
Naval Research Laboratory
Stennis Space Center, MS 39529-5004

NRL/MR/7320--10-9209

Approved for public release; distribution is unlimited.

Software Design Description
for the Tidal Open-boundary
Prediction System (TOPS)

Scott R. Smith

Pamela G. Posey

Paul J. Martin

Gretchen M. Dawson

Clark Rowley

Ocean Dynamics and Prediction Branch
Oceanography Division

Suzanne N. Carroll

QinetiQ North America
Stennis Space Center, Mississippi

May 4, 2010

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
	 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
	 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Software Design Description for the Tidal Open-boundary Prediction
System (TOPS)

Scott R. Smith, Pamela G. Posey, Paul J. Martin, Gretchen M. Dawson,
Clark Rowley, and Suzanne N. Carroll*

Naval Research Laboratory
Oceanography Division
Stennis Space Center, MS 39529-5004 NRL/MR/7320--10-9209

Approved for public release; distribution is unlimited.

Unclassified Unclassified Unclassified
UL 63

Scott Smith

(228) 688-4630

Tidal prediction
4DVAR assimilation

 The Tidal Open-boundary Prediction System (TOPS) is a tool that provides tidal predictions for the open boundaries of the Navy Coastal Ocean
Model (NCOM). This system predicts tides by assimilating International Hydrographic Office (IHO) tide gauge and TOPEX altimetry data with
shallow water dynamics using four-dimensional variational analysis (4DVAR). TOPS is based on the Oregon State University (OSU) Tidal Inversion
Software (OTIS) package, which was simplified, automated, and transitioned to operate within the setup of the Relocatable NCOM system. This
report describes the design of the TOPS software package.

04-05-2010 Memorandum Report

Space & Naval Warfare Systems Command
2451 Crystal Drive
Arlington, VA 22245-5200

73-5097-B9-5

SPAWAR

Satellite altimetry
Ocean modeling

0601153N

*QinetiQ North America, Stennis Space Center, Mississippi

iii

TABLE OF CONTENTS

TABLE OF FIGURES ... VI

1.0 SCOPE ... 1

1.1 IDENTIFICATION ... 1
1.2 DOCUMENT OVERVIEW .. 2

2.0 REFERENCED DOCUMENTS .. 3

2.1 TOPS SOFTWARE DOCUMENTATION ... 3
2.2 GENERAL TECHNICAL REFERENCES ... 3

3.0 TOPS SOFTWARE SUMMARY .. 4

3.1 MEMORY ALLOCATION AND CODE SPECIFICATIONS .. 4
3.2 CODE MODIFICATIONS ... 4

4.0 TOPS SOFTWARE INVENTORY .. 6

4.1 TOPS COMPONENTS .. 6
4.1.1 TOPS Routines ... 6
4.1.2 TOPS Common Blocks ... 6

4.2 TOPS SOFTWARE ORGANIZATION AND IMPLEMENTATION .. 6
4.2.1 Directory Structure .. 6
4.2.2 Concept of Execution ... 7

5.0 TOPS DETAILED DESIGN ... 9

5.1 CONSTRAINTS AND LIMITATIONS ... 9
5.2 LOGIC AND BASIC EQUATIONS FOR OTIS/TOPS ... 9

5.2.1 OTIS Assmimilation Method .. 9
5.2.2 The Representer Method .. 10
5.2.3 TOPS Functionality ... 12
5.2.4 Spectral Dynamics ... 12
5.2.5 Inverse Solution ... 14
5.2.6 Reduced Basis Approach ... 15
5.2.7 The Damping Parameter ... 17
5.2.8 Sampling Strategy for Representers .. 18

6.0 PRIMARY TOPS FORTRAN ROUTINES .. 20

6.1 INITIALIZATION, SETUP, AND GENERAL SUBROUTINES (OTIS/BIN) ... 20
6.1.1 (OTIS/bin/blockgen.f) ... 20
6.1.2 (OTIS/bin/crossdat.f) .. 20
6.1.3 (OTIS/bin/iflag16.f) .. 20
6.1.4 (OTIS/bin/j_days.f) ... 20
6.1.5 (OTIS/bin/lat_lon.f) .. 21
6.1.6 (OTIS/bin/makedat.f) .. 21
6.1.7 (OTIS/bin/mix_ave.f) .. 22
6.1.8 (OTIS/bin/obstime.f) ... 23
6.1.9 (OTIS/bin/openfiles.f) ... 23
6.1.10 (OTIS/bin/otis_check_files.f) .. 23
6.1.11 (OTIS/bin/rtloadtopex.f) ... 23
6.1.12 (OTIS/bin/topexinit.f) ... 23

6.2 PRIMARY TOPS SUBROUTINES (OTIS/SRC) ... 24

iv

6.2.1 Forward Time Step Subroutines .. 24
6.2.1.1 (Otis/src/fwd_ts/interepSAL.f) .. 24

6.2.2 MKB Subroutines ... 24
6.2.2.1 (OTIS/src/mkb/create_A.f) .. 24
6.2.2.2 (OTIS/src/mkb/def_cid.f) ... 24
6.2.2.3 (OTIS/src/mkb/def_form.f) .. 25
6.2.2.4 (OTIS/src/mkb/filter_outliers.f) ... 25
6.2.2.5 (OTIS/src/mkb/height.f) ... 25
6.2.2.6 (OTIS/src/mkb/loadModel.f) ... 25
6.2.2.7 (OTIS/src/mkb/loadModel_uv.f) ... 26
6.2.2.8 (OTIS/src/mkb/lp_tide.f) ... 26
6.2.2.9 (OTIS/src/mkb/make_a.f) .. 26
6.2.2.10 (OTIS/src/mkb/makeB.f) ... 27
6.2.2.11 Astronomical Tide Subroutines (OTIS/src/mkb/nodal.f) ... 27
6.2.2.12 (OTIS/src/mkb/rd_com_line.f) .. 28
6.2.2.13 (OTIS/src/mkb/read_adcp.f) .. 28
6.2.2.14 (OTIS/src/mkb/read_cm.f) ... 28
6.2.2.15 (OTIS/src/mkb/read_rad.f) ... 29
6.2.2.16 (OTIS/src/mkb/read_tg.f) ... 29
6.2.2.17 (OTIS/src/mkb/readTpxo.f) ... 29
6.2.2.18 (OTIS/src/mkb/ts_syn.f) .. 30
6.2.2.19 (OTIS/src/mkb/write_cm.f) .. 30
6.2.2.20 (OTIS/src/mkb/write_rad.f) ... 30
6.2.2.21 (OTIS/src/mkb/write_tg.f) ... 31
6.2.2.22 (OTIS/src/mkb/writeTpxo.f) .. 31

