join("",@yr);

 @mo=@indate[4..5];

 $mo=join("",@mo);

 @dy=@indate[6..7];

18

 $dy=join("",@dy);

 @hr=@indate[8..9];

 $hr=join("",@hr);

 }

 else

 {

 return (1);

 }

}

$hr+=$hrchng;

if ($hr>=0 && $hr <=23)

{

do nothing else

}

else

{

 if ($yr%4 == 0)

 {$dyinmo[1] = 29;}

 $dyofyr = 0;

 if ($mo > 1)

 {

 for ($i = 1; $i < $mo; $i++)

 {

 $dyofyr += $dyinmo[$i-1];

 }

 }

 $dyofyr += $dy;

 while ($hr > 23)

 {

 $hr -= 24;

 $dyofyr++;

 }

 while ($hr < 0)

 {

 $hr += 24;

 $dyofyr--;

 }

 if ($yr%4 == 0)

 {$yrdys = 366;}

 else

 {$yrdys = 365;}

 while ($dyofyr > $yrdys)

 {

 $dyofyr -= $yrdys;

 $yr++;

 if ($yr%4 == 0)

 {$yrdys = 366;}

 else

 {$yrdys = 365;}

 }

 while ($dyofyr < 1)

 {

 if ($yr%4 == 1)

 {$dyofyr += 366;}

 else

 {$dyofyr += 365;}

 $yr--;

 }

 while ($yr > 99)

 {

 $yr -= 100;

 if (length($indate) == 10)

 {$ct++;}

 }

 while ($yr < 0)

 {

 $yr += 100;

 if (length($indate) == 10)

 {$ct--;}

 }

 if ($yr%4 == 0)

 {$dyinmo[1] = 29;}

 else

 {$dyinmo[1] = 28;}

 $mo = 1;

 while ($dyofyr > $dyinmo[$mo-1])

 {

 $dyofyr -= $dyinmo[$mo-1];

 $mo++;

 }

 $dy=$dyofyr;

}

19

#$newdate=$hr+100*($dy+100*($mo+100*($yr+100*$ct)));

 if (length($yr) < 2)

 {

 $yr="0".$yr;

 }

 if (length($mo) < 2)

 {

 $mo="0".$mo;

 }

 if (length($dy) < 2)

 {

 $dy="0".$dy;

 }

 if (length($hr) < 2)

 {

 $hr ="0".$hr;

 }

 $newdate=$ct.$yr.$mo.$dy.$hr;

return ($newdate);

}

A.3 Run Locking

If an application is running and you do not want a duplicate instance of that application running,

then invoke this utility, run_lock.pl (linked to run_lock), which is especially useful if an instance of an

application is kicked off automatically and frequently. Figure 2 shows the implementation of

run_lock.

Figure 2 Diagram showing implementation of run locking procedure.

20

Sample command sequence to run the ls command, have the lock file in $LOCKS and use an instance

name other than the default, 0:

export instance ls_special

run_lock ls $LOCKS 1>$LOGS/log-$instance 2>&1 &

A lock file called, ls.ls_special is written in $LOCKS, though very briefly since this command does not

take long, but then the files in $LOGS would show that file listed. The run_lock utility is useful to

check for an application that should be running constantly, such that should a failure kill that

application, it will come back up when scheduled in the crontab.

Listing of the run_lock script is as follows:

#!/usr/bin/perl

See documentation below

use Env;

require "$USR/lib/General.pm";

$SIG{INT} = 'handler';

$SIG{HUP} = 'handler';

$SIG{QUIT} = 'handler';

$SIG{XCPU} = 'handler';

Command to lock

$command = $ARGV[0];

if (! ($command = $ARGV[0])) {

 print "run_lock: What? no command?\n";

 exit;

}

print "run_lock: Running $command\n";

$LOCKS = definevar("LOCKS", ".");

$instance = definevar("instance", 0);

$lockfile = "$LOCKS/${command}.${instance}";

$LOGS = definevar("LOGS", ".");

