
Development and testing of a coupled ocean–atmosphere
mesoscale ensemble prediction system

Teddy R. Holt & James A. Cummings & Craig H. Bishop &

James D. Doyle & Xiaodong Hong & Sue Chen & Yi Jin

Received: 14 January 2011 /Accepted: 2 June 2011 /Published online: 28 June 2011

Abstract A coupled ocean–atmosphere mesoscale ensem-
ble prediction system has been developed by the Naval
Research Laboratory. This paper describes the components
and implementation of the system and presents baseline
results from coupled ensemble simulations for two tropical
cyclones. The system is designed to take into account major
sources of uncertainty in: (1) non-deterministic dynamics,
(2) model error, and (3) initial states. The purpose of the
system is to provide mesoscale ensemble forecasts for use
in probabilistic products, such as reliability and frequency
of occurrence, and in risk management applications. The
system components include COAMPS® (Coupled Ocean/
Atmosphere Mesoscale Prediction System) and NCOM
(Navy Coastal Ocean Model) for atmosphere and ocean
forecasting and NAVDAS (NRL Atmospheric Variational
Data Assimilation System) and NCODA (Navy Coupled
Ocean Data Assimilation) for atmosphere and ocean data
assimilation. NAVDAS and NCODA are 3D-variational

(3DVAR) analysis schemes. The ensembles are generated
using separate applications of the Ensemble Transform (ET)
technique in both the atmosphere (for moving or non-
moving nests) and the ocean. The atmospheric ET is
computed using wind, temperature, and moisture variables,
while the oceanographic ET is derived from ocean current,
temperature, and salinity variables. Estimates of analysis
error covariance, which is used as a constraint in the ET, are
provided by the ocean and atmosphere 3DVAR assimilation
systems. The newly developed system has been successfully
tested for a variety of configurations, including differing
model resolution, number of members, forecast length, and
moving and fixed nest options. Results from relatively coarse
resolution (∼27-km) ensemble simulations of Hurricanes
Hanna and Ike demonstrate that the ensemble can provide
valuable uncertainty information about the storm track and
intensity, though the ensemble mean provides only a small
amount of improved predictive skill compared to the
deterministic control member.

Keywords Ensembles . Coupled ocean–atmosphere
modeling . Tropical cyclones . Variational analyses .

Probabilistic prediction

1 Introduction

All models are imperfect and all forecasts are inaccurate.
Hence, at best we can hope to forecast a distribution of
possible future states given our model and a history of
observations. A compelling method for attempting to
sample this distribution is ensemble forecasting (Toth and
Kalnay 1993). The idea is to make an ensemble of forecasts
whose differing initial conditions describe our best estimate
of the uncertainty of the initial state estimate and whose
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differing representations of sub-grid scale processes repre-
sent our uncertainty in the model. Rigorously accurate
ensemble methods for describing the distribution of future
states given past information include particle filters and
Monte Carlo–Markov chains (Van Leeuwen 2009). Unfor-
tunately, the computational resources required for the
application of such methods to models with tens of millions
of variables such as the coupled ocean–atmosphere system
considered are not readily available. For this reason,
computationally efficient approximations to these schemes
must be used. Here we employ a framework in which the
mean of the ensemble of initial conditions for the coupled
ocean–atmosphere state is obtained from three-dimensional
variational (3DVAR) schemes in the atmosphere and ocean
and the ensemble is obtained by inputting estimates of
analysis error variance from the 3DVAR data assimilation
schemes into the Ensemble Transform (ET) ensemble
generation technique of Bishop and Toth (1999), McLay
et al. (2008), and Bishop et al. (2009).

The advent of regional two-way coupled models is
relatively recent and perhaps because of this very little
work has been done in the area of regional coupled model
ensemble forecasting. It is, nevertheless, a very promising
area of research because uncertainty in forecasts of the
oceanic boundary layer is directly linked to uncertainty in
forecasts of the atmospheric boundary layer (ABL) and vice
versa. It is extremely difficult to model this interaction
between uncertainty in the ocean and atmosphere without a
coupled model. This paper represents one of the first
attempts to describe this process.

A description of the components of the coupled
ensemble system is given in “Section 2”. “Section 3”
describes the ET system, and “Section 4” details the
implementation of the mesoscale ensemble system. Some
basic results for two tropical cyclone (TC) case studies are
provided in “Section 5” to provide a baseline for the
ensemble system. We choose TC case studies because of the
strong air–ocean coupling in TCs and the need for
improvement in both track and intensity forecasts. While
TC track forecasts have improved over the past 30 years in
the Atlantic basin, with average track forecast errors
reduced noticeably (Rappaport et al. 2009), it remains a
critical issue to increase the accuracy of TC track forecasts
in the days prior to potential landfall to provide lead time
for better protection of coastal communities. In the 2008
hurricane season, Hanna and Ike were two consecutive
storms that made landfall on the east and southeast coasts
of the USA, respectively. The coupled ensemble system is
used to simulate these two storms and make an initial
assessment of system performance for both track and
intensity forecasts over a 2- to 3-day period before landfall.
The paper concludes with a summary and conclusions
(“Section 6”).

2 Description of the ocean–atmosphere coupled
ensemble prediction system

The coupled system developed at the Naval Research
Laboratory (NRL) is comprised of four primary components,
as described in Chen et al. (2010): the nonhydrostatic
atmospheric model COAMPS (Coupled Ocean/Atmosphere
Mesoscale Prediction System; Hodur 1997), the hydrostatic
ocean model NCOM (Navy Coastal Ocean Model; Martin
2000), the atmospheric data assimilation system NAVDAS
(NRLVariational Data Assimilation System; Daley and Barker
2001a, b), and the ocean data assimilation system NCODA
(Navy Coupled Ocean Data Assimilation System; Cummings
2005). A detailed description of the components is given in
these references, so only a brief overview with emphasis on
the new modifications to the system relevant to the ensemble
implementation applied to TC applications is provided here.

