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Exact  traveling  wave  solutions  (TWS)s  of  the  one-dimensional  (1D)  shallow  water  equations  are  derived
and studied  in  the  case  of  a viscous  fluid.  These  TWSs,  which  satisfy  special  cases  of  Abel’s  equation,
are  shown  to take  the  form  of  kinks,  which  are  not  classic  Taylor  shocks,  and  to  admit  bifurcations  and
steepening.  Stability  issues  are  also  addressed,  asymptotic/limiting  case  expressions  are  presented,  the
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istability
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possibility  of  hysteresis  is explored,  and  it is established  that  bistability  only  occurs  for  left-running  waves.
Last, it is  shown  that  the  free  surface  height  is capable  of behaving  similarly  to the  strain  exhibited  by  a
class  of nonlinear  viscoelastic  media.

Published by Elsevier Ltd.
iscoelasticity

. Introduction

In one spatial dimension, and assuming a flat, rigid channel
ottom, the viscous shallow water equations, also known as the
aint-Venant equations, can be expressed as (Mascia and Rousset,
007)

� + (hv)� = 0, (hv)� + (hv2)� + 1
2

g(h2)� = �(hv�)�, (1)

here h(>0) is the height of the free surface above the flat bottom,
 is the velocity in the �-direction, g(≈ 9.8 m/s2) is the acceleration
ue to gravity, and �(>0) is the kinematic viscosity of the fluid under
onsideration.

System (1) is derived from depth-integrating the Navier–Stokes
quations, under the assumption that the horizontal length scale is
uch greater than the vertical length scale, and then invoking the

ydrostatic approximation to eliminate the pressure. The equations
f Saint-Venant arise in a wide range of applications, both practical
nd theoretical. It is not surprising, therefore, given how impor-
ant the ability to predict and control the movement of water is to

odern societies, that this system of nonlinear PDEs has been, and
ontinues to be, the subject of intense study, over 160 years after it
as first derived; see, e.g., Debnath (1994) and LeVeque (2002).
The present Note is devoted to an analytical study of the TWSs
dmitted by System (1).  In particular, we establish that these wave-
orms take the form of (non-Taylor shock) kinks and that they
uffer, mathematically speaking, the same bifurcations identified

∗ Corresponding author. Tel.: +1 228 688 4338; fax: +1 228 688 5049.
E-mail address: pedro.jordan@nrlssc.navy.mil (P.M. Jordan).

093-6413/$ – see front matter. Published by Elsevier Ltd.
oi:10.1016/j.mechrescom.2011.05.003
with the phenomenon of hysteresis. The findings presented here
also indicate that if the kinks are slowly propagating, then h exhibits
behavior similar to that of the strain created in a well known class of
nonlinear viscoelastic media by the passage of a kink-type traveling
wave.

2. Traveling wave analysis

To this end, we  begin by introducing the dimensionless inde-
pendent variables x = �/L and t = c0�/L, where the positive constant
L denotes a characteristic length, and then set v = c0V(�) and
h = heH(�), where V and H are the dimensionless dependent vari-
ables. Here, � := x − ct is our wave variable; the nonzero constant
c denotes the speed of the assumed traveling waveforms, where
c ≷ 0 respectively correspond to right- and left-running waves; and
c0 =

√
ghe is the small-amplitude wave speed, where the constant

he(>0) denotes the equilibrium value of h. On substituting these
ansatzs into System (1),  integrating each of the resulting ordinary
differential equations (ODE)s once, and then solving for the ensuing
constants of integration by imposing the equilibrium state condi-
tions V = 0 and H = 1, we end up with

V = c(1 − H−1) and �HV ′ = H2 − 2cHV + 2HV2 − 1, (2)

where H ∈ (0, ∞),  we  have set �:=2c−1
0 �/L for convenience, and a

prime denotes d/d�.