$logfile = "$LOGS/${command}.${instance}";

$timelimit = definevar("timelimit", 1e+32);

Lock file check

if (-s $lockfile) {

 open (INFILE,$lockfile);

 $PID = <INFILE>;

 chomp ($PID);

 close (INFILE);

 $pstatus = `ps -p $PID | grep $PID`;

 if ($pstatus ne "") {

 # Lock file age

 $ctime = (stat ($lockfile))[10];

 $epochtime = time ();

 $timediff = $epochtime - $ctime;

 if ($timediff > $timelimit) {

 print "run_lock: lock file exceeds time limit $timelimit secs\n";

 print "run_lock: killing hung PID $PID\n";

 system ("kill -9 $PID");

 unlink "$lockfile";

 } else {

 print "run_lock: lock file exists within time limit - exiting\n";

 exit;

 }

 } else {

 unlink "$lockfile";

 }

}

open (OUTFILE,">$lockfile");

$PID = $$;

print OUTFILE "$PID\n";

print OUTFILE "timelimit = $timelimit\n";

close (OUTFILE);

Establish work directory if desired

if ($ENV{"WORK"}) {

 $WORK = $ENV{"WORK"};

21

 $TMPWORK = "$WORK/${command}.${PID}";

 print "run_lock: Using TMPWORK = $TMPWORK\n";

 mkdir $TMPWORK,0755;

 chdir $TMPWORK;

} else {

 $WORK = ".";

 $TMPWORK = "$WORK";

}

$date2 = `date`;

print "== BEGIN PID $PID $date2\n";

system("echo == BEGIN PID $PID $date2 1>$logfile 2>&1");

Execute command with arguments

if ($ENV{"LOGS"}) {

 system ("@ARGV 1>$logfile 2>&1");

} else {

 system ("@ARGV");

}

$date2 = `date`;

print "== END PID $PID $date2\n";

unlink "$lockfile";

if ($ENV{"WORK"}) {

 chdir "$TMPWORK";

 chdir "..";

 print "run_lock: Removing TMPWORK = $TMPWORK\n";

 system ("rm -rf $TMPWORK");

}

exit 0;

Authors:

- James D. Dykes, NAVO, N212, 13 August 1999

- Pat Wilz, PSI

modified

05 Oct 07

Mostly streamlining code, eliminated dtg references

11 Jun 08, J Dykes

Streamlined control variable definitions with the definevar function

Purpose:

- Avoids duplicate runs of a command doing the same task

Method:

- Duplicate runs of a command can run for different tasks, which are made

unique by $instance

- Uses a temporary work directory if so desired as controlled by $WORK

- Processes that exceed $timelimit are killed allowing a new task may start

- Normally used non-interactively

Environment varibles: (user can define to override defaults)

- LOCKS - directory where lock file is located (default: current dir)

- LOGS - directory of file to where STDOUT is directed (default: to stdout)

- WORK - directory where work directory is created (default: current dir)

- instance - unique value to distinguish between multiple instances of the

same command (default: first argument of command, otherwise 0)

Platform Dependencies:

- Check the path for perl

- A little quirky at line 5, but had to accomodate Cray's problem testing

undefined variables. Still works on everything else unix

Software Dependencies: Perl 5

- definevar in Utilities.pm (General.pm) in $USR/lib

Bugs/Notes

- The $program variable needs to be only the program with no path on it, so

you will have to put it in the path to execute it as a name alone.

The one dependency has already been listed in the above section.

A.4 Implementation

Figure 3 illustrates the flow of the general implementation using a cronpanel script to keep things

going 365/24/7.

22

Figure 3 Layout of overall automation system.

The main cronpanel script in $BIN is kicked off by a crontab and will kick off other cronpanel scripts

within their various branches of applications. Together the two Perl scripts work as a general

automation team.