2.1 COAMPS

The physical parameterizations in the atmospheric component
include a cumulus parameterization (used for grid spacing
greater than 10 km) based on a modified Kain–Fritsch (K–F)
(Kain and Fritsch 1993; Kain 2004) scheme, a cloud
microphysics scheme based on Rutledge and Hobbs (1983),
and a radiation parameterization based on Harshvardhan et al.
(1987). The sea surface temperature (SST) feedback is
through a Monin–Obukhov-based surface similarity scheme.
The surface momentum, heat, and moisture fluxes are
parameterized using standard bulk aerodynamic formulae
(Louis 1979):

U 2
» ¼ CDU

2
; ð1Þ

U»q» ¼ CHUΔq; ð2Þ

U»q» ¼ CEUΔq; ð3Þ
where U* is the friction velocity, θ* is the convective
scaling temperature, q* is the mixing ratio scaling, U is the
mean surface wind speed, Δq and Δq are the mean
potential temperature and vapor mixing ratio differences
computed using the surface and the first model grid point
above the surface (∼10 m), and CD, CH, and CE are the bulk
transfer coefficients for momentum, heat, and moisture,
respectively. The transfer coefficients are stability and
roughness length dependent, as derived from observations,
with differing momentum roughness length as compared to
heat and moisture. The stability function is a modified
version of Louis (1979) based on version 3.0 of the
Tropical Ocean and Global Atmosphere Coupled Ocean–
Atmosphere Response Experiment (TOGA COARE; Fairall
et al. 2003).
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Recent enhancements to several of the COAMPS
physical parameterizations that reflect an increased
understanding from recent TC observations and research
have been made. The changes include a reduction of CD

under high winds, the inclusion of heating due to
dissipation of turbulent kinetic energy (TKE), and the
decrease of ice nuclei concentration to reduce upper-level
cloud ice. Laboratory tank experiments suggest that CD

asymptotically approaches 2.5×10−3 when the surface
wind speed exceeds 35 m s−1 (Donelan et al. 2004). This
phenomenon has also been observed in wind profile
measurements in TCs (Powell et al. 2003) and direct
turbulence measurement at near-hurricane-force wind
speeds during the latest Coupled Boundary Layers Air–
Sea Transfer (CBLAST) hurricane field experiment,
suggesting an even lower asymptotic value of 23 m s−1

(Black et al. 2007). However, the CBLAST measurements
displayed a large fluctuation of CD values for a given 10-m
wind speed and had no CD values for winds exceeding
30 m s−1. Therefore, the neutral 10-m CD over the ocean in
COAMPS has been modified to be in agreement with that
estimated by Donelan et al. (2004). Another change is
related to heating caused by energy loss due to TKE
dissipation. This process, parameterized and tested in
COAMPS, shows a positive impact on TC intensity and
structure forecasts (Jin et al. 2007). More recently, the ice
nucleation formulation has been modified based on
previous studies. This change results in better TC structure
as well as intensity forecasts.

2.2 NCOM

The hydrostatic, mesoscale version of the Navy Coastal
Ocean Model (NCOM) with hybrid sigma-z levels is the
ocean component of the coupled system. Forcing fields
from the atmospheric component are used as ocean surface
boundary conditions for momentum, potential temperature,
and salinity as shown by Eqs. 4–7 (Martin 2000):

KM
@u

@z
¼ tx

r0
; ð4Þ

KM
@v

@z
¼ ty

r0
; ð5Þ

KH
@q
@z

¼ Qb þ Qe þ Qs

r0cp
; ð6Þ

KH
@S

@z
¼ SðEv � PrÞ; ð7Þ

where KM and KH are vertical eddy coefficients for the
momentum and scalar fields, respectively; u and v are the
horizontal components of the current fields, θ and S are the
potential temperature and salinity, respectively; τx and τy are
the surface wind stress in the x and y directions,
respectively; Qb, Qe, and Qs are the net long wave, latent,
and sensible surface heat fluxes, respectively; Ev and Pr are
the surface evaporation and precipitation rates, respectively;
and ρ0 and cp are the density and specific heat for seawater,
respectively. The overbars indicate time-averaged atmo-
spheric quantities.

The atmospheric component provides a total of six fields
to the ocean component, including the sea level pressure
(SLP), the surface wind stress in the x and y directions
(Eqs. 4 and 5), the total heat and moisture fluxes (Eqs. 6
and 7), and the net solar radiation. The net solar radiation is
used to compute the diabatic heating contribution in the
potential temperature equation (not shown). The SLP is also
needed as input for the pressure calculations in the
momentum equations of the ocean model. The coupling
frequency between atmosphere and ocean is user-
determined, typically on the order of 30 min or less.

2.3 NAVDAS

The NRL Atmospheric Variational Data Assimilation System
(NAVDAS) is used for atmospheric data assimilation in the
coupled system. NAVDAS is an observation space-based
3DVAR suite for generatingmaximum likelihood atmospheric
state estimates to satisfy a variety of Navy needs ranging from
global initial conditions for Navy global prediction to local
initial conditions for forward-deployed mesoscale prediction
(Daley and Barker 2001a). It is used by Fleet Numerical
Meteorology and Oceanography Center (FNMOC) in the
Navy Operational Global Atmospheric Prediction System
(NOGAPS) and the operational mesoscale system
(COAMPS) as their data assimilation schemes.

The observation space form of the 3DVAR equation is
given as (Daley and Barker 2001a):

xa � xb ¼ PbH
T ðHPbH

T þ RÞ�1½y�<ðxbÞ�; ð8Þ

where xa is the analysis, xb the background (forecast or
prior), Pb the positive-definite background error covariance
matrix, H the Jacobian matrix corresponding to the
(possibly) nonlinear forward or observation operator <, R
the observation error covariance matrix, and y the observa-
tion vector. Here xa–xb is the correction vector (analysis
increment) and y�<ðxbÞ is the innovation vector (obser-
vation increment) of length L. The matrix to be inverted,
HPbH

T+R, is an L × L symmetric matrix. A complete
description of the formulation and development of NAVDAS
can be found in Daley and Barker (2001a).

Ocean Dynamics (2011) 61:1937–1954 1939



NAVDAS directly assimilates a variety of observation
types and off-time observations, including radiosondes and
pibals, surface observations from land and sea, TIROS
Operational Vertical Sounder (TOVS) radiances or tempera-
ture profiles, Aircraft Meteorological Data Reporting
(AMDAR) observations and pilot reports, and Special Sensor
Microwave Imager (SSM/I) surface wind speed and total
precipitable water. Its formulation permits considerable local
vertical and horizontal anisotropy. NAVDAS features vertical
variation of the horizontal correlation scales, horizontal
variation of the vertical correlation lengths, and vertical
variation of the mass-divergent wind coupling.

NAVDAS interfaces with NOGAPS (global) and
COAMPS (regional) through the correction vectors that are
produced for the grid of that model. For the multiple nested-
grid COAMPS, the same set of observations is used for all
nests but the characteristics of the background error covari-
ance vary between the outer grid and the innermost nest. The
observation innovation is computed from the highest resolu-
tion background field and the analysis grid is constructed by
removing any duplicate grid points from the COAMPS grid
meshes. An additional correction is added to the outer grid
meshes to account for differences between the background
forecasts in the grid meshes (Sashegyi et al. 2009).