On eliminating V between the equations in (2) we obtain the

following special case of Abel’s equation (Murphy, 1960):

�cH′ = H3 − (2c2 + 1)H + 2c2, (3)

dx.doi.org/10.1016/j.mechrescom.2011.05.003
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
mailto:pedro.jordan@nrlssc.navy.mil
dx.doi.org/10.1016/j.mechrescom.2011.05.003
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1 In the sense that the “tanh” TWS  admitted by Burgers’ equation, a particular
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hile the elimination of H from (3) using (2)1 results in the more
omplicated, but still separable, ODE

c
(

1 − V

c

)
V ′ = −2V

[
V2 +

(
1 − 4c2

2c

)
V − (1 − c2)

]
, (4)

hich is also a form of Abel’s equation (again, see Murphy, 1960).
ocusing our attention on the former, due to its relative simplicity, a

tability analysis indicates that, counting multiplicities, (3) admits
he following equilibrium solutions:

¯
 = {H1, H2, H3}, where H1 = 1, H2,3= −1

2

[
1 ∓
√

1 + 8c2
]

, (5)

f which only the first two are physically relevant since H3 is always
egative. Here, we observe that the equilibrium H̄ = H1 is stable
resp. unstable) for c > 1 (resp. c < 1).

Assuming c > 0 in the remainder of this section, we observe the
ollowing. For c = 1, (3) exhibits a bifurcation; i.e., c = 1 is the bifur-
ation value of the wave speed. This means that as the value of c
asses through one, the two equilibria H̄ = {H1, H2} first coalesce
t the former, at which point H̄ = 1 becomes a double zero of the
ubic on the right-hand side of (3),  and they then switch their sta-
ility; see Fig. 1. Thus when c = 1, H̄ = 1 attracts only from one side,
amely, the left, and is thus referred to as a semi-stable (Strogatz,
994) equilibrium, although other authors use the terms nonhyper-
olic equilibrium (Hale and Koç ak, 1991) and saddle point (Bender
nd Orszag, 1999).

Having completed our stability analysis, we are now ready
o derive the exact TWSs for H and V, where we  observe that
he cases c /= 1 and c = 1 must be handled separately. First,
owever, we impose the wavefront conditions H(0) = H0 and
(0) = V0, where H0 is a positive constant and V0 is related to
0 via (2)1, so that the resulting constants of integration can be
etermined.

.1. Results for c /= 1

Setting aside the equilibrium solutions for the moment, we
eturn to (3) and (4),  separate variables, integrate, and then enforce
he wavefront conditions. This yields the exact, but implicit, solu-
ions

 = �c

4(1 − c2)

{(
6√

1 + 8c2

)
Arctanh

(
1 + 2H√
1 + 8c2

)
+ ln

[
(1 −

H2 + 

 = −�c

4(1 − c2)

{(
6√

1 + 8c2

)
Arctanh

[
1 − 4c(c − V)√

1 + 8c2

]
− ln

[
2cV

espectively, for H and V, where min(1, H2) < H0 < max(1, H2) is
ssumed here (recall Fig. 1).

H(�) =

⎧⎪⎪⎨
⎪⎪⎩

−2 + W−1[q(H0) exp[q(
1 + W−1[q(H0) exp[q(H

1,
−2 + W0[q(H0) exp[q(H
1 + W0[q(H0) exp[q(H

V(�) =

⎧⎪⎪⎨
⎪⎪⎩

3
2 − W−1[f (V0) exp[f (V0
0,

3
2 − W0[f (V0) exp[f (V0)
In Figs. 2 and 3 we have plotted, for c < 1 and c > 1, respectively,
he integral curves given in (6) and (7).  In both of these figures it is
lear that H(�) > V(�), for all � ∈R, and that H is strictly positive, as
ystem (1) dictates. Also, while not immediately evident from the
ommunications 38 (2011) 382– 387 383

c2

]}∣∣∣∣∣
H

H0

(−∞ < � < ∞),  (6)