6.2.3 RP_DP Subroutines (OTIS/src/rp_dp) .. 31
6.2.3.1 (OTIS/src/rp_dp/atgf.f) .. 31
6.2.3.2 (OTIS/src/rp_dp/BSI_weights.f) .. 32
6.2.3.3 (OTIS/src/rp_dp/CDG.f) .. 32
6.2.3.4 (OTIS/src/rp_dp/checklim.f) .. 33
6.2.3.5 (Otis/src/rp_dp/constit.f) .. 33
6.2.3.6 (Otis/src/rp_dp/covsc_in.f) .. 33
6.2.3.7 (Otis/src/rp_dp/dcomb.f) .. 34
6.2.3.8 (Otis/src/rp_dp/delta.f) .. 34
6.2.3.9 (Otis/src/rp_dp/diffuse.f) .. 34
6.2.3.10 (Otis/src/rp_dp/ds_subs.f) .. 35
6.2.3.11 (Otis/src/rp_dp/fwd_fac.f) ... 36
6.2.3.12 (Otis/src/rp_dp/glob_case.f) ... 37
6.2.3.13 (Otis/src/rp_dp/glob_case_c.f) ... 37
6.2.3.14 (Otis/src/rp_dp/gsmooth.f) ... 37
6.2.3.15 (Otis/src/rp_dp/h_uv.f) ... 37
6.2.3.16 (Otis/src/rp_dp/inner.f) .. 38
6.2.3.17 (Otis/src/rp_dp/interp_rpx.f) .. 39
6.2.3.18 (Otis/src/rp_dp/ipshift.f) .. 39
6.2.3.19 (Otis/src/rp_dp/lteco.f) ... 39
6.2.3.20 (Otis/src/rp_dp/makeE, makeE_fwd.f) .. 39
6.2.3.21 (Otis/src/rp_dp/mkwts.f) .. 40
6.2.3.22 Model Covariance Smoother Subroutine (Otis/src/rp_dp/modelcov.f) .. 41
6.2.3.23 (Otis/src/rp_dp/out_file_init.f) .. 42
6.2.3.24 Run Parameter Subroutines (Otis/src/rp_dp/param_subs.f) ... 42
6.2.3.25 Posterior Error Calculation Subroutines (Otis/src/rp_dp/pe_subs.f) .. 44
6.2.3.26 (Otis/src/rp_dp/r_sites.f) .. 46
6.2.3.27 (Otis/src/rp_dp/rd_c_alpha.f) ... 46
6.2.3.28 (Otis/src/rp_dp/rd_num.f) .. 47
6.2.3.29 (Otis/src/rp_dp/read_b.f) .. 47
6.2.3.30 (Otis/src/rp_dp/reduce_b.f) .. 47
6.2.3.31 Representer Calculation Program (Otis/src/rp_dp/repx.f) ... 48
6.2.3.32 Representer Calculation Program (Otis/src/rp_dp/rlc.f).. 48
6.2.3.33 Representer Calculation Program (Otis/src/rp_dp/rpx_to_p.f) ... 48

v

6.2.3.34 Representer Calculation Program (Otis/src/rp_dp/SALset.f) .. 49
6.2.3.35 (Otis/src/rp_dp/ Sfac.f) ... 50
6.2.3.36 (Otis/src/rp_dp/varest.f) .. 50
6.2.3.37 (Otis/src/rp_dp/wrt_uvsc.f) ... 50

7.0 FORTRAN COMMON BLOCKS .. 51

7.1 COMMON BLOCKS (OTIS/BIN) .. 51
7.2 COMMON BLOCKS (OTIS/RP_DP) ... 51

8.0 TOPS MAIN ARGUMENT VARIABLES .. 52

8.1 PRIMARY TOPS VARIABLES .. 52

9.0 NOTES .. 56

9.1 ACRONYMS AND ABBREVIATIONS ... 56

vi

TABLE OF FIGURES

FIGURE 5.2.8-1: EXAMPLE PLOT GENERATED FROM THE LAT_LON.F (OTIS) PROGRAM. RED DIAMONDS INDICATE

IHO TIDE GAUGE LOCATIONS, DARK BLUE DIAMONDS ARE TOPEX CROSSOVER LOCATIONS, AND THE SMALL
BLUE SQUARES ARE ALL OTHER REPRESENTER LOCATIONS. .. 19

1

NRL/MR/7320—10--9209 TOPS SDD

1.0 SCOPE

1.1 Identification
Tides are an integral part of the variability of sea-surface height (SSH) and currents in coastal and
shallow-water areas and are, therefore, an important component of coastal ocean modeling. Oregon
State University (OSU) has made available a global database and a number of regional tidal
databases, with grid resolutions of 1/4° for the global database and 1/12° for most of the regional
databases. The databases were created using the OSU Tidal Inversion Software (OTIS), which
assimilates SSH derived from satellite altimetry into a solution of the barotropic, shallow-water
equations for a specified domain (Egbert et al., (1994); Egbert and Erofeeva, (2002)), using four-
dimensional variational analysis (4D-VAR) (Egbert and Ray, 2003). OTIS consists of three
fundamental components: the data, the ocean dynamics, and the assimilation tools to optimally
combine the data and dynamics. The OTIS package includes software for generating grids, prior
model covariances, and boundary conditions. It also has formulations for time stepping the non-
linear shallow water equations and for tidal processing of TOPEX/POSEIDON altimeter data. OTIS
was initially developed in 1994 by Gary Egbert at OSU (Egbert et al., 1994) and has since gone
through several revisions and upgrades (Egbert, 1997; Egbert and Ray, 2001; Egbert and Erofeeva,
2002; Egbert and Ray, 2003; Erofeeva et al., 2003). Despite OTIS’s longevity and relative
robustness, the system is fairly cumbersome and complicated to use. OTIS contains a significant
number of options and parameters that need to be specified by the user, and an understanding of
4D-VAR assimilation is necessary to properly set them.

The goal of developing the Naval Research Laboratory’s Tidal Open-boundary Prediction System
(TOPS) is to use OTIS to improve the tidal solutions generated for the regional modeling areas of
Navy interest. These include using (1) higher grid resolution, (2) better bathymetry, (3) additional
tidal data for assimilation, and (4) inclusion of additional tidal constituents. TOPS has improved
upon the OTIS approach by automating, and thus simplifying, most of the user-required inputs, thus
reducing the amount of effort required to run OTIS. The TOPS will provide tidal boundary
conditions (TBCs) for the relocatable Navy Coastal Ocean Model (RELO NCOM) instead of
extracting and interpolating tides from a larger and coarser database. The RELO NCOM system
automatically runs the modified OTIS package and computes the tides at the same resolution as the
specified NCOM domain, providing more accurate tides within the RELO NCOM domain. Since
the RELO NCOM system will be run operationally in shallow marginal seas and littoral regions,
accurate and high-resolution TBCs will be critical. Running OTIS at higher resolutions for these
types of regions has been demonstrated to significantly improve the estimation of tides (Martin et
al., 2009). Portions of the OTIS code were modified and new code added to automatically compute
optimal values of several parameters that vary with the type of region and resolution used. TOPS
also has improved the grid resolution from the 1/12° resolution typically used by OTIS for regional
areas to the same resolution set for RELO NCOM, which can be up to 1/160° . This serves to better
resolve the spatial variation of the tide in many coastal areas relative to the original OTIS tidal
databases.

Although OTIS relies greatly on data assimilation, the propagation of the tides within the OTIS
tidal model depends strongly on the bathymetry. Therefore, tidal solutions in shallow coastal areas,
where there may not be much data to assimilate, are dependent on accurate bathymetry. Most _______________
Manuscript approved October 15, 2009.