Here is simple script snippet used in the context of the automation system using loop_mgr. The first

argument is always the 10-digit date, $dtg, YYYYMMDDYY. The second argument is the $item which

tries to include all unique aspects specific to this $item. This item is listed in the do-list as

$LISTS/do_$instance. The second argument could be parsed into sub-arguments as needed in the

script below where things like TAU are needed to run a unique task. Strategically located exit

status points tell loop_mgr of completion (status 0) or non-completion (status other than 0). Upon

completion, this $item and $dtg are listed in $LISTS/done_$instance.

dtg=$1

item=$2 # e.g. ncom_relo_anex32:0:3:72

nc_root=`echo $item | cut -f1 -d:`

itau=`echo $item | cut -f2 -d:`

tau_inc=`echo $item | cut -f3 -d:`

mtau=`echo $item | cut -f4 -d:`

do certain things || exit 1 # way to exit if it doesn’t work out

etc. ...

exit 0 # successful completion

The run_lock command can be used to keep only one instance of loop_mgr running at any one time.

23

Appendix B – AutoMetrics Scripts

The three scripts listed here play the pivotal roles in AutoMetrics as described in this document.

The following is a listing of the matchup_set script:

#!/bin/ksh -x

Purpose: Builds files that match observations to forecasts from NCOM and HYCOM

Customised for NAVO forecast ops and configured to be run with loop_mgr.

revised 04 Nov 10, J Dykes, NRL-SSC, 7322

modified:

21 Feb 11: J Dykes: persistence work is removed.

06 Apr 11: Options for multiple architectures are included.

dtg=$1

item=$2 # e.g. ncom_relo_anex32:0:3:72

[-d $ARTP_OPS/run/$item] || mkdir -p $ARTP_OPS/run/$item

cd $ARTP_OPS/run/$item

if [-f jobdone-$dtg]; then

 rm jobdone-$dtg

 exit 0

fi

[-f jobready] && exit 1

if [-f jobrunning]; then

 job_id=`cat jobrunning`

 qstat | grep $job_id

 if [$? -eq 0]; then

 echo In case $case: a job still running

 exit 1

 else

 rm jobrunning

 fi

fi

[-f jobpostprocessing] && exit 1

nc_root=`echo $item | cut -f1 -d:`

ob_type=profile

itau=`echo $item | cut -f2 -d:`

tau_inc=`echo $item | cut -f3 -d:`

mtau=`echo $item | cut -f4 -d:`

yyyy=`echo $dtg | cut -c1-4`

mm=`echo $dtg | cut -c5-6`

dd=`echo $dtg | cut –c6-7`

matchprefix=daily_${itau}_${mtau}_${ob_type}_${nc_root}

[-f $matchprefix-$dtg-interp.matchup] && rm $matchprefix-$dtg-interp.matchup

rm list_obs_daily_${itau}_${mtau}_${ob_type}

touch list_obs_daily_${itau}_${mtau}_${ob_type}

rm list_ncfiles

touch list_ncfiles

Gather the appropriate obs files (always starts at 00Z)

idtg=${yyyy}${mm}${dd}00

mdtg=`timecalc $dtg $mtau`

while [$idtg -le $mdtg]; do

 for dist in navoqc_public navoqc_rstrct

 do

 OOC_PROFILE_DIR=/u/home/ooc/models/ncoda/etc/$dist/$ob_type

 #OOC_PROFILE_DIR=/scr/ooc/models/ARTP/data/ocnqc/$dist/$ob_type

 MY_PROFILE_DIR=$ARTP_OPS/data/ocnqc/$dist/$ob_type

 [-d $MY_PROFILE_DIR] || mkdir -p $MY_PROFILE_DIR

 if [-f $OOC_PROFILE_DIR/$idtg.$ob_type]; then

 cp $OOC_PROFILE_DIR/$idtg.$ob_type $MY_PROFILE_DIR

 chmod 660 $MY_PROFILE_DIR/$idtg.$ob_type

 chgrp NAVOSOOC $MY_PROFILE_DIR/$idtg.$ob_type

 #rcp -p $MY_PROFILE_DIR/$idtg.$ob_type

${ARCHIVE_HOST}:${ARCHIVE_HOME}/models/ARTP/data/ocnqc/$dist/$ob_type

 #rsh ${ARCHIVE_HOST} chgrp NAVOSOOC ${ARCHIVE_HOME}/models/ARTP/data/ocnqc/$dist/$ob_type/$idtg.$ob_type