∣V

expressions in (6) and (7),  these solution profiles assume the form
of kinks (Angulo, 2009, pp. 25–26), which exhibit a relatively high
degree of symmetry.1

2.2. Results for c = 1

In this case we  are able to obtain exact, explicit results, namely,

 exp(9�/�)]
xp(9�/�)]

, H0 > 1, for � ∈ (−∞, �∞),

H0 = 1, for � ∈ (−∞, ∞),
xp(9�/�)]
p(9�/�)]

, H0 < 1, for � ∈ (�z, ∞);

(8)

p(9�/�)]
, V0 ∈ (0, 1),  for � ∈ (−∞, �∞),

V0 = 0, for � ∈ (−∞, ∞),

(9�/�)]
, V0 < 0, for � ∈ (�z, ∞).

(9)

Here, Wr(·) denotes the rth branch of the Lambert W-function
(see Appendix A); we  have set q(H0) := (2 + H0)/(1 − H0) and
f(V0) := 2 − 3/V0 for convenience;

�∞:=�
9

{
3 − (H0 − 1) ln[(2 + H0)(H0 − 1)−1]

H0 − 1

}
(H0 > 1),  (10)

where H(�)| c=1 → ∞ as � → �∞ (from below); and

�z:= − �
9

{
3H0 + (1 − H0) ln[(2 + H0)(2 − 2H0)−1]

1 − H0

}
(H0 < 1),

(11)

where H(�z) | c=1 = 0.

Remark 1. An inspection of (8) and (9) reveals that the only phys-
ically realistic2 solutions possible for this case are

H(�) = 1 and V(�) = 0 (c = 1),  (12)

i.e., the defining relations for the equilibrium state of the fluid.

3. Analytical results

While they are exact, the solutions appearing in (6) and (7)
are, from the analytical standpoint, rather complicated, and thus
do not immediately provide the physical insight we seek. Fortu-
nately, however, approximate/asymptotic expressions, which are
both simpler than their exact counterparts and explicit, can be
derived from (6) and (7),  as well as from their governing ODEs,
by, e.g., expanding about points of physical significance.
type of kink known as a Taylor shock, can be made perfectly symmetric, while the
profiles appearing in Figs. 1 and 3.8 respectively of Jordan (2006) and Rasmussen
(2009) are clearly asymmetric.

2 Specifically, solutions that are bounded, defined on the entire �-axis, and for
which H is strictly positive; e.g., TWS  in the form of kinks.
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Fig. 1. H̄(= H1,2,3) vs. c, where c /= 0 is assumed. The solid and broke

.1. Small-|�| approximations and shock thicknesses

Borrowing from the terminology of gas dynamics theory, we
efine the shock thicknesses, �H,V(>0), of our kink waveforms as

�H:= c�|1 − H2|
|H3

0 − (2c2 + 1)H0 + 2c2| ,

�V := �|(c − V0)V2|
|2V3

0 + c−1(1 − 4c2)V2
0 − 2(1 − c2)V0| , (13)

here V2 = c(1 − 1/H2).

Using (13) and elementary calculus, the following linear, small-

�| approximations are readily constructed: H(�) ≈ H0 − �/�H and
(�) ≈ V0 − �/�V, which are valid for 2 | � | 	 �H and 2 | � | 	 �V,
espectively. Unfortunately, however, while they are easy to derive

Fig. 2. H vs. � (solid) and V vs. � (broken) for c = 0.25 (⇒H2 ≈ 0.112), H0 = 0.50, and �
nches correspond to the stable and unstable equilibria, respectively.

and use, the intervals over which these simple expressions are valid
are rather limited.