2

NRL/MR/7320—10--9209 TOPS SDD

widely available bathymetry databases do not provide accurate bathymetry for many coastal areas
of the world’s oceans. Therefore TOPS will use the same bathymetry as the RELO NCOM domain,
which will most likely come from the highest-resolution bathymetry database available. The
prinary bathymetry database currently used at NRL is DBDB2, where the “2” refers to the
database’s 2-minute (1/30◦) resolution. For even higher-resolution grids, the National Oceanic
and Atmospheric Administration (NOAA) has gridded bathymetries up to 3-seconds for U.S.
coastal areas, and the World Vector Shoreline (WVS) offers high resolution sounding data. Note
that TOPS will be linked to RELO NCOM, so if RELO NCOM is run on the classified systems at the
Naval Oceanographic Office (NAVOCEANO), then TOPS will have access to the NAVOCEANO
classified bathymetry databases. Bathymetry data are usually referenced to low tide and the NRL
ocean models are referenced to mean SSH, so a correction must be made to the bathymetry before a
simulation is run. This can be done using a tidal database (TDB) to add the depth due to the
amplitude of the local low tide to the bathymetry values.

TOPS has incorporated the use of tidal SSH data in coastal areas from the tide station database of
the International Hydrographic Office (IHO). This database consists of tidal SSH data from over
4500 tide gauge stations scattered about the coastal areas of the world’s oceans. While Relo NCOM
can use TDBs with 10 constituents for the global domain and four to eight for regional seas, the
current version of TOPS will generally use just the four largest tidal constituents, because a large
number of the tide gauges that are assimilated into the system do not have some of the smaller
constituents.

1.2 Document Overview
The purpose of this Software Design Description (SDD) is to describe the model layout and code of
the Tidal Open-boundary Prediction System (TOPS). It includes descriptions of the TOPS physics,
programs, subprograms, and common blocks. This document is accompanied by a Validation Test
Report (VTR) (Smith et al., 2009). Instructions for TOPS use will be incorporated into the User’s
Manual for the Relocatable Navy Coastal Ocean Model (RELO NCOM), to be published in the
near future. However, since the TOPS is mostly automated, instructions in the RELO NCOM
User’s Manual will be minimal.

3

NRL/MR/7320—10--9209 TOPS SDD

2.0 REFERENCED DOCUMENTS

2.1 TOPS Software Documentation
Martin, P.J., Smith, S.R., Posey, P.G., Dawson, G.M., Riedlinger, S.H., (2009). Use Of OTIS To

Generate Improved Tidal Predictions In The EAS., NRL Memo. Rpt., NRL/MR/7320-09-
9176.

Smith, S.R., Posey, P.G., Martin, P.J., Dawson, G.M., Rowley, C.D., Carroll, S.N., (2009).
Validation Test Report for the Tactical Open-boundary Prediction System (TOPS) Version
1.2., NRL Memo. Rpt., NRL/MR/7320—09-xxxx.

2.2 General Technical References
Bennett, A.F., (2002). Inverse Modeling of the Ocean and Atmosphere. Cambridge University

Press, Cambridge.
Egbert, G., Bennett, A., Foreman, M. (1994). TOPEX/Poseidon tides estimated using a global

inverse model. J. of Geophys Res., 99(C12): 24821-24852.
Egbert, G. (1997). Tidal data inversion: interpolation and inference. Prog. Oceanog., 40: 53-80.
Egbert, G., and Ray, R., (2001). Estimates of M2 tidal energy dissipation from

TOPEXPOSEIDON altimeter data. J. Geophys. Res., 106(C10): 22,475-22,502.
Egbert, G.D. and Erofeeva, S. (2002). Efficient inverse modeling of barotropic ocean tides, J. of

Ocean and Atmos. Tech, 19(2): 183–204.
Egbert, G., and Ray, R., (2003). Semi-diurnal and diurnal tidal dissipation from

TOPEXPOSEIDON altimetry. Geo. Res. Let., 30(17).
Erofeeva, S., Egbert, G., and Kosro, P., (2003). Tidal currents on the central Oregon shelf:

Models, data and assimilation. J. Geophy. Res., 108(C5): 3148.
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (1986). Numerical Recipes.

Cambridge, Mass: Cambridge Univ. Press.
Zaron, E.D. and Egbert, G.D. (2006). Estimating Open-Ocean Barotropic Tidal Dissipation: The

Hawaiian Ridge. J. of Phys. Oc., 36: 1019-1035.

4

NRL/MR/7320—10--9209 TOPS SDD

3.0 TOPS SOFTWARE SUMMARY

3.1 Memory Allocation and Code Specifications
OTIS was originally written in Fortran 77, Fortran 90, and Matlab and runs in a UNIX environment.
The MatLab programs are not currently used in TOPS. TOPS is currently running on single-processor,
64-Bit Opterons with 16GB of memory. However, the software can be configured and compiled
for other platforms. A standard benchmark OTIS run, such as in the East Asian Seas (EAS), uses a
domain extending from -17.5 to 53◦N and 97.5 to 159◦E, with 700 x 507 grid points, and solves for
four tidal constituents. This run takes approximately 26 hours to run using a LINUX workstation (a
dual-core, Advanced Micro Devices (AMD), 2.4 gHz Opteron with 16 GB of RAM). In this
document, the references to OTIS and TOPS are virtually interchangeable, as TOPS is essentially a
simplified, automated version of the original OTIS software.

3.2 Code Modifications
Many code modifications have been made from the original OTIS programs. The following is a
brief summary:

• Updated the TOPEX altimetry database to encompass the newly processed NRL

database that includes the entire TOPEX database and about six years of data from
the follow-on Jason-1 satellite. Jason-1 has the same orbit as TOPEX, so their data
are in alignment and can easily be appended. This brings the time series of data to
16 years, thus improving the accuracy of extracting the tidal amplitudes and phases
through harmonic analysis.

• Updated the default global bathymetry database to the NRL standard DBDB2.
• Included the assimilation of tide gauge data from the global IHO database. A

module was created to automatically search this database and extract and use the
appropriate tide gauge data that fall within the specified domain and pass certain
quality control checks.

• All original Matlab GUIs were replaced with automated Fortran code. These
include:

o GridEdit: This Matlab GUI allowed for manual specification of domain
dimensions and resolution, as well as selection of open boundary points and
conditions. Unwanted water grid points (such as land-locked water mases
and small bays) could also be manually masked out. GridEdit’s functions
were automated into a subroutine called otis_setup.x, which gathers all
necessary grid information from NCOM, selects the appropriate open
boundary points, and masks out bodies of water that are too negligible to be
resolved by the model.

o RepEdit: This feature allowed manual selection of data locations and
representer locations (See Section 5.2.2 for an explanation of representers.) It
has been replaced with lat_lon.f, which extracts all available altimetry and
IHO data from their global database and determines representer locations
using a sophisticated algorithm to maximize the influence that the data will
have in the assimilation. The lat_lon.f algorithm determines the optimal

5

NRL/MR/7320—10--9209 TOPS SDD

locations of representers to be: 1) all IHO station locations, 2) all TOPEX
cross-over points where the ascending and descending altimeter passes meet,
and 3) TOPEX along-track points in shallow water.

o Invert: This Matlab GUI allowed users to examine performance curves
associated with the assimilation, manipulate two critical assimilation
parameters, and rerun the assimilation. The process was cumbersome,
inefficient, and required numerous iterations before obtaining an appropriate
solution. The first assimilation parameter to be automated was the truncation
parameter. The truncation parameter first ranks representer functions using
eigenvalue decomposition according to their level of influence and then
specifies how many of the top influencial representers should be retained in
the assimilation. The rest are discarded. A primary limiting factor of how
large the truncation parameter can be is based on available RAM. Code was
written to assess the amount of available RAM and uses this value to set the
maximum size of the truncation parameter. The second assimilation
parameter that was automated is the damping parameter, which controls the
relative fit between the dynamics and data within the cost function. It was
automated using the generalized cross-validation function of Zaron and
Egbert (2006). This parameter is discussed in Section 5.2.7.