 else

 [-f $MY_PROFILE_DIR/$idtg.$ob_type] || rcp

${ARCHIVE_HOST}:${ARCHIVE_HOME}/models/ARTP/data/ocnqc/$dist/$ob_type/$idtg.$ob_type $MY_PROFILE_DIR

 fi

 [-f $MY_PROFILE_DIR/$idtg.$ob_type] || exit 1

 echo $MY_PROFILE_DIR/$idtg.$ob_type >> list_obs_daily_${itau}_${mtau}_${ob_type}

24

 done

 idtg=`timecalc $idtg 24`

 if [! -s list_obs_daily_${itau}_${mtau}_${ob_type}]; then

 echo "matchup: No obs to match up with at this time."

 exit 1

 fi

done

Process the appropriate netCDF model files

OOC_NETCDF_DIR=/scr/ooc/data/ncom/packed_coards

tau=$itau

while [$tau -lt $mtau]; do

 tau=`add_digits $tau 3`

 tau_next=`echo $tau + $tau_inc | bc`

 tau_next=`add_digits $tau_next 3`

 MY_NETCDF_DIR=$ARTP_OPS/data/netCDF

 [-d $MY_NETCDF_DIR] || mkdir -p $MY_NETCDF_DIR

 domain_ncom_relo=`echo $nc_root | grep ncom_relo | cut -c11-72`

 domain_ncom_glb=`echo $nc_root | grep ncom_glb | cut -c10-72`

 # Section for NCOM/HYCOM runs if applicable

 if [! -f ${nc_root}_${dtg}_t${tau}-t${tau_next}.nc]; then

 if [-s ${OOC_NETCDF_DIR}/${nc_root}_${dtg}_t${tau}.nc] && [-s

${OOC_NETCDF_DIR}/${nc_root}_${dtg}_t${tau_next}.nc]; then

 ncrcat -O ${OOC_NETCDF_DIR}/${nc_root}_${dtg}_t${tau}.nc

${OOC_NETCDF_DIR}/${nc_root}_${dtg}_t${tau_next}.nc ${nc_root}_${dtg}_t${tau}-t${tau_next}.nc

 echo ${nc_root}_${dtg}_t${tau}-t${tau_next}.nc >> list_ncfiles

 echo matchup_set: Accessing netCDF files from OOC and catting pairs.

 elif [-s ${MY_NETCDF_DIR}/${nc_root}_${dtg}_t${tau}.nc] && [-s

${MY_NETCDF_DIR}/${nc_root}_${dtg}_t${tau_next}.nc]; then

 ncrcat -O ${MY_NETCDF_DIR}/${nc_root}_${dtg}_t${tau}.nc

${MY_NETCDF_DIR}/${nc_root}_${dtg}_t${tau_next}.nc ${nc_root}_${dtg}_t${tau}-t${tau_next}.nc

 echo ${nc_root}_${dtg}_t${tau}-t${tau_next}.nc >> list_ncfiles

 echo matchup_set: Accessing netCDF files from local directory and catting pairs.

 elif [$domain_ncom_relo]; then

 #### NCOM Regional # e.g. ncom_relo_amseas_2010100100.tar.gz

 if [! -f $MY_NETCDF_DIR/${nc_root}_${dtg}.tar]; then

 rcp $ARCHIVE_HOST:$ARCHIVE_OOC/relo/$domain_ncom_relo/Nc/${nc_root}_${dtg}.tar.gz $MY_NETCDF_DIR