One of the advantages in using NAVDAS in the global or
regional ensemble forecast system is that it produces estimates
of the error variance of its analyses. Such variance estimates
can be used to constrain the magnitude of initial perturbations
that represent ET transformations or linear combinations of
ensemble forecast perturbation (Bishop and Toth 1999). It
overcomes the drawback of the multivariate optimum
interpolation (MVOI) scheme used in earlier tests of the
COAMPS ensemble prediction system since the MVOI
scheme does not produce estimates of the analysis error
variance (Bishop et al. 2009; Holt et al. 2009).

NAVDAS analysis error variance estimates are used in the
ET scheme for the NRL global ensemble prediction system
and results show that the generated ET analysis perturbations
exhibit statistically significant, realistic multivariate correla-
tions. The forecast ensembles are comparable to or better in a
variety of measures than those produced by FNMOC bred-
growing modes scheme (McLay et al. 2008). Even the
NAVDAS analysis error variance generated from the global
model and interpolated for the mesoscale ensemble predic-
tion system is able to produce reasonable ET analysis
perturbations (Bishop et al. 2009; Holt et al. 2009).

2.4 NCODA

The ocean data assimilation component of the coupled
ensemble forecast system is the Navy Coupled Ocean Data
Assimilation (NCODA) system. NCODA is a fully multi-
variate 3DVAR system that provides simultaneous analyses

of five ocean variables: temperature, salinity, geopotential,
and u- and v-vector velocity components. The horizontal
correlations are multivariate in geopotential and velocity,
thereby permitting adjustments to the mass fields to be
correlated with adjustments to the flow fields. The velocity
adjustments (or increments) are in geostrophic balance with
the geopotential increments, which in turn are in hydrostatic
agreement with the temperature and salinity increments.
NCODA corrects ocean model initial conditions using a
sequential incremental update cycle. It has been cycled with
a variety of ocean forecast models, including HYCOM
(HYbrid Coordinate Ocean Model) and NCOM, which are
in operational use at the Navy forecasting centers. The
system can be run global or regional, where it supports re-
locatable, multi-scale analyses on nested higher-resolution
grids using a 3:1 nested grid ratio. This nesting strategy is
of particular importance in Navy applications where very
high resolution is required in a rapid environmental
assessment mode of operation.

NCODA assimilates a wide variety of ocean observation
data types including satellite SST retrievals (AATSR,
AMSR-E, METOP-AVHRR, GOES, MSG, MTSAT,
NOAA-AVHRR), sea ice concentration retrievals (SSM/I,
SSMIS), fixed, drifting buoy, and ship in situ SSTs;
temperature and salinity profiles (Argo, CTD casts, fixed
and drifting buoys, gliders, expendable bathythermo-
graphs); satellite altimeter sea surface height anomalies
(ENVISAT, GFO, Jason, Topex); significant wave height
retrievals from altimeters and wave buoys; and velocity
observations (HF radar, surface drifters, acoustic Doppler
current profilers, gliders, and Argo trajectories). NCODA is
tightly coupled to a fully automated ocean data quality
control system that is executed in real time at the Navy
centers (Cummings 2011).

NCODA is an oceanographic implementation of the
NAVDAS algorithm and solves the observation space form
of the 3DVAR in the ocean using Eq. 8. A specification of
the background and observation error covariances in the
analysis is very important. Background error covariances
are separated into an error variance and a correlation. The
correlations are separated further into horizontal and
vertical components. Horizontal correlation length scales
vary with location and are set proportional to the first
baroclinic Rossby radius of deformation (Chelton et al.
1998), which varies from ∼10 km at the poles to ∼200 km
at the equator. Flow dependence is introduced by modifying
horizontal correlations with a tensor that takes into account
the geopotential height separation between observations
and grid locations. The flow dependence spreads model
data differences along, rather than across, geopotential
contours such as ocean fronts and eddies. Vertical correla-
tion length scales are computed by scaling a specified
change in density stability criterion with background
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vertical density gradients according to:

hv ¼ rs= @r=@zð Þ ð9Þ
where hv is the vertical correlation length scale, ρs is the
specified change in density criterion (∼0.12 kg m−3), and
∂ρ/∂z is the local vertical density gradient. The resulting
vertical correlation length scales vary with location and
depth and are large (small) when the water column
stratification is weak (strong). Vertical correlations are
updated based on the forecast valid at the analysis time.
In this way, the vertical scales evolve from one analysis
cycle to the next and capture changes in mixed layer and
thermocline depths.

Background error variances are derived from a time
history of the analysis increment fields and a model
variability component derived from a time history of model
forecast differences according to:

eb ¼
Xm

j¼1

wjðxj � xj�1Þ2 þ
Xm

j¼1

t � a2
j ð10Þ

where eb is the background error variance, j is the update
cycle, m is the number of update cycles into the past, wj is a
weight computed from a geometric time series, wj=(1−ϕ)j−1,
where ϕ is a tunable constant between 0 and 1 (typically set
to 0.1), (xj–xj−1) is the difference between successive
forecasts, αj is the analysis increment field, and τ is a
correlation time scale computed from a ratio of the spatially
varying horizontal length scales h and forecast velocity fields
v valid at the analysis time, τ=e−(h/v). The weights are
normalized such that the weighted averages of the two
components are unbiased. Subscripts depicting 3D position
coordinates have been eliminated for clarity. The time scales
vary with location and depth and range from days near the
surface in the western boundary current regions to years at
depth in the tropical ocean where current speeds are slow
and length scales are large. In this approach, model data
errors tend to dominate the background error variance
estimates in low-flow environments, while model variability
tends to dominate in high-flow (i.e., hurricane-induced)
environments. Background error variances are computed
for all of the model prognostic variables and updated at each
analysis update cycle.

3 Description of the Ensemble Transform technique

The ET ensemble generation technique transforms an
ensemble of forecast perturbations into an ensemble of
analysis perturbations that are consistent with a user-
provided estimate of the analysis error covariance matrix
Pa. Assume that there are n model variables in total
(typically, n � Oð107Þ) and K ensemble members in total

(typically, K � Oð10Þ � Oð102Þ). Let the columns of the n
× K matrix Xf list the forecast perturbations about the
forecast ensemble mean all valid at the time of the most
recent analysis. Let the columns of the n x K matrix Xa

denote the analysis perturbations that will be added to the
most recent analysis to create an ensemble of initial
conditions consistent with the accuracy of the most recent
analysis. The ET transforms Xf into Xa using:

Xa ¼ XfT; ð11Þ
As noted in McLay et al. (2008), to compute the required
transformation matrix one first performs the eigenvector
decomposition:

XfTPa�1Xf

n
¼ CΛCT ; ð12Þ

where the orthonormal K × K matrix C lists the orthonor-
mal eigenvectors of XfT Pa−1 Xf/n and the diagonal matrix
Λ lists the corresponding eigenvalues. Because the sum of
the forecasts perturbations is zero, one of the eigenvalues will
always be equal to zero. The eigenvector corresponding to this
eigenvalue is always parallel to the vector