6

NRL/MR/7320—10--9209 TOPS SDD

4.0 TOPS SOFTWARE INVENTORY

4.1 TOPS Components

4.1.1 TOPS Routines
atgf.f, blockgen.f, BSI_weights.f, CDG.f, checklim.f, constit.f, covsc_in.f, create_A.f, crossdat.f,
dcomb.f, def_cid.f, def_form.f, delta.f, diffuse.f, ds_subs.f, filter_outliers.f, fwd_fac.f, glob_case.f,
glob_case_c.f, gsmooth.f, h_uv.f, height.f, iflag16.f, inner.f, interp_rpx.f, interpSAL.f, ipshft.f,
j_days.f, lat_lon.f, loadModel.f, loadModel_uv.f, lp_tide.f, lteco.f, make_a.f, makeB.f, makedat.f,
makeE.f, makeE_fwd.f, mix_ave.f, mkwts.f, modelcov.f, nodal.f, obstime.f, openfiles.f,
otis_comp_iho2.f, otis_ setup.f, out_file_init.f, param_subs.f, pe_subs.f, r_sites.f, rd_c_alpha.f,
rd_com_line.f, rd_num.f, read_adcp.f, read_b.f, read_cm.f, read_rad.f, read_tg.f, readTpxo.f,
reduce_b.f, repx.f, rlc.f, rpx_to_p.f, rtloadtopex.f, SALset.f, Sfac.f, topexinit.f, varest.f, write_cm.f,
write_rad.f, write_tg.f, writeTpxo.f, wrt_uvsc.f.

4.1.2 TOPS Common Blocks
common/cflag, common/cfnamersr, common/cmission, common/constrsr8, common/constsi2,
common/constsi4, common/cunits, common/datablk, common/rmultblk

4.2 TOPS Software Organization and Implementation

4.2.1 Directory Structure
The model code directory contains all of the files needed to generate the TOPS executable.

OTIS/

bin/- Directory containing several of the TOPS executable(s) that must be compiled
prior to running the code, initialization routines and the subroutines used to create
these executables. Executables cannot be made for all source code before running.

crd- Main runscript
DB/- Databases, including the global OTIS solution (for OBCs), a global tidal forcing

correction for ocean self-attraction/loading (the forward tide model), and a
correction for radial deformation load tides for (for altimetry data).
topex/ - Global TOPEX/Jason-1 database used for assimilation.

do_not_touch/- A makefile and initial header and parameter files. Every time the
runscript (crd) is executed, a run folder is created in the 'local' directory
and the contents of this 'do_not_touch' directory are copied into the run
folder and used in the runscript.

local/-
Experiment_Name/ - Created by the runscript. Its name is specified with the calling

of the runscript (‘crd[experiment_name][number of
representers]’).

dat/ - temporary data files created throughout the operation of
the assimilation experiment.

7

NRL/MR/7320—10--9209 TOPS SDD

exe/- Executables compiled explicitly for the designated
experiment, the primary parameter file, and the log files
generated by the executables.

include/ - Header files automatically copied to this directory
from the ‘do not touch’ directory. They are
periodically updated through the execution of the
experiment.

out/ - Contains tidal solutions from the initial forward model
and the final assimilation solution.

prm/ - Parameter files both copied from the ‘do not touch’
directory and created through the execution of the
experiment.

repx/ - Data files containing the representer solutions.
src/- TOPS source code.

fwd_ts/ - Code that handles the operation of the forward tide model.
mkb/ - Code that handles and prepares the data to be assimilated.
rp_dp/ - Code that primarily handles the assimilation.

4.2.2 Concept of Execution
In the top OTIS folder there is a UNIX script crd that when called goes through and executes all of
the various pieces of the software. This script is automatically called within the setup of RELO
NCOM. All of the input parameters, such as grid information, bathymetry, etc., are directly pulled
from RELO NCOM.

The crd runstream script requires two inputs when called (crd[experiment_name][number of
representers]) and is outlined below:

1) Create experiment directory (with associated subdirectories) in ‘local’ and copy the

necessary files from ‘do_not_touch’ into this directory hierarchy.
2) run /bin/otis setup.1x This is the set-up program that defines the domain to be

run, sets up the grid and the bathymetry, defines the tidal constituents to be used, defines
the IHO data to be used for assimilation, and sets up the BCs for running the forward
model.

3) run lat_lon. This sets up altimetry representer and data lists.

4) run make all. This step makes the OTIS programs for the local domain, which are hard-
wired for the grid dimensions and tidal constituents selected (../exe/). Therefore, this make
needs to be redone every time a new region is set up.

5) run fwd fac to get a prior solution by running forward tidal model.

6) run diffuse. It computes the error covariance scales.

8

NRL/MR/7320—10--9209 TOPS SDD

7) run varest. This step makes the OTIS covariance file (../prm/covsc).

8) run repx to compute the representers.

9) run makedat to make the altimetry data set.

10) run makeB to perform a harmonic analysis on the TOPEX data and create the “reduced” altimetry
data set for assimilation (../dat/B.dat).

11) run makeB –a –D../prm/iho data dat –t to append the B.dat data file with

the IHO data set.

12) run rpx to p and rpx to p -r to make the spatial representer matrices.

13) run reduce_b to calculate the representer coefficients and other data files needed for the
assimilation.

14) reduce_b -b –q is rerun with a different option in order to compute the optimal damping

parameter.

15) run rlc, which executes the tidal data assimilation model and creates optimal solutions.

16) run /bin/otis_comp_iho2.1x. This inspects the OTIS output and computes mean

and RMS errors with respect to the tidal data at the IHO stations.

9

NRL/MR/7320—10--9209 TOPS SDD

5.0 TOPS DETAILED DESIGN
All routines are written in FORTRAN 90.

The following paragraphs give a detailed description of the purpose, variables, logic, and
constraints for the TOPS. Descriptions of the common blocks are found in Section 7.0. Argument
definitions for some of the most common subroutine variables are found in Section 8.0.

5.1 Constraints and Limitations
TOPS is a fully automated system, thus minimizing limations to its functionality. Code exists to
automatically adjust many of the assimilation parameters to ensure that the system completes
operation successfully and in a timely manner, regardless of the domain size. However, there are a
few limitations of the model. Two issues that may impact the accuracy of this system are:

1) The size of the domain. As the size of the domain increases, the grid resolution decreases and

the estuaries, bays, and near-shore locations where the majority of tide gauges are located are not
as well defined.

2) The accuracy of the bathymetry has a significant impact on the accuracy of this system (this has
been verified through experiments). Currently DBDB2 bathymetry is the default, but if a higher
resolution data set is available it should be used.

5.2 Logic and Basic Equations for OTIS/TOPS
A report by Martin et al., (2009) gives an overview of the physics and design of OTIS and TOPS.
The code is currently being updated to be more automated and require much less user interaction.