 [-f $MY_NETCDF_DIR/${nc_root}_${dtg}.tar.gz] || rcp

$ARCHIVE_HOST:$ARCHIVE_OOC/relo/$domain_ncom_relo/Nc/${yyyy}${mm}/${nc_root}_${dtg}.tar.gz $MY_NETCDF_DIR

 gzip -d $MY_NETCDF_DIR/${nc_root}_${dtg}.tar.gz || exit 1

 fi

 tar xf $MY_NETCDF_DIR/${nc_root}_${dtg}.tar || exit 1

 mv ${nc_root}_${dtg}_t*.nc $MY_NETCDF_DIR

 ncrcat -O ${MY_NETCDF_DIR}/${nc_root}_${dtg}_t${tau}.nc

${MY_NETCDF_DIR}/${nc_root}_${dtg}_t${tau_next}.nc ${nc_root}_${dtg}_t${tau}-t${tau_next}.nc || exit 1

 echo ${nc_root}_${dtg}_t${tau}-t${tau_next}.nc >> list_ncfiles

 echo matchup_set: Accessing NCOM regional netCDF files from archive directory and catting pairs.

 elif [$domain_ncom_glb]; then

 #### NCOM Global cut-outs # e.g. ncom_glb_regp01_2010100100.nc.gz

 if [! -f $MY_NETCDF_DIR/${nc_root}_${dtg}.nc]; then

 rcp $ARCHIVE_HOST:$ARCHIVE_OOC/data/ncom1/glb8_3b/work/$domain_ncom_glb/${nc_root}_${dtg}.nc.gz

$MY_NETCDF_DIR

 [-f $MY_NETCDF_DIR/${nc_root}_${dtg}.nc.gz] || rcp

$ARCHIVE_HOST:$ARCHIVE_OOC/data/ncom1/glb8_3b/work/$domain_ncom_glb/${yyyy}${mm}/${nc_root}_${dtg}.nc.gz $MY_NETCDF_DIR

 gzip -d $MY_NETCDF_DIR/${nc_root}_${dtg}.nc.gz || exit 1

 fi

 echo $MY_NETCDF_DIR/${nc_root}_${dtg}.nc > list_ncfiles

 echo matchup_set: Accessing NCOM global netCDF files from archive directory

 else

 echo matchup_set: cannot make file: ${nc_root}_${dtg}_t${tau}-t${tau_next}.nc -- skipping ...

 fi

 else

 echo ${nc_root}_${dtg}_t${tau}-t${tau_next}.nc >> list_ncfiles || exit 1

 echo matchup_set: Target netCDF files already in local run directory

 fi

 tau=$tau_next

 idtg=`timecalc $dtg $tau`

done

[-s list_ncfiles] || exit 1

Set up for submission into PBS

echo $dtg > submitdtg

echo daily_${itau}_${mtau}_${ob_type} > submitcategory

echo $nc_root > submitnc_root

arch=`uname -a | awk '{print $1}'`

if [$arch == "Linux"]; then

 options="-q standard -l mppwidth=1 -l mppnppn=1"

elif [$arch == "AIX"]; then

25

 options="-q share -l select=1"

else

 echo no valid machine architecture -- exiting.

 exit 1

fi

qsub $options $ARTP_HOME/bin/matchup_agent.job 1>jobready 2>&1

exit 1

The following is a listing of the matchup_agent.job script:

#!/bin/ksh -x

Submitted script which runs the AutoMetrics programme, matchup_drvr.x in PBS

created

2 Mar 11, J Dykes, NRL-SSC, 7320

modified:

14 Mar 11, J Dykes

- changed arguments for the newer version of matchup.x programme

06 Apr 11

- Removed '|| exit 1' portion from the aprun and poe run lines to keep the system from stopping here.

- Changed archiving to simply tar cf all the monthly matchup files each time.

- Architecture-dependent options removed and chosen by the matchup_set script.