1T ¼ 1; 1; :::; 1½ �
zfflfflfflfflfflffl}|fflfflfflfflfflffl{K�elements

where 1 is a column vector of ones. For the reasons
discussed in McLay et al. (2008), a new diagonal matrix
�Λ is created from Λ by replacing the zero eigenvalue by the
unity. The transformation matrix is then given by:

T ¼ C��Λ�1=2CT ; ð13Þ

When T is defined in this way, the analysis perturbations
obtained from Eq. 11 satisfy the equation:

XaTPa�1Xa

n
¼ I� 11T

K
; ð14Þ

where I is a K × K identity matrix. As noted in McLay et al.
(2008), Eq. 14 implies that (1) the analysis perturbations are
quasi-orthogonal under the analysis error covariance norm
and (2) if the ensemble size K was large enough to satisfy
K=n, then the sample covariance of the analysis perturba-
tions would equal the prescribed analysis error covariance
matrix Pa. Note that Eq. 11 means that the analysis
perturbations are just linear combinations of forecast pertur-
bations. Hence, if the forecast perturbations lie in the space
of growing balanced perturbations, then the analysis pertur-
bations will also. Indeed Eq. 11 means that the ET ensemble
generation technique may be viewed as an advanced form of
Toth and Kalnay’s (1993) breeding technique with added
constraints of quasi-orthogonality and fit to the prescribed
analysis error covariance matrix Pa.

In its purest form, only one set of transformation
coefficients is used for the entire state. However, McLay
et al. (2010) have shown that smoothly blending the
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transformation coefficients relevant to large regions such as
the tropics and extra-tropics can lead to performance
advantages. In this first study, we approximate Eq. 12 for
both the atmospheric and oceanic components and apply
separate transformation coefficients for the atmosphere and
the ocean.

For the ocean component, NCODA includes options to
estimate the analysis error variance defined as the reduction of
forecast error from assimilation of the observations. Similar to
the description of NAVDAS above (“Section 2.3”) the
primary application of the NCODA analysis error variance
is in the oceanic ET technique. The ocean ET is multivar-
iable and is computed for temperature, salinity, and velocity
simultaneously. In warm start mode, the ocean ET operates
identical to the atmosphere ET (see “Section 4” for a
discussion of cold start and warm start modes of the coupled
system). However, in cold start mode, the ocean ET is
limited by two factors: (1) there is no forecast error product
from the deterministic global NCOM (gNCOM) and (2)
there is no global NCOM ensemble from which to draw the
initial set of perturbations. To solve this problem in cold start
mode, we treat a time series of gNCOM forecasts at the
update cycle interval as members of an ensemble. The
number of members used in the actual ensemble determines
how far back in time we have to obtain gNCOM fields. The
NCODA analysis background error variances and the initial
perturbations for the ensemble are initialized from this time
series. This process results in NCODA analysis background
error variances and ET perturbations that are multivariate,
balanced, and consistent. The ability to relocate the coupled

system for rapid environmental assessment is thereby
enhanced as well.

4 Implementation of the mesoscale ensemble system

The components of the ocean–atmosphere coupled system
as described in “Section 3” are efficiently integrated into an
ensemble framework under the Earth System Modeling
Framework as illustrated in Fig. 1. A basic differential
starting point for the ensemble system is a “cold start”
versus a “warm start.” The specifics of each, and their
differences, are described here.

A cold start is executed initially and only once for a
given case study. The first module executed in the system is
the analysis, indicated by the upper box in Fig. 1a. Because
this is the initial execution of the mesoscale system, there
are no previous “background” (BKG) forecasts to be used
as first guesses for the analysis. Thus, global fields must be
used. The control member is the only ensemble member to
execute the analysis (step 1 in Fig. 1). The analysis consists
of two basic parts: preparing the observations, initial
conditions (IC), boundary conditions (BC), and BKG fields
for (1) the atmosphere and (2) for the ocean. The
atmospheric analysis is based on NAVDAS (see “Sec-
tion 2.3”), using the control member from the 33-member
(32 members plus control) Navy Operational Global
Atmospheric Prediction System (NOGAPS) ensemble run
at T119 horizontal resolution (∼110 km) and 30 vertical
levels, interpolated to the COAMPS atmospheric domain as

Fig. 1 Schematic showing the implementation of the air–ocean coupled ensemble system for a a cold start and b a warm start

1942 Ocean Dynamics (2011) 61:1937–1954



the first guess. The oceanic analysis is based on NCODA
(see “Section 2.4”), using gNCOM interpolated to the
COAMPS oceanic domain as first guesses. There is
currently no global ocean ensemble, so the deterministic
run is used.

The analyzed atmospheric and oceanic output fields
from the control member are next copied to all members
(step 2). Each member now creates unique atmospheric
lateral BC from 28 members of the global NOGAPS
ensemble (step 3). The members of the global ensemble
are produced using perturbation methodology based on the
banded ET as described in McLay et al. (2008, 2010). The
banded ET produces initial perturbations by transforming 6-
h ensemble forecast perturbations to be consistent with
analysis error estimates. The local banded ET performs this
transformation in latitude bands, resulting in a better match
to the analysis error estimate, and much improved perfor-
mance in the mid-latitudes, as compared to the global ET

computed over the entire globe. Stochastic kinetic energy
backscatter (Shutts and Palmer 2004; Shutts 2005; Berner
et al. 2009) is planned for future implementations of the ET
adopted to account for model uncertainty and increase in
size of tropical perturbations. Step 4 is to execute the
coupled forecast model for each of the members, using the
same initial conditions but different lateral atmospheric BC,
followed by post-processing (step 5).

The implementation of the ensemble system for a warm
start differs from a cold start in several ways (Fig. 1b). First,
though the analysis is again executed only for the control
member (upper box in Fig. 1b), the BKG fields for both
NAVDAS and NCODA are previous control member
forecasts (typically 6 or 12 h) from the ensemble (not global
fields). The analysis creates and copies the same fields as for
the cold start (step 2). However, the IC for the individual
members are now obtained by adding the ET perturbations to
the control analysis (see “Section 3”), separate for both the

Table 1 Listing of the atmospheric physics options and perturbations. Italicized values for the members (1–28) indicate values that differ from the
control (member 0; see text for a detailed description of the physics parameters)

Member abl mixlen Flux w-kf tinc-lcl cld-rad precip Graupel Auto-conv Rain-int Snow-int

0 (control) 2 1.0 1.0 1.0 0.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e7

1 (PBL buoyancy) 1 1.0 1.0 1.0 0.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e7

2 (PBL mixing length) 2 1.25 1.0 1.0 0.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e7