5.2.1 OTIS Assmimilation Method
OTIS has the potential for assimilating data from a wide variety of sources, including satellite
altimetry, tide gauges, current meters, Coastal Ocean Dynamics Application Radar (CODAR), and
Acoustic Doppler Current Profilers (ADCPs). In this TOPS version, however, only SSH data from
TOPEX/Poseidon and IHO tide gauge databases are used. This is primarily because these two
databases are global, therefore simplifying the overall use of OTIS within the relocatable NCOM
system.

Because domains are almost always under-sampled, the OTIS assimilation method includes ocean
dynamics to disseminate information from the data locations to the entire domain. Thus, the
assimilation method establishes the optimal tidal solution for the full domain that complies with the
tidal dynamics and simultaneously gives the best overall fit to the assimilated observations. To describe
the dynamics of the tides, OTIS employs the linearized shallow water equations:

10

NRL/MR/7320—10--9209 TOPS SDD

() f , (1)

() f , (2)

, , (

SAL
U

SAL
V

U fV gH U
t x

V fU gH V
t y

U V
x yt

3)

ζ ζ κ

ζ ζ κ

ζ

∂ −∂
− + + =

∂ ∂

∂ −∂
− + + =

∂ ∂

∂ ∂∂ ⎛ ⎞+= −⎜ ⎟∂ ∂∂ ⎝ ⎠

where U and V are the two components of the barotropic transport (i.e., the depth-averaged velocity
times the depth H), f is the Coriolis parameter, t is the time, x and y are the distance in the two
horizontal coordinate directions, g is the acceleration of gravity, ζ is the SSH, and ζSAL represents
the tidal loading and self-attraction. The last term on the left-hand side (LHS) of the first two
equations is the linearized bottom drag (κ is a dissipation coefficient) and the terms on the right-
hand side (RHS) represent the earth’s body tide.

TOPS can also use nonlinear dynamics, which include advection and nonlinear
bottom drag. Comparisons with the use of the linearized equations have shown that the inclusion
of nonlinear physics significantly increases the computation cost and the resulting accuracy is
only slightly, if at all, better. The linearized OTIS dynamics have a simple transformation from
the time domain into the frequency domain using Fourier Transforms. With modest
manipulation, the equations above can be expressed with the following time-independent
equations:

1 1

1 1

f f (4

U = - f , (5)

U

U

gH i

gH

ζ ω ζ ζ

ζ

− −

− −

∇ ⋅ Ω ∇ − = ∇ ⋅ Ω −

Ω ∇ + Ω

)

U

where U= .
i f

and
f i V

ω κ
ω κ

+ −⎡ ⎤
Ω = ⎢ ⎥+⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

 When OTIS solves the forward shallow water

equations, equation 4 is used in conjunction with open boundary conditions from an OTIS TDB
and bathymetry from DBDB2 to compute the phase and amplitude of SSH (ζ) at each grid
point. With SSH known, the momentum equation (Eq. 5) can then be used to solve for the phase
and amplitude of both transport components (U and V) at each grid point.

5.2.2 The Representer Method
OTIS uses a modified or reduced basis representer approach to solve variational assimilation
issues, as in Egbert et al., (1994). That is, representers are calculated for a subset of data
locations and a solution to the variational problem is sought within the space of linear
combinations of calculated representers. With this approach it is quite feasible to fit all available
altimetry data in a modest sized area (e.g., 20 degrees by 20 degrees, with data at several
thousand locations) using a few hundred representers per constituent. In this version,

11

NRL/MR/7320—10--9209 TOPS SDD

representers are calculated by solving the linearized frequency domain shallow water equations
(SWE) after factoring the matrix of coefficients for the elevation wave equation (Egbert and
Erofeeva, 2002). This approach allows for a decrease in computational time by a factor of 100 or
more. Combined with the reduced basis representer approach, this allows for the solution of
moderate size problems on a high-end workstation.

A variational assimilation problem requires finding a solution (u) that minimizes a cost function
([]J u).

[] () () () ()1 1
0 0L ,T T

e fJ − −= − ∑ − + − ∑ −u u d Lu d Su f Su f (6)

7)

where

1

0

1

: Measurement functional that maps variables from data space to state space
: Data

: Measurement error covariance
: Model
: Forcing to model

 Model error covariance

e

f

−

−

∑

∑

L
d

S
f

The solution that minimizes this cost function also best satisfies all data (1st term) and all
dynamics (2nd term) simultaneously.

OTIS can alternate between the time domain and the frequency domain. Most computations,
including the representers, are performed in the frequency domain. In describing the time
domain, assume that there is a measurement of SSH at location (X,Y) and at time T. This
measurement must be assimilated into an ocean model whose domain and time period
encompass this measurement (X0 <= X <= Xm, Y0<=Y<=Yn, T0<=T<=Tt). The first step is to
take the measurement’s location (X,Y,T) (the actual measurement isn’t used yet), and insert an
impulse of SSH () there. The impulse maps the distance from data space to the discretized
model space. If the measurement’s location is simply moved to the nearest grid point, then the
measurement functional can just be a 1 (OTIS does this). The influence of this impulse is then
propagated backwards in space and time via the transpose of the model dynamics

SSHL

, (T
k kLλ =S

which is referred to as the adjoint. In the above equation, and S kλ represent the model and
adjoint variables, respectively. As the information from this impulse propagates backwards to the
initial condition of the model, the impulse’s influence spreads throughout the domain and into
other state variables via the dynamics of the model. At the initial condition, all influence
information is convolved with the model’s error covariance (f∑). Finally, the convolved
influence is propagated forward through the original model’s dynamics from the initial

12

NRL/MR/7320—10--9209 TOPS SDD

8)

conditions to the end of the model’s time period, creating a representer () for this potential
measurement:

kr

. (k f kλ= ∑Sr
This representer is a large array providing the convolved influence that this single measurement
will have on the entire domain (x,y,t) for all state variables (SSH, U, V, …). This process is
repeated and representers are calculated for all potential measurements to be assimilated. In its
most straightforward application, the representer method takes these K representer functions (
for , where K is the number of measurements), a first-guess of the model solution
(), the K measurement values (d), along with the measurement covariances (

kr
1k = → K

0u e∑) and
calculates the best estimated solution:

0
1

ˆ , (
K

k k
k

β
=

= + ∑u u r 9)

where kβ represents the representer coefficients and are calculated as:

() ()1 . (10)eβ −= + ∑ − 0R d Lu
R is a symmetric representer matrix that contains values from all representers estimated
at all measurement locations (

K K×
jk j kR L= r). e∑ is the measurement error covariance. A few

different techniques can be used to accelerate the representer method. One is the Reduced Basis
Approach (used by OTIS), in which representers are calculated for only a sub-sampled portion of
data (this will be discussed later). If representers are left out, the solution is only an
approximation and not a full solution. Research has shown, though, that the savings in
computational cost far outweighs the loss of accuracy. This is primarily because the saved
computational cost is put towards a finer resolution grid and/or the assimilation of more data.