17 Apr 11, changed the way tar files are handled to eliminate duplicative entries.

#PBS -o log-ARTP

#PBS -e log-ARTP

#PBS -A NRLSS03745060

##PBS -A NAVOSOOC

#PBS -l walltime=2:30:00

#PBS -q share

##PBS -q internal

#PBS -m ae

#PBS -N AutoMetrics

#PBS -l application=autometrics

Other needed predifined (usually by batch queuing system)

$PBS_O_WORKDIR

$PBS_JOBID

cd $PBS_O_WORKDIR

umask 002

echo $PBS_JOBID 1> jobrunning 2>&1

rm jobready

. ~/usr/etc/setup.sh

. ~/models/ARTP/etc/setup.sh

dtg=`cat submitdtg`

category=`cat submitcategory`

nc_root=`cat submitnc_root`

matchprefix=${category}_${nc_root}

npes=1

nslots=1

arch=`uname -a | awk '{print $1}'`

if [$arch == "Linux"]; then

 aprun -N $npes -n $nslots $ARTP_HOME/bin/matchup_drvr.x list_ncfiles list_obs_${category} ${matchprefix}-${dtg}-

interp.matchup 1>log-matchup-${dtg}-${matchprefix}-interp-$$ 2>&1

elif [$arch == "AIX"]; then

 poe $ARTP_HOME/bin/matchup_drvr.x list_ncfiles list_obs_${category} ${matchprefix}-${dtg}-interp.matchup 1>log-matchup-

${dtg}-${matchprefix}-interp-$$ 2>&1

else

 echo no valid architecture for PBS submission -- exiting.

 exit 1

fi

[$? -eq 0] || exit $?

mv jobrunning jobpostprocessing

Archive the results

touch $matchprefix-$dtg-interp.matchup

filesize1=`filesize $matchprefix-${dtg}-interp.matchup`

if [$filesize1 -gt 4]; then

 MATCHUPS=$ARTP_OPS/data/matchups

 TARFILES=$ARTP_OPS/data/tarfiles

 [-d $MATCHUPS] || mkdir -p $MATCHUPS

 [-d $TARFILES] || mkdir -p $TARFILES

26

 cd $MATCHUPS

 yyyy=`echo $dtg | cut -c1-4`

 mm=`echo $dtg | cut -c5-6`

 rcp -p ${ARCHIVE_HOST}:${ARCHIVE_HOME}/models/ARTP/data/tarfiles/${matchprefix}-${yyyy}${mm}-interp.matchup.tar $TARFILES

 if [-f $TARFILES/${matchprefix}-${yyyy}${mm}-interp.matchup.tar]; then

 tar xf $TARFILES/${matchprefix}-${yyyy}${mm}-interp.matchup.tar

 fi

 cp $PBS_O_WORKDIR/${matchprefix}-${dtg}-interp.matchup . || exit 1

 tar cf $TARFILES/${matchprefix}-${yyyy}${mm}-interp.matchup.tar ${matchprefix}-${yyyy}${mm}*-interp.matchup || exit 1

 chmod 660 ${TARFILES}/${matchprefix}-${yyyy}${mm}-interp.matchup.tar

 chgrp NAVOSOOC ${TARFILES}/${matchprefix}-${yyyy}${mm}-interp.matchup.tar

 rcp -p $TARFILES/${matchprefix}-${yyyy}${mm}-interp.matchup.tar ${ARCHIVE_HOST}:${ARCHIVE_HOME}/models/ARTP/data/tarfiles

|| exit 1

 rsh ${ARCHIVE_HOST} chgrp NAVOSOOC ${ARCHIVE_HOME}/models/ARTP/data/tarfiles/${matchprefix}-${yyyy}${mm}-

interp.matchup.tar

 cd $PBS_O_WORKDIR

fi

mv jobpostprocessing jobdone-$dtg

rm sub* *.matchup *.nc

exit 0

The following is a listing of the ncdiffr script:

#!/bin/sh -x

Purpose: Produce differences between two NCOM model fields of all variables

Issues: It is assumed that each TAU is in separate files

created 15 Sep 09, J Dykes, NRL-SSC, 7322

modified:

22 Sep 09, simplified and adapted for more genaralised netCDF model output, like COAMPS

dtg=$1

item=$2 # e.g. ncom_relo_oksw16:24:48, so that TAU 48 from forecast before is subtracted from TAU 24 of this $dtg

nc_root=`echo $item | cut -f1 -d:`

currenttau=`echo $item | cut -f2 -d:`

beforetau=`echo $item | cut -f3 -d:`

currenttau=`add_digits $currenttau 3`

beforetau=`add_digits $beforetau 3`

Example nc_root

ncom_glb_ecse

ncom_relo_oknwtrgh_v4

coamps_ecs

Gather the appropriate netCDF model files

NETCDF_DIR=$ARTP_OPS/data/netCDF/model-model

[-d $NETCDF_DIR] || mkdir -p $NETCDF_DIR

cd $NETCDF_DIR

for wtau in $currenttau $beforetau

do

 tauback=`echo $wtau - $currenttau | bc`

 wdtg=`timecalc $dtg -$tauback`

 ncfile=${nc_root}_${wdtg}_t${wtau}.nc

 # Looking for files in the local collection point

 if [! -f $ncfile]; then

 # Checking for any any model output files not broken down into individual files yet

 if [-f ../netCDF/hold/${nc_root}_${wdtg}.nc]; then

 ln ../netCDF/hold/${nc_root}_${wdtg}.nc .

 ncks -d time,$wtau,$wtau ${nc_root}_${wdtg}.nc $ncfile

 fi

 # Checking for NCOM relo files

 nc_part1=`echo $nc_root | cut -c1-9`

 if [$nc_part1 == "ncom_relo"]; then

 # Checking for NCOM relo files on local real-time directory

 if [-f /scr/ooc/data/ncom/packed_coards/$ncfile]; then

 ln /scr/ooc/data/ncom/packed_coards/$ncfile .

 fi

 # Checking for NCOM relo tar files in archive

 domain=`echo $nc_root | cut -c11-72`

 if [! -f ${nc_root}_${wdtg}.tar]; then

 wyyyy=`echo $wdtg | cut -c1-4`

 wmm=`echo $wdtg | cut -c5-6`

27

 rcp $ARCHIVE_MACH:$ARCHIVE_OOC/relo/$domain/Nc/${nc_root}_${wdtg}.tar.gz .

 [-f ${nc_root}_${wdtg}.tar.gz] || rcp

$ARCHIVE_MACH:$ARCHIVE_OOC/relo/$domain/Nc/${wyyyy}${wmm}/${nc_root}_${wdtg}.tar.gz .

 [-f ${nc_root}_${wdtg}.tar.gz] && gzip -d ${nc_root}_${wdtg}.tar.gz

 [-f ${nc_root}_${wdtg}.tar.gz] && rm ${nc_root}_${wdtg}.tar.gz

 fi

 if [-f ${nc_root}_${wdtg}.tar]; then

 tar xf ${nc_root}_${wdtg}.tar

 rm ${nc_root}_${wdtg}.tar

 fi

 fi

 fi

 if [! -e $ncfile]; then

 rm ${nc_root}_${dtg}*.nc

 exit 1

 fi

done

tauback=`echo $beforetau - $currenttau | bc`

beforedtg=`timecalc $dtg -$tauback`

nowfile=${nc_root}_${dtg}_t${currenttau}.nc

beforefile=${nc_root}_${beforedtg}_t${beforetau}.nc

difffile=${nc_root}_${dtg}_t${currenttau}-t${beforetau}.nc

ncdiff -y sbt -x -v tau -O $nowfile $beforefile $difffile

if [$? == 0]; then

 NCCOMP=$ARTP_OPS/data/model-model

 [-d $NCCOMP] || mkdir -p $NCCOMP

 mv $difffile $NCCOMP

 if [$? != 0]; then

 rm ${nc_root}_${dtg}*.nc

 exit 1

 fi

else

 rm $difffile

fi

Clean 'er up

rm ${nc_root}_${beforedtg}*.nc ${nc_root}_${dtg}*.nc

find $NCCOMP -type f -mtime +7 -exec rm {} \;

exit 0