3 (PBL mixing length) 2 0.75 1.0 1.0 0.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e7

4 (PBL mixing length) 2 1.5 1.0 1.0 0.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e7

5 (PBL mixing length) 2 0.5 1.0 1.0 0.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e7

6 (PBL surface flux) 2 1.0 1.25 1.0 0.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e7

7 (PBL surface flux) 2 1.0 0.75 1.0 0.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e7

8 (PBL surface flux) 2 1.0 1.5 1.0 0.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e7

9 (PBL surface flux) 2 1.0 0.5 1.0 0.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e7

10 (cumulus W trigger) 2 1.0 1.0 1.5 0.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e7

11 (cumulus W trigger) 2 1.0 1.0 0.5 0.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e7

12 (feedback fraction) 2 1.0 1.0 1.0 0.0 1,500.0 0.5 True 0.0004 8.0e6 2.0e7

13 (cumulus T trigger) 2 1.0 1.0 1.0 1.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e7

14 (cumulus T trigger) 2 1.0 1.0 1.0 -1.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e7

15 (cumulus T trigger) 2 1.0 1.0 1.0 2.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e7

16 (cumulus T trigger) 2 1.0 1.0 1.0 -2.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e7

17 (cloud radius) 2 1.0 1.0 1.0 0.0 500.0 0.0 True 0.0004 8.0e6 2.0e7

18 (cloud radius) 2 1.0 1.0 1.0 0.0 1,000.0 0.0 True 0.0004 8.0e6 2.0e7

19 (cloud radius) 2 1.0 1.0 1.0 0.0 2,000.0 0.0 True 0.0004 8.0e6 2.0e7

20 (cloud radius) 2 1.0 1.0 1.0 0.0 3,000.0 0.0 True 0.0004 8.0e6 2.0e7

21 (feedback fraction) 2 1.0 1.0 1.0 0.0 1,500.0 1.0 True 0.0004 8.0e6 2.0e7

22 (graupel) 2 1.0 1.0 1.0 0.0 1,500.0 0.0 False 0.0004 8.0e6 2.0e7

23 (microphysics) 2 1.0 1.0 1.0 0.0 1,500.0 0.0 True 0.00004 8.0e6 2.0e7

24 (microphysics) 2 1.0 1.0 1.0 0.0 1,500.0 0.0 True 0.004 8.0e6 2.0e7

25 (microphysics) 2 1.0 1.0 1.0 0.0 1,500.0 0.0 True 0.0004 8.0e7 2.0e7

26 (microphysics) 2 1.0 1.0 1.0 0.0 1,500.0 0.0 True 0.0004 8.0e5 2.0e7

27 (microphysics) 2 1.0 1.0 1.0 0.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e8

28 (microphysics) 2 1.0 1.0 1.0 0.0 1,500.0 0.0 True 0.0004 8.0e6 2.0e6
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atmosphere and the ocean (step 3). The lateral boundary
conditions are created the same as for a cold start (step 4) as
are the execution of the forecast model (step 5) and post-
processing (step 6). The entire process (from step 1 to 6) is
repeated for the next data assimilation cycle.

Previous simulations testing the ensemble system
displayed tendencies for the forecast to be under-
dispersive (too little spread). To address this issue and
to better represent uncertainty, atmospheric perturbations
are developed and tested as described in the following
section.

4.1 Atmospheric perturbations

In order to represent the uncertainty due to the model
physical parameterizations, each of the COAMPS mem-
bers is run with a different set of physical parameteriza-
tion values as shown in Table 1. Previous COAMPS
ensemble experiments were conducted with a variety of
atmospheric parameters. The results from these experi-
ments isolated several key parameters in the ABL and
cumulus parameterizations and cloud microphysics to
which COAMPS forecasts were most sensitive. The
parameterization developers were consulted in order to
focus on a subset of key parameters that they thought
represented the largest uncertainty. These parameters are:
(1) the type of ABL parameterization, (2) the magnitude of
the vertical mixing length, (3) the magnitude of the surface
sensible and latent heat fluxes, (4) the grid-scale vertical
velocity used in the K–F cumulus parameterization trigger
for convective initiation, (5) the fraction of available
convective precipitation partitioned to the grid-scale
precipitation, (6) the temperature increment at the lifted
condensation level (LCL) (which also impacts the con-
vective initiation in the K–F parameterization), (7) the
cloud updraft radius used in the K–F parameterization, (8)
microphysical interactions that include graupel, (9) the
microphysics auto-conversion factor, and (10) the micro-
physics slope intercept factors for snow and rain. A brief
description for each is given here.

1. The ABL parameterization: Ensemble member 1 uses
the original Mellor and Yamada (1974, 1982) ABL

scheme (abl=1). The modified Mellor and Yamada
boundary layer scheme (abl=2) has several features not

Nest 1: 81-kmMoving atmospheric nest 2: 27-km

t = 0-h

t = 54-h

Ocean nest 1: 27

Nest 1: 81-km  

t = 0-h  

t = 54-h  

Ocean nest 1: 27-km  

b) Ike  

Nest 1: 81-km  
Moving atmospheric nest 2: 27-km  

t = 0-h  

t = 56-h  

Ocean nest 1: 27-km  

a) Hanna  

Moving atmospheric nest 2: 27-km  

Fig. 2 The coupled model domain setup for the TC case studies:
a Hanna and b Ike (see Table 2 for details on each configuration)

Table 2 Description of the TC case studies. The number of forecasts indicates the number of data assimilation forecasts executed every 12 h for
the case study. Ike-u is the same as Ike except that the atmospheric model was run uncoupled with the ocean model

Case Cold start
date

No. of
forecasts

Members Atmos resolution
(km)

Ocean resolution
(km)

Atmospheric
levels

Ocean
levels

Forecast
length (h)

Moving
nests

Coupled

Hanna 2008090112 6 29 81, 27 27 30 40 54 Y Y

Ike 2008090500 14 29 81, 27 27 30 40 60 Y Y

Ike-u 2008090500 14 29 81, 27 27 30 40 60 Y N
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available in the original formulation. A statistical cloud
fraction is computed for the buoyancy calculation. This
is used in diagnosing the virtual buoyancy flux which
impacts the buoyant production of turbulence. The
thermodynamic quantities used for determining stabil-
ity include liquid water potential temperature and a
hybrid potential temperature incorporating both liquid
water potential temperature and virtual potential tem-
perature. All five species of water substance (vapor,
liquid, snow, ice, and graupel) are used in all
thermodynamic computations. The use of these quan-
tities removes the discontinuity at cloud base which
was a common occurrence in the original Mellor and
Yamada scheme. In terms of shear production, a
background shear based on the turbulence level is
included as the lower limit on shear production of TKE.
The turbulence length scale is modified to increase
more rapidly with elevation in highly convective
situations. In addition, the Brunt–Vaisala length scale
used in stable conditions is not utilized within cloud
layers. The modified ABL scheme is used for all
members except ensemble member 1 (see Table 1).