5.2.3 TOPS Functionality
TOPS has two main components: data and dynamics. The data consist of both IHO tide gauge
data and TOPEX altimetry. While the tide gauge data have been decomposed into harmonic
tidal constituents already, the TOPEX data have not. For each data location, the time series of
the TOPEX data is long enough that it can be separated into all major tidal constituents using
least squares fitting. After performing this step and appending the IHO data, a data file (B.dat)
is generated. It lists the latitude, longitude, SSH amplitude, SSH phase, and associated estimated
variances for each specified tidal constituent at each distinct data location. For setup at
NAVOCEANO, all available TOPEX and IHO data may be used. OTIS uses the Reduced Basis
Approach, so representers do not need to be calculated for all of the data. Representers will be
computed for all IHO stations and a portion of the TOPEX data with a new sampling strategy
described in Section 5.2.8 and the accompanying figure.

5.2.4 Spectral Dynamics
OTIS uses linear shallow water dynamics (OTIS has an option to use nonlinear dynamics, which
will not be discussed here or used at NAVOCEANO). See Equations 1-3. With these dynamics

13

NRL/MR/7320—10--9209 TOPS SDD

being linear, they can be transformed from the time domain into the frequency domain using
Fourier Transforms.

0 (i t
U

T

U fV gH U e dt
t x

ωζ κ −∂ ∂⎡ ⎤− + + − =⎢ ⎥∂ ∂⎣ ⎦∫ f 11)

0 (12)i t
V

T

V fU gH V e dt
t y

ωζ κ −⎡ ⎤∂ ∂
+ + + − =⎢ ⎥∂ ∂⎣ ⎦

∫ f

0. (13)i t

T

U V e dt
x y t

ω
ζ

ζ −⎡ ⎤⎛ ⎞∂ ∂ ∂
+ + − =⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

∫ f

In the above equations, SALζ is grouped in with the given tidal forcing, and the integrations span
the time period of the model. By using integration, the above equations become:

0
0 (14)

Ti t i t
U

T

Ue i U fV gH U e dt
x

ω ωζω κ− −∂⎡ ⎤+ − + + − =⎢ ⎥∂⎣ ⎦∫ f

0
0 (

Ti t i t
V

T

Ve i V fU gH V e dt
y

ω ωζω κ− −⎡ ⎤∂
+ + + + − =⎢ ⎥∂⎣ ⎦
∫ f 15)

0
0. (16)

Ti t i t

T

U Ve i e dt
x y

ω ω
ζζ ωζ− −⎡ ⎤⎛ ⎞∂ ∂

+ + + − =⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦
∫ f

The first terms of the above equations are evaluated at the boundaries of the time domain, and
the state variables are cyclic for each tidal frequency. Assuming that the time domain is such that
the values are the same at the initial and final conditions, these terms will be zero. With the first
terms removed everything in the brackets must equal zero. This removes all dependency to the
model’s time period.

(17)Ui U fV gH U
x
ζω κ∂

− + + =
∂

f

(18)Vi V fU gH V
y
ζω κ∂

+ + + =
∂

f

. (19)U V i
x y ςωζ

⎛ ⎞∂ ∂
+ + =⎜ ⎟∂ ∂⎝ ⎠

f

The above equations can be grouped together to form the following:

(20)gH ζΩ + ∇ = UU f
(21)i ζωζ•∇ + =U f

where
i f

f i
ω κ

ω κ
+ −⎡ ⎤

Ω = ⎢ ⎥+⎣ ⎦
 and .

U
V

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
U

14

NRL/MR/7320—10--9209 TOPS SDD

The state vector for the new frequency domain model includes the amplitude and phase of U,V
(volume transports) and ζ (SSH) for each constituent frequency (ω) at each grid point. TOPS
combines the frequency domain momentum and continuity equations into a single equation for
SSH by first solving for in Eq. (20): U

1 1 (22)gH ζ− −= − Ω ∇ + Ω UU f
and substituting into Eq. (21),

1 1 . (gH i ζζ ωζ− −
• •∇ Ω ∇ − = ∇ Ω −Uf f 23)

Therefore, when solving the forward shallow water equations, OTIS uses this combined equation
(Eq. (23)) to calculate the phase and amplitude of SSH. It then backs out the volume transports
from the momentum equations (Eq. (22)).

5.2.5 Inverse Solution
By defining the following discrete operators: [G gH≡ ∇], [D •≡ ∇], [1C −≡ Ω] and
[A DCG iω≡ −], the solutions to Eqs. (22) & (23) can be expressed as follows:

1 1

1 1

A A DC
(24)

CGA C CGA DC
ζζ − −

− −

⎡ ⎤− ⎡ ⎤⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎣ ⎦ U

f
fU

and the adjoint of equation (24) can be expressed as:
1* 1* * *

* * 1* * * * 1 * *

A A G C
, (

C D A C C D A G C
L
L

ζ ζλ
λ

− −

− −

⎡ ⎤⎡ ⎤ − ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦U U

25)

where the superscript asterisk represents the conjugate transpose. The first matrix on the RHS of
equation (24) is the model inverse (1−S) in Eq. (3); and similarly, the first matrix on the RHS of
equation (25) is the model inverse transpose (T−S) in Eq. (7). The most computationally
expensive part of this model is the factorization of the coefficient matrix (A). Since (A) is the
same for all representers, OTIS accelerates the calculation of representers by formulating and
storing and in RAM. 1A− 1*A−

By combining Eqs. (8), (24), and (25), the representers for both SSH and volume transport can
be solved with the following equation:

1 1
1

1 1

A A DC
, (26)

CGA C CGA DC
r
r
ζ δ δ

− −
−

− −

⎡ ⎤⎡ ⎤ −
= = ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦U

S f f

where
1* 1* * *

* * 1* * * * 1 * *

0 0 A A G C
. (2

0 C D A C C D A G Cf k
f

L
L

ζδ λ
− −

− −

⎡ ⎤ ⎡ ⎤− ⎡
= ∑ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∑ − ⎣ ⎦⎣ ⎦⎣ ⎦ U

f 7)
⎤

The first term on the RHS of the above equation is the model error covariance. Plainly, there is
no error to the continuity equation (OTIS assumes continuity to be exact) and no cross-
covariances. For Navy purposes, only SSH measurements will be assimilated and only SSH
representers (rζ) will be computed. Therefore the measurement functionals for volume transport
will be zero (). With this simplification, Eq. (27) will reduce to: 0=LU

15

NRL/MR/7320—10--9209 TOPS SDD

1* 1* * *

* * 1* * * * 1 * *

* * 1*

0 0 A A G C
(28)

0 0C D A C C D A G C

0
,

C D A

f

f

Lζ

ζ

δ
− −

− −

−

⎡ ⎤ ⎡ ⎤− ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∑ − ⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤
= ⎢ ⎥∑ Δ⎣ ⎦

f

and the representers for SSH (Eq. (26)) can be solved as follows:
1 1

* * 1*

1 * * 1*

0
A A DC . (29)

C D A

A DC C D A
f

f

r
L

L

ζ
ζ

ζ

− −
−

− −

⎡ ⎤
⎡ ⎤= − ⎢ ⎥⎣ ⎦ ∑⎣ ⎦

= ∑

When all representers are calculated (Eq. (29)) for all SSH measurements, OTIS then assembles
the Representer Matrix (jk j kR L= r) and solves for the representer coefficients (kβ) using Eq.
(10). Rather than solving the inverse solution by summing all of the representers, as in (Eq. (9)),
OTIS instead accumulates all of the measurement functionals into a single array, weighted by
their corresponding representer coefficients (k

k
Lβ k∑), and uses this to force a final representer

calculation for SSH and volume transport. By replacing Lζ with k k
k

Lβ∑ in Eq. (28) and

inserting this result into Eq. (26), the results will not be representers but rather the correction that
will bring the initial solution () into agreement with the model dynamics and data (this
correction replaces the last term in Eq. (9)):

0u

1 1

* * 1*1 1

1 * * 1*

* * 1*

0
A A DC

(30)
C D ACGA C CGA DC

A DC C D A
.