To obtain small-|�| approximations with wider ranges of valid-
ity, we  must return to our exact solutions. In the case of H, e.g.,
expanding (6) about H = H0 yields, after simplifying and rearranging
terms, the power series

�

�c
= H0 − H

(1 − H0)(H2
0 + H0 − 2c2)

+ (1 + 2c2 − 3H2
0)(H0 − H)2

2(1 − H0)2(H2
0 + H0 − 2c2)

2

+ O[(H0 − H)3]. (14)
Thus, we  see that (14) can be solved as a quadratic, cubic, etc., poly-
nomial in H0 − H by simply neglecting the appropriate higher-order
terms.

 = 1.0. Here, the equilibria H̄ = {H1, H2} are unstable and stable, respectively.
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Fig. 3. H vs. � (solid) and V vs. � (broken) for c = 1.50 (⇒H2 ≈ 1.679), H0 = 1.25

emark 2. An inspection of (13) reveals, that just as in the case
f a Taylor shock TWS, the H and V (kink) solution profiles form
hocks as the (dimensionless) viscosity coefficient � tends to zero,
.e., �H,V → 0 as � → 0.

.2. Asymptotic results

In this subsection we give two large-|�| expressions. They are
ased on expansions of (6) and (4) about the fluid’s equilibrium
tate, i.e., about H = 1 and V = 0, respectively, and their relatively
imple structure makes them amiable to probing by analytical
eans.
To this end, we return to (6) and expand its RHS about H = 1.

n neglecting terms of O[(1 − H)2] and then solving the resulting
xpression for H in terms of �, we find that as �→ ± ∞,

(�) ∼ 1 − 2(1 − c2)
3

W0

{(
3 exp[G(H0, c)]√

2|1 − c2|

)

× exp

[
2(1 − c2)�

�c

]}
, for c ≷ 1, (15)

espectively. Here, W0(·) denotes the principal branch of the Lam-
ert W-function (again, see Appendix A); c >0 is assumed; and

(H0, c) =
(

3√
1 + 8c2

) [
Arctanh

(
1 + 2H0√

1 + 8c2

)

−Arctanh

(
3√

1 + 8c2

)]
+ ln

(
|1 − H0|√

|H2
0 + H0 − 2c2|

)
.

(16)

n contrast, dividing (4) through by (1 − V/c) and then expanding

he RHS under the assumption |V | 	 c yields, after neglecting terms
(c−3|V |3), the following special case of Bernoulli’s equation:

V ′ ≈ 2c−1(1 − c2)V + c−2(1 + 2c2)V2, (17)
 = 1.0. Here, the equilibria H̄ = {H1, H2} are stable and unstable, respectively.

the exact solution of which is easily determined. Thus, it is readily
seen that as �→ ± ∞,

V(�) � c3 − c

1 + 2c2

{
1 − tanh

[
(1 − c2)(�0 − �)

�c

]}
, for c ≷ 1, (18)

respectively, where 0 < |1 − H0| 	 1 is also assumed and

�0:=
( �c

1 − c2

)
Arctanh

[
1 − V0(1 + 2c2)

c3 − c

]
. (19)

While the expressions given in (15) and (18) correspond to the same
asymptotic regimes, they are clearly different in terms of their ana-
lytical structure, with the former being the more complicated of
the two. It should also be noted that, while (15) does not satisfy
H(0) = H0, (18) satisfies exactly the same wavefront condition as (7),
i.e., V(0) = V0.

Of course, the corresponding approximations about H2 and V2
can also be derived using the approach described above; however,
in the interest of brevity, we leave this task to the reader.

Remark 3. If one is only interested in the extreme far-field
regimes, then further simplification of (15) is possible using (A.3).

Remark 4. From (17) and (18) it is clear that, in the indicated
regimes, the asymptotic behavior of V is described by a Taylor shock
profile, and thus qualitatively similar to that of the TWS  of Burgers’
equation.