2. The magnitude of the vertical mixing length: COAMPS
uses separate vertical eddy mixing coefficients for
momentum, KM:

KM ¼ SMlVe
�1=2; ð15Þ

and for the scalar variables, KH:

KH ¼ SHlVe
�1=2; ð16Þ

where lV represents the vertical mixing length, SM and
SH the stability factors for momentum and scalars, and
e the TKE (Mellor and Yamada 1974; Therry and
Lacarrère 1983). This vertical mixing length is scaled
by factor mixlen (ranging from 0.5 to 1.5) for
perturbation members 2–5.

3. The magnitude of the surface sensible and latent heat
fluxes: The sensible and latent fluxes as given by
Eqs. 2 and 3 are scaled by factor flux (ranging from

Ocean nest 1:
27=km

Surface v-current (m s-1)

0

5

-5

10-m v-wind (m s-1)

New interpolated moving nest region for
atmospheric ET  

Atmos move
direction

Hanna:2008090112 

Fig. 3 The ocean nest 1 (27 km) analyzed surface v-current (m s−1)
and the location of the atmospheric nest 2 (27 km) for the control
member (solid box) and member 1 (moved nest indicated by dashed

lines) for the 1200 UTC 1 September Hurricane Hanna case (left) and
the analyzed nest 2 (27 km) 10-m wind v-component (m s−1) after the
moving nest ET algorithm has been applied (right)
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0.5 to 1.5) over land and water for perturbation
members 6–9.

4. The grid-scale vertical velocity used in the K–F
cumulus parameterization to diagnose convective initi-
ation: The value is scaled by factor w-kf (ranging from
0.5 to 1.5) for members 10 and 11.

5. The fraction of available convective precipitation that is
partitioned to the grid-scale precipitation: The value is
scaled by factor precip (ranging from 0.5 to 1.0) for
members 12 and 21.

6. The temperature increment at the LCL: The increment (K)
added to the temperature at the LCL (tinc-lcl) ranges
from −2.0 to 2.0 K for members 13–16. This increment
has an impact on the convective initiation.

7. The cloud updraft radius used in the K–F parameteri-
zation: The radius cld-rad (m) varies from 500 to
3,000 m for members 17–20.

8. Graupel: Graupel microphysics calculations (graupel)
are not included for member 22.

9. Microphysics auto-conversion factor: The cloudwatermixing
ratio threshold in theKessler (1969) auto-conversion of cloud
water to rain (auto-conv) varies from 0.00004 to 0.004 for

BEST 

BEST TRACK 

Hanna Nest 2:  TC forecast track from 2008090400  

Fig. 5 TC forecast tracks for 29-member Hurricane Hanna for the
warm start at 0000 UTC 4 September for 0 to 54 h for the COAMPS
coupled ensemble. The white circles on the best track indicate the day
(04, 05, 06), and the solid circles for the forecast tracks are every 12 h.
(Note that the member number colors are not consistent for the map
and the error statistics are given in Fig. 6)

Ocean prediction velocity errors (cm s-1)

a) 1-m b) 20-m c) 40-m 

d) 85-m e) 130-m f) 200-m 

Hanna: 2008090112-2008090700

Fig. 4 Ocean prediction velocity errors (cm s−1) for ocean nest 1 (27-km) for Hurricane Hanna averaged from 1200 UTC 1 September to 0000
UTC 7 September for depths a 1 m, b 20 m, c 40 m, d 85 m, e 130 m, and f 200 m
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Fig. 6 COAMPS coupled en-
semble statistics for 29-member
Hurricane Hanna for the warm
start at 0000 UTC 4 September
for 0 to 54 h of a maximum
wind speed (kts), b track error
(nm), and c maximum wind
speed error (kts). The control
forecast is given by the thick
black line, and the ensemble
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line. The wind speed from the
observed best track TC is given
by the solid line. (Note that the
member number colors are not
consistent for the map in Fig. 5
and the error statistics)
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members 23 and 24. There is no conversion unless cloud
water mixing ratio > auto-conv.

10. Microphysics slope intercept factors: The intercept
factors for the raindrop size (rain-int) vary from 8.e5
to 8.e7 for members 25 and 26 and snow flake size
(snow-int) distributions vary from 2.e6 to 2.e8 for
members 27 and 28.

5 Results of tropical cyclone case studies

Coupled ensemble simulations are conducted for two TC
case studies: Hanna (1–6 September 2008) and Ike (5–14
September 2008). The primary focus of this study is to
demonstrate the capability of the coupled ensemble system
not to provide high-resolution simulations of the TCs.
Thus, the following analyses stress the performance of the
coupled ensemble (particularly the ensemble mean versus
the deterministic control forecast) and not the detailed high-
resolution validation against observations.

Hurricane Hanna is investigated over the period from 1
to 6 September 2008. However, the storm was prominent as
early as 28 August when it was named. By 30 August, the
circulation was weak, centered near its location just east of
the Bahamas. Hurricane Gustav’s circulation influenced
Hanna’s track on 1 September, causing a slow drift to the
south-southwest with convection and strong intensification,
with the National Hurricane Center (NHC) upgrading
Hanna to a hurricane (sustained winds of at least 64 kts or
33 m s−1). However, Gustav again impacted Hanna’s
structure and by 2 September strong wind shear weakened
the circulation and the storm was downgraded to a tropical
storm on 3 September. Hanna made landfall near the South
Carolina–North Carolina border on 6 September and
subsequently went extra-tropical by 7 September.

Hurricane Ike is investigated over the period from 5 to
14 September 2008. Ike was a very long-lived system, first
evident in the Atlantic as Tropical Depression Nine on 1
September, with several subsequent periods of intensifica-
tion and weakening over the next 10 days. Ike reached peak
intensity (∼145 kts or 79 m s−1) by 4 September, weakened
to category 3 on 5 September and category 2 on 6
September. This weakening was short-lived and rapid
intensification occurred again in the early hours of 7
September, reaching category 4 (with sustained winds of
115 kts near the Caicos Islands) just 6 hours after being
downgraded to category 2. Ike made several landfalls at
Caribbean islands on 8 and 9 September before rapidly
intensifying during the night of 10 September (reduction in
central SLP from 963 to 944 hPa and increase in wind
speed from 74 to 87 kts) as it passed over the loop current
in the Gulf of Mexico. From 10 to 12 September, Ike

remained a category 2 storm (∼95 kts) as it moved north-
northwestward toward Galveston, TX, USA, but with an
unusually large spatial distribution of high wind speeds,
resulting in a large storm surge as it made landfall at ∼0700
UTC 13 September.