C C D A CG

f k k
k

f k k
k

f k k
k

L

L

L

δζ
βδ

β

β δζ

− −

−− −

− −

−

⎡ ⎤
⎡ ⎤−⎡ ⎤ ⎢ ⎥= ⎛ ⎞⎢ ⎥⎢ ⎥ ⎢ ⎥∑−⎣ ⎦ ⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

∑⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥=

⎢ ⎥⎛ ⎞∑ −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑

∑

∑

U

Finally, the inverse solution is calculated using Eq. (9):

0

0

ˆ
. (

ˆ
ζ δζζ

δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦ U UU
31)

5.2.6 Reduced Basis Approach
The inverse method described in the previous section assumes that representers are calculated for
all measurements. However, since TOPEX measurements are relatively dense and there can
easily be tens of thousands of measurements for a reasonably sized domain, it is prudent to find
an approximation that will reduce the number of representer calculations. OTIS uses the
Reduced Basis Approach to accomplish this. This approach is underlined by the assumption that
representers are going to be well correlated at nearby measurement locations. When all

16

NRL/MR/7320—10--9209 TOPS SDD

representers are calculated for all measurements, then Eq. (9) provides an exact inverse solution.
However, if there are K measurements and they need to be assimilated using a subset of N
representers, then Eq. (9) only produces an approximate inverse solution (): u

0
1

. (32)
N

k k
k

β
=

= + ∑u u r

To improve the approximation of this solution, an alternative method must be used to calculate
the representer coefficient (β) (instead of using Eq. (10)) that takes into account all of the data.
This alternative method begins with reformulating the cost function (Eq. (6)) to be in terms of
β .

As described in the previous section, the approach begins by calculating the N representers using
Eq. (29) and formulating the () representer matrix (N N× jk j kR L= r

P

). The representer matrix is
such that each column of this matrix consists of each representer evaluated at all representer
locations. For the Reduced Basis Approach, an additional matrix () is required; is a
() matrix with each column consisting of each of the N representers evaluated at all data
locations. Note that the measurement functionals used to compile R are only those
measurement functionals that apply to the representers, whereas the used to compile P
includes all measurement functionals. The multiplication of this new matrix P and

jk j kP L= r
K N×

jL

jL
β can be

defined as

1
, (

N

k k
k

β β
=

= ∑P Lr 33)

where L is a matrix containing all K measurement functionals (each of the K rows of L is the
measurement functional corresponding to each of the K data locations). By multiplying Eq. (32)
by L and substituting in Eq. (33), the following definition can be made:

0 . (34)β= +Lu Lu P
One more definition is needed in order to write the cost function in terms of β :

[] () ()1
0 0 . (T T

Model fJ β β−= − ∑ − =u Su f Su f R 35)
This definition comes from Bennett, 2002. If Eqs. (34) and (35) are inserted into the original
cost function (Eq. (6)), then the cost function can be expressed in terms of β :

[] () ()1
0 0 . (T T

eJ β β β β β−= + − ∑ + − +Lu P d Lu P d R 36)
In order to find the β that minimizes this cost function, its first variation needs to be
determined.

[] [] ()() ()()
() ()
() ()

1
0 0

1
0 0

(37)

.

T
e

T
e

T T

J Jβ δβ β β δβ β δβ

β β

β δβ β δβ β β

−

−

+ − = + + − ∑ + + −

− + − ∑ + −

+ + + −

Lu P d Lu P d

Lu P d Lu P d

R R

With a little reordering, the following is produced:

17

NRL/MR/7320—10--9209 TOPS SDD

[] [] () ()
()

()

1
0

1
0

(38)

.

T
e

T T T T T T T
e

T T T

J Jβ δβ β δβ β

β δβ δβ

δβ β β δβ δβ

−

−

+ − = ∑ + −

+ + − + ∑

+ + +

P Lu P d

u L P d P P

R R

There are two terms in the above equation that contain a square of the deviation of β
(1T T

eδβ δ−∑P P β and Tδβ δβR). These terms are relatively small and can be removed. By
removing these terms and rearranging, the following is produced:

[] [] () () () ()1 1
0 0 (39)

.

TT T
e e

TT T

J Jβ δβ β δβ β δβ β

δβ β δβ β

− −⎡ ⎤+ − = ∑ + − + ∑ + −⎣ ⎦

⎡ ⎤+ + ⎣ ⎦

P Lu P d P Lu P d

R R

Clearly the four terms in the above equation are symmetric and therefore the transpose can be
removed. The above equation reduces to the following:

[] [] ()()1
02 0. (40)T T

eJ Jβ δβ β δβ β β−+ − = ∑ + − + =P Lu P d R
The cost function minimum is reached when its first variation is zero. As this is approached,
then δβ must also approach zero. With this being the case the quantity in the parenthesis in Eq.
(40) must also equal zero:

()1
0 0. (41)T

e β β−∑ + − + =P Lu P d R
Solving for β produces

()() 11 1
0 . (T T

e eβ
−− −= ∑ − ∑ +P d Lu P P R 42)

The updated list of representer coefficients takes into account all of the data. This equation,
however, is very costly to compute. P and R are full matrices and can be quite large, so taking
their inverse would be impractical.

OTIS uses a more efficient calculation to determine β :

() ()12 , (T
oβ ν

−
= + −EQS S I W d Lu 43)

where W, Q, and S are the singular value decomposition of
1 (44)T

e
−∑ PE = WSQ

and
1 2. (−=E R 45)

In order to calculate E, R is decomposed into , where V are orthonormal
eigenvectors and is a diagonal matrix composed of eigenvalues. Therefore, it is clear that E
can be calculated as

TR = VΨV
Ψ

1 2 1 2− −=E = R VΨ .

5.2.7 The Damping Parameter
In equation (43), ν is the damping parameter that controls the relative fit between the dynamics
and data within the cost function. If the data and dynamic error covariances are exact, then the
value of this coefficient should be ‘1’. However, the error covariances are not exact and ν is

18

NRL/MR/7320—10--9209 TOPS SDD

scaled to account for this error difference. OTIS was initially set up with a GUI to manually
adjust ν via trial and error. Operationally, this method is unsuitable. Therefore, code was added
in TOPS to automatically determine the optimal value of ν by computing the generalized cross-
validation function for an array of ν values (Zaron and Egbert, 2006). The calculated
generalized cross-validation function can be defined as a prediction error and will be an inverted
bell-curve function of the damping parameter. From this curve the value of ν that produces the
minimum prediction error is determined and used in equation (43).