3.3. Approximations valid for small values of the wave speed

In the case of small-|c|, (3) and (4) are approximated by

�cH′ + H − H3 � 0 and V
[
�V ′ − 2

(
V2 + 1

2
c−1V − 1

)]
� 0,

(20)
which, just like their exact counterparts, are satisfied by the equi-
librium state conditions H(�) = 1 and V(�) = 0. Seeking instead only
nontrivial solutions of the ODEs in (20), we separate variables and
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ig. 4. X̄ vs. K, where K /=  0 is assumed. As in Fig. 1, the solid and broken branches
he  upper half-plane are physically relevant.

ntegrate. After enforcing our original wavefront conditions and
hen solving for H and V in terms of �, we find that for all � ∈ R,

(�) � 1√
1 + (H−2

0 − 1) exp[2�/(c�)]
, (21)

V(�) � − 1
4c

{
1 −
√

1 + 16c2 tanh

[√
1 + 16c2(�c − 2�/�)

4c

]}
,

(22)

rovided |c | 	 1 is sufficiently small. Here, H0 ∈ (H2, 1) is assumed,
here we observe that H2 ∼ 2c2(1 − 2c2) as c → 0, and

c:=4c(1 + 16c2)
−1/2

Arctanh

[
1 + 4cV0

(1 + 16c2)1/2

]
, (23)

here it should be noted that V0 /= 0 since V0 = c(1 − 1/H0).

emark 5. Making the associations H → f and (c�) → �/	, and
aking H0 = 1/2, our small-|c| approximation for H is seen to be
quivalent to Eq. 19 of Destrade et al. (2009),  which is an exact
WS  of the weakly nonlinear PDE known as the modified Burgers’
quation (MBE); see also Enflo et al. (2006),  Jordan and Puri (2005)
nd the references therein.

emark 6. From (22) we once again find V exhibiting the charac-
er of a Taylor shock, but now in the small-|c| regime; recall Remark
. And while (22) is an exact solution of (20)2, the assumption of
mall-|c| allows us to simplify the former by replacing the sum
1 + 16c2” with unity, in both (22) and (23), thus giving the expected
symptotic values − 1

2c , 0.

.4. Does System (1) exhibit hysteresis?
On pp. 30–32 of their classic text, Hale and Koç ak (1991) present
 simple example of hysteresis,3 a term describing systems which
xhibit a memory response, admitted by an ODE of the same form

3 While the term hysteresis is most often associated with magnetic materials, its
se is not exclusive to that field; see, e.g., Murray (1993) and Guidi and Goldbeter
1997),  wherein several examples from biology and chemistry, respectively, are
iscussed.
spond to the stable and unstable equilibria, respectively, and only the branches in

as (3).  In this subsection we  explore the possibility that, like its
fellow Abel equation in (Hale and Koç ak, 1991, Eq. (2.4)), our ODE
in (3) also exhibits hysteretic-type behavior.

To this end, we introduce the quantities

X = H√
1 + 2c2

, 
 =
(

1 + 2c2

�|c|

)
�,

K = 2c2 sgn(c)

(1 + 2c2)3/2
(c /= 0),  (24)

in terms of which (3) becomes

Ẋ =
{

K + X − X3, K < 0
K − X + X3, K > 0

(K /= 0).  (25)

Here, sgn(·) is the sign function, where we  observe that
sgn(K) = sgn(c); a superposed dot denotes d/d
; and x, t, and c in
(Hale and Koç ak, 1991, Exp. (2.4)) correspond to X, 
, and K, respec-
tively, in (24).

Clearly, K = ± KB, where KB:=3/
√

27, are the bifurcations values
of (25) and (Hale and Koç ak, 1991 Eq. (2.4)); however, as a com-
parison of Fig. 4 with (Hale and Koç ak, 1991, Fig. 2.5) reveals, the
corresponding bifurcation diagrams are not the same. In particular,
we observe that while the latter figure depicts a strictly bistable
system, the former shows that (25) is bistable (resp. monostable)
for K < 0 (resp. K >0).

Thus, while the possibility of (3) exhibiting hysteresis is plau-
sible at first glance, based on (Hale and Koç ak, 1991, Exp. (2.4)),
the lack of bistability for K >0 (not to mention the restriction K /= 0
and the physical requirement X >0) immediately rules out this phe-
nomenon.