A variety of configurations, including differing model
resolution, number of members, forecast length, and
moving and fixed nest configurations, have been tested
for the coupled ensemble system. A “standard” configura-
tion is chosen for the two TC cases presented here, as listed
in Table 2 and shown in Fig. 2. Each of the studies begins
with a cold start (as described in “Section 4”), employs data
assimilation every 12 h, and uses atmospheric model

BEST TRACK 

a) Coupled

b) Uncoupled 

BEST TRACK 

Ike Nest  2:  TC forecast track fr om 2008091100

Fig. 7 TC forecast tracks for 29-member Hurricane Ike for the warm
start at 0000 UTC 11 September for the COAMPS a coupled
ensemble and b uncoupled ensemble. The tracks correspond to
different forecast lengths (60 and 72 h) than the best track (solid
black). The white circles on the best track indicate the day (11, 12, 13)
and the solid circles for the forecast tracks are every 12 h
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perturbations (as outlined in “Section 4.1”), with a two-way
exchange of information every time step between the grid
meshes. The Hanna case study cold start begins at 1200
UTC 1 September 2008 (Ike at 0000 UTC 5 September
2008), with a series of 54-h (60-h for Ike) forecasts every
12 h for 3 days or six total forecasts (7 days or 14 forecasts
for Ike). The ensemble simulations use two atmospheric
domains with a horizontal resolution of 81 and 27 km, with
the second nest moving automatically with the TC center,
and one fixed ocean domain with 27-km resolution. The
atmospheric model has 30 vertical levels with the vertical
grid spacing varied from 10 m near the surface to a
maximum of 7,500 m near the model top (∼30 km). The
ocean model has 40 vertical levels, including 19 terrain-
following sigma levels in the upper 140 m and 21 fixed-
depth levels between 140 m and the ocean bottom. The Ike
case study is also simulated with the atmospheric model
uncoupled to the ocean model (Ike-u) in addition to the
standard coupled configuration.

For TC applications in which the inner nests of the
atmospheric model may move with the TC, there is an
inherent problem in implementing the ET to create a new
initial state because it cannot be guaranteed that the model
domains of every member will coincide spatially. In fact, it
is a desired result for none of the members to coincide, such
that the TC track of each member is different to enable the
spread to better represent the natural variability. For the
application of the ET, this results in a spatially inconsistent
background field. Thus, a new capability to apply the ET
for moving nests has been developed. The new algorithm is
described below.

For a given BKG field (i.e., 12-h forecast), the spatial
area for each member that is common with the control
member (i.e., overlap region) is computed. Then, for each
individual member, that area of the moving nest which
is outside the overlap region is interpolated from the
domain of the parent (i.e., if nest 2 is the moving nest,
then nest 1 would be the parent used for interpolation).
This new domain that is now the same as the control
domain is used as the BKG field for the ET. Figure 3
shows an example of the implementation of the algorithm
for the 1200 UTC 1 September 2008 Hanna case. The
atmospheric domain for the control member is given by
the solid box in the right corner of the ocean nest 1
(27 km) surface v-current (left panel). The moving nest
member has moved to the northwest following the TC, so
the new interpolated region encompasses a region to the
north and west of the control domain, indicated by the
dashed line. The new atmospheric 10-m v-wind compo-
nent, including the interpolated region, is given in the
right panel. Note that the interpolated region contains
only weak gradients. The amount of discontinuity will
obviously depend upon the difference in the model

solution on the parent and child domains in the
interpolated region. In addition, the smaller the overlap
region of different member domains (i.e., the larger the
interpolated regions), the larger the potential adverse
impact on the ensemble mean because of increased
interpolation.

Figure 4 shows the NCODA 3DVAR ocean velocity
BKG errors for the Hurricane Hanna case study averaged
from 1200 UTC 1 September to 0000 UTC 7 September.
As discussed in “Section 2.4,” there are two components of
the BKG error: model variability and model data errors.
Model variability is dependent on the time history of
forecast differences at the updated cycle interval (12 h), and
model data errors are determined by the time history of the
analyzed increment fields. As a result, NCODA 3DVAR
BKG errors adapt as the ocean model evolves over time due
to changes in the atmospheric forcing and initial conditions
from the assimilation. The characteristics of the ocean
prediction errors of temperature and salinity (not shown)
have similar features as ocean velocity. For hurricane-
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Fig. 9 Mean and spread track statistics for 29-member Hurricane Ike
(coupled) and Ike-u (uncoupled) simulations for 0000 UTC 11
September. The track error values are plotted to 54 h to correspond
approximately to landfall time
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induced high-flow regimes, Fig. 4 shows that the horizontal
distribution of the ensemble mean ocean velocity BKG
errors within the ocean mixed layer is mainly in the vicinity
of the envelope of ensemble tracks near the hurricane
maximum winds.

On 4 September, Hanna moved out of a counter-
clockwise looping motion over the Caicos Island and began
to move northwestward (Fig. 5). Hanna turned northward
24 to 36 h later along the western edge of a now better
established subtropical ridge over the Atlantic. The inten-
sity of Hanna remained basically unchanged, around 55–
60 kts during this period (Fig. 6a). In general, the ensemble
mean forecast track for Hanna follows the best track closely
for the first 36 h but, over the next 18 h, shifts to the west
of the best track as the storm separates from an upper-level
low pressure system and is influenced by the westward
extension of the ridge. A similar deviation of the forecast
track is also evident in the NOGAPS forecasts (not shown).
The ensemble mean track errors (Fig. 6b) at 24, 36, and
48 h are well within the average errors for the official NHC
forecasts of Hanna [1 nautical mile (nm) = 1.852 km]. The
ensemble forecasts show average intensity errors of <10 kts

for the period prior to landfall (Fig. 6c), while official
forecasts over-estimate Hanna as a category-2 storm upon
landfall. Furthermore, the ensemble mean of intensities
captures the steady intensity period (not always an easy task
for mesoscale models), influenced by the effect of ocean
cooling in the coupled system. The ensemble mean and
control forecasts are similar for both track and intensity,
with only small variations for different forecast times.
Though the ensemble mean is not a significant improve-
ment over the control, the ensemble does provide the
possibility for uncertainty information about the track and
intensity.

The forecast tracks for Hurricane Ike are shown in
Fig. 7. Both coupled and uncoupled ensemble simulations
are performed to examine the impact of air–sea coupling on
the track and intensity of the hurricane. The uncoupled
simulation is conducted in an identical manner to the
coupled simulation with the exception that there is no
feedback between the ocean and atmosphere. Thus, the
analyzed SST computed from NCODA is held fixed in time
for the 60-h forecasts for the 14 uncoupled ensemble
simulations. Generally, the forecast tracks for the time

Fig. 10 Sea surface temperature
difference (°C) from 0000 UTC
11 September to 0000 UTC 13
September for Hurricane Ike for
a TRMM Microwave Imager
satellite observations and b
coupled ensemble mean. The
contours in b are sea surface
height to show the location of
the warm core eddy in the Gulf
of Mexico. Only surface heights
greater than 0.4 m are drawn.
The ensemble mean track is
computed from the 0- to
11-h average forecast position
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period 0000 UTC 11 September to 0000 UTC 13
September for both coupled and uncoupled simulations
are similar, with the majority of tracks to the right of best
track. The ensemble statistics for the coupled simulation
(Fig. 8) clearly indicate that this coarse resolution simula-
tion is unable to capture the intensity of the observed
hurricane prior to landfall (wind speed errors ∼20–40 kts;
SLP errors ∼25–40 hPa not shown). A comparison of the
control and the ensemble mean indicates that the ensemble
mean performs no worse and slightly better than the control in
predicting track and intensity (i.e., at 48 h, mean track error =
105 vs. 125 nm for control). The use of the coupled model
(versus the uncoupled) has a general positive impact on track
(Fig. 9). The coupled ensemble mean track error is generally
smaller than the uncoupled track error (i.e., 48-h uncoupled
track error = 120 nm) and the spread is generally larger
(48-h coupled ensemble spread = 53 vs. 45 nm for
uncoupled).

Improvements would be expected at higher resolutions
relative to this coarse resolution (27 km). It should be noted
that high resolution (∼5 km or less) (Chen et al. 2007) is
typically required for mesoscale models to provide any skill
in forecasting TC intensity. The Hanna and Ike cases
provide some indication that the ensemble system can be a
useful tool to improve TC track and intensity forecasts,
even at a relatively coarse resolution.

Figure 10 shows the SST difference between 0000 UTC
11 September and 0000 UTC 13 September for Hurricane
Ike for the TRMM Microwave Imager satellite observations
and the coupled ensemble mean. There is a warm core eddy

(WCE) in the Gulf of Mexico located near 25°N, 87°W as
indicated by the sea surface height contours in Fig. 10b.
Observations show a significant SST change on the right
side of the storm track after Ike passes the WCE with SST
decreased by up to ∼4°C over 48 h. The ensemble mean
shows a similar location for the SST decrease but with a
smaller magnitude (∼2°C). The area of cooling in the
ensemble mean is also smaller. The difference of temper-
ature change between the observations and the ensemble
mean is consistent with a much weaker forecasted storm
intensity as compared to the best track (Fig. 8a). The lack
of intensity could certainly account for the weaker cooling,
although Hong et al. (2000) surmise that the weaker cooling
could be related to modifications in the pre-storm ocean
thermal structure as a result of changes in vertical mixing.
The lack of cooling indicates that the upper ocean
stratification is not strong enough to represent the pre-storm
conditions.

During the life cycle of a TC, the region along the TC track
should also be a region of large ensemble spread. Figure 11
shows the ensemble spread for Hurricane Ike for the
24-h forecast valid 1200 UTC 11 September of surface wind
stress and surface current. The ensemble spread of the
surface wind stress is maximum in the relatively large region
of high TC wind speeds and relatively small outside the
region. Likewise, the spread of the surface current is a
maximum in the core TC region, with larger values
emanating out from the center to the north-northeast in a
clockwise spiral. The region of large spread to the northwest
of the Yucatan Peninsula is believed to be due to an ocean

Ensemble spread 
24-h forecast valid 2008091112 

a) Surface wind stress (N m-2)  b) Surface current (m s-1) 

Fig. 11 Ensemble spread for the 29-member Hurricane Ike case for the 24-h forecast valid 1200 UTC 11 September of a surface wind stress
(N m−2) and b surface current (m s−1)
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eddy in several ensemble members and is believed to be
spurious. Spread-skill relationships of atmosphere and ocean
temperature forecasts at various levels for both Hanna and Ike
(not shown) further support the under-dispersive nature of the
ensemble system, indicating a general lack of spread among
ensemble members. This is a common feature of most
ensemble systems (Houtekamer and Mitchell 2001), and
improved techniques are being developed to improve the
spread, particularly in the ocean, and will be presented in a
follow-on paper.

6 Summary and conclusions

The development and testing of a coupled ocean–atmo-
sphere mesoscale ensemble prediction system has been
described. The system components include COAMPS and
NCOM for atmosphere and ocean forecasting and NAVDAS
and NCODA for 3D variational atmosphere and ocean data
assimilation. The components are efficiently implemented
under the Earth System Modeling Framework and have been
rigorously tested for a variety of model configurations and
case studies. The Ensemble Transform technique is currently
used independently for the ocean (current, temperature, and
salinity variables) and atmosphere (wind, temperature, and
moisture variables) to create perturbations for the coupled
system. Estimates of analysis error covariance from the ocean
and atmosphere 3DVAR assimilation systems are used to
constrain the ET.

Results are presented for tropical cyclone case studies of
Hanna and Ike (September 2008) to demonstrate the
baseline capability of the system. A suite of atmospheric
perturbations are used to represent the uncertainty due to
the model physical parameterizations (see Table 1). Gener-
ally, the ensemble mean has comparable skill as compared
to the deterministic control member for hurricane track and
intensity (even at a relatively coarse 27-km resolution). For
Hanna, the ensemble mean forecast track errors from 0 to
48 h are well within the average errors for the official
forecasts prior to landfall. The average forecast intensity
error among members is ∼10 kts for the period prior to
landfall, while the official NHC forecasts over-estimated
Hanna as a category-2 storm upon landfall. The average
forecast intensity error among members for Ike (∼20–40 kts)
is greater than for Hanna as both the coupled and uncoupled
systems did not initialize the storm sufficiently well (initial
errors at 0000 UTC 11 September of ∼30 hPa). Both the ocean
and atmosphere components of the ensemble are under-
dispersive. Efforts are underway to improve the spread,
particularly in the ocean.

Future plans for the system include the development of
ensemble ocean–atmosphere coupled covariances using
innovative localization techniques. This approach will

enable ensemble 4D-variational (4DVAR) coupled data
assimilation. The ensemble 4DVAR system will provide
improved state estimates of the coupled system and
increase the effectiveness of ensemble-based targeted
observation approaches that are currently limited by
spurious ensemble correlations and by neglected error
correlations between atmosphere and ocean variables. New
case studies with the updated system are proposed for both TC
and non-TC cases to investigate and quantify the skill of the
coupled ensemble system at higher spatial resolutions. It is
envisioned that the new updated system will provide
improved mesoscale ensemble forecasts for use in probabilis-
tic products, such as reliability and frequency of occurrence,
and in risk management applications.
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