Remark 7. From the mathematical standpoint, the K < 0 case of
(25) is an example of bistability without hysteresis. Actually, one

can find in the literature rather simple systems that are capa-
ble of exhibiting bistability with and without hysteresis, e.g., the
Schlögl reaction (Guidi and Goldbeter, 1997), a tri-molecular pro-
cess described by an ODE similar to (3).
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. Discussion

It is noteworthy that the MBE  is the equation of motion for
ransverse waves in viscoelastic media described by the cubically
erturbed Kelvin–Voigt model (see Enflo et al., 2006; Jordan and
uri, 2005 and the references therein). Given this fact, and the
bservation recorded in Remark 5, it seems reasonable, therefore,
o expect H to behave much like the strain induced in a sample of
uch material, examples of which include organic polymers, rub-
er, and wood,4 by the presence of a traveling waveform, provided

c| is sufficiently small.
This finding is all the more interesting given the mathemati-

al structure exhibited by the equations of Camassa–Holm (CH)5

heory; specifically, the similarity of these PDEs to the equation
f motion for second-grade fluids, which are a particular class
f non-Newtonian fluids that exhibit a retarded stress response
Cioranescu and Girault, 1997). Naturally, it is of interest to deter-

ine if the viscous generalizations of other water wave models (see,
.g., Camassa et al., 1994; Christov, 2001; Dias and Kharif, 1999;
ohnson, 2003 and the references therein) are capable of predict-
ng non-Newtonian behavior, and if so, to identify the apparent
heology expressed.

And finally, it must be stressed that what has been presented
ere are only predictions—ones based solely on System (1).  It is,
herefore, important for us to be aware of the range of pitfalls
hat might arise when attempting to extrapolate our findings, i.e.,
ndings derived from a 1D model of fluid flow, to higher dimen-
ions; see Escudero (2006) and the references therein. In the end,
onfirming/refuting what the present mathematical analysis has
evealed can, of course, only be accomplished through the efforts
f experimentalist.
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ppendix A. The Lambert W-function

The Lambert W-function is defined as the solution of the tran-
cendental equation (Corless et al., 1996)

(
) exp[W(
)] = 
, (A.1)

here 
 here denotes a complex quantity and the roots of this equa-
ion correspond to the branches of W.  By convention, the rth branch

f W is denoted as Wr(·), where r = 0, ± 1, ± 2, . . .,  with W0(·) known
s the principal branch.

Strictly speaking, however, W is not a function since there are
wo distinct real values of W(x), which correspond to r = 0, − 1, for

4 See the URL: http://en.wikipedia.org/wiki/Viscoelasticity, last accessed by the
uthors on 4 May  2011.
5 In the literature, the viscous CH equation is another name for the Navier–Stokes-

lpha (NS-˛) model (Foias et al., 2001); the CH equation refers to the lossless, 1D
DE put forth in 1993 as a model of dispersive shallow water waves (see Camassa
t al., 1994 and the references therein).
ommunications 38 (2011) 382– 387 387

every x ∈ (− e−1, 0), where we observe that W−1(x) < − 1 < W0(x) < 0
for x ∈ (− e−1, 0). These two  branches, which are the only ones to
take on real values, coincide at the branch point x = − e−1, where
W0(− e−1) = W−1(− e−1) = − 1. However, both W0(x) and W−1(x) are
complex-valued for x < − e−1.

And finally, with regard to the principal branch, we  observe that
W0 admits the following large- and small-x  asymptotic expressions
(Corless et al., 1996):

W0(x)∼ ln(x) − ln[ln(x)] + · · · (x → ∞), (A.2)

W0(x)∼x − x2 + · · · (x → 0),  (A.3)

and where it should be noted that W0(x) ≥ 0 for x ≥ 0.
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