5.2.8 Sampling Strategy for Representers
Figure 5.2.8-1 displays an example of how the improved lat_lon.f (OTIS) program would
determine the representer locations for the Yellow Sea. This plot was created using 250
representers. The calculation of representers is the most time consuming part of OTIS.
Therefore, the selection of the total number of representers is important and should be dependent
on computer speed and grid size. The sampling strategy automatically uses all IHO tide gauge
locations from the data file IHO_data.dat and sets them as representer locations in the file
lat_lon.rep. These are the red diamonds in Figure 5.2.8-1. The program then checks that the
current number of representers is less than the maximum value. If the maximum value (250) is
reached or exceeded, the program will stop, and TOPS will only assimilate IHO data. Since
there are about 80 IHO stations in the Yellow Sea, the program will continue. The lat_lon.f then
appends all TOPEX crossover locations (the seven blue diamonds) to the lat_lon.rep file. After
IHO and TOPEX crossovers are selected, the remaining representers (about 160 blue dots in this
plot) are distributed along the TOPEX tracks within the domain (minus the crossover points)
based upon the inverse of bathymetry. Hence, shallower regions will have a finer resolution of
representers, because correlation length scales of data and dynamics typically decrease as the
water depth decreases. For example, if the TOPS user wishes to add additional representers to
Fig. 5.2.8-1. If a representer is added in deep water at a TOPEX data point next to an existing
representer, then the amount of information added to the system will be minimal. This is
because the two nearby locations will most likely be well correlated. The correlation between
two nearby locations will be smaller in shallower waters, therefore increasing the amount of
added information to the system. This particular method of distributing representers was proven
to be beneficial in Egbert and Erofeeva (2002).

19

NRL/MR/7320—10--9209 TOPS SDD

Figure 5.2.8-1: Example plot generated from the lat_lon.f (OTIS) program. Red diamonds
indicate IHO tide gauge locations, dark blue diamonds are TOPEX crossover locations, and the
small blue squares are all other representer locations.

20

NRL/MR/7320—10--9209 TOPS SDD

6.0 Primary TOPS Fortran Routines

6.1 Initialization, Setup, and General Subroutines (OTIS/bin)

6.1.1 (OTIS/bin/blockgen.f)
Subroutine Description

blockgen BLOCKGEN initializes units and general constants used for all missions.
Calling Sequence: n/a
Data Declaration: n/a
I/O: n/a
Common Blocks: common/cunits, /constsr8, /constsi4, /constsi2

6.1.2 (OTIS/bin/crossdat.f)
Subroutine Description

crossdat Subroutine CROSSDAT makes time series records in a file opened on nunit for one
cross-over point.
Calling Sequence: crossdat(nunit,irec,lat1,lon1,lat2,lon2,t,h, maxlen, iflag, date1,

date2, ndates)
Data Declaration: Integer nunit, irec, icycle, iflag, ndates, i,k, maxlen,
 Real lat1, lon1, lat2, lon2, t, h, date1, date2
I/O: stdout, write nunit
Common Blocks: n/a

6.1.3 (OTIS/bin/iflag16.f)

Subroutine Description
iflag16 This subroutine decomposes two-byte integer flag words into logicals.

Calling Sequence: iflag16(iflag,lbit16)
Data Declaration: Integer iflag
 Logical lbit16
I/O: n/a
Common Blocks: n/a

6.1.4 (OTIS/bin/j_days.f)

Subroutine Description
caldat This routine converts Julian day to month, day, and year. From Press et al., 1986.

Calling Sequence: caldat (Julian, mm, id, iyyy)
Data Declaration: Integer Julian, mm, id, iyyy
I/O: n/a
Common Blocks: n/a

date_mjd DATE_MJD converts date to MJD.
Calling Sequence: date_mjd(mm, id, iyyy, mjd)
Data Declaration: Integer mm, id, iyyy,mjd

21

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
I/O: n/a
Common Blocks: n/a

j_days Converts MJD to Julian day. JD= MJD +2400001.
Calling Sequence: n/a
Data Declaration: n/a
I/O: read, write stdout
Common Blocks: n/a

6.1.5 (OTIS/bin/lat_lon.f)

Subroutine Description
lat_lon The program reads data from the pathfinder database in ../topex for some chosen

rectangular area (lat1,lon1)-(lat2,lon2). The limits have to be entered from ../prm/grid
(standard grid file). The output is an ASCII list of lats, lons, and quality flags.
Calling Sequence: n/a
Data Declaration: n/a
I/O: stdout; open, read, close units 1, 2, 4, 8, 7; write 2, 4, 7; read indir, inflag
Common Blocks: common/cflag, /cmission, /constsi2, /cunits

rd_com_line Calling Sequence: rd_com_line(grid,fname,rcro,ralt,n1,n2,n3, dcro,dalt,m1,m2,m3,
 rep_max,qmode)
Data Declaration: Logical rcro, ralt,dcro, dalt,rcop,qmode
 Character grid, fname,arg
 Integer n1,n2,n3,m1,m2,m3,k,i,rep_max
I/O: stdout; read arg
Common Blocks: n/a

usage Calling Sequence: usage(qmode)
Data Declaration: Logical qmode
I/O: read, write stdout
Common Blocks: n/a

6.1.6 (OTIS/bin/makedat.f)

Subroutine Description
getarg Subroutine GETARG is a special fix for the HP machine. It does not invoke

HP9000_800 directives.
Calling Sequence: getarg(n, s)
Data Declaration: Integer n
 Character s
I/O: read, write stdout
Common Blocks: n/a

makedat MAKEDAT is a program that reads the data sites’ lats and lons from the files, reads
TOPEX data for the area and saves them for the above lats/lons, and writes data files in
tpxbin.dat format. The output data file is used by MAKEB to calculate B.dat bad
flags.

22

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
Calling Sequence: n/a
Data Declaration: n/a
I/O: stdout; open, read, close units 1, 2, 7; read inmss, indir, inssh, inflag, stdout; write
units 2, 8, 9
Common Blocks: common/cflag, /cmission, /constsi2, /cunits

prime_check PRIME_CHECK checks if n1 is a prime number: iflag=1/other, if yes/no. If yes,
n2<n1, which is the closest number divisible by 6. If no, then n2=n1.
Calling Sequence: prime_check(n1,iflag,n2)
Data Declaration: Integer n1,n2,iflag
I/O: n/a
Common Blocks: common/cflag, /cmission, /constsi2, /cunits

rd_com_line Calling Sequence: rd_com_line(fin,fout,qmode,altav)
Data Declaration: Logical altav,qmode
 Character fout,fin
I/O: stdout
Common Blocks: n/a

usage Calling Sequence: usage(qmode)
Data Declaration: Logical qmode
I/O: read, write stdout
Common Blocks: common/cflag

6.1.7 (OTIS/bin/mix_ave.f)

Subroutine Description
mix_ave This subroutine is for mixing and averaging two time steps.

Calling Sequence: mix_ave(t1,h1,ncyc,t2,h2,count,flag)
Data Declaration: Integer ncyc, flag, count
 Real t1, h1, t2,h2
I/O: read, write stdout
Common Blocks: n/a

mix_ers Calling Sequence: mix_ers(t1,h1,ncyc,t2,h2)
Data Declaration: Integer ncyc, flag, count
 Real t1,h1,t2,h2
I/O: read, write stdout
Common Blocks: n/a

reorder Calling Sequence: reorder(t,h,n)
Data Declaration: Integer n
 Real t,h
I/O: n/a
Common Blocks: n/a

23

NRL/MR/7320—10--9209 TOPS SDD

6.1.8 (OTIS/bin/obstime.f)
Subroutine Description

obstime OBSTIME calculates exact time in modified Julian date and fraction of the day for a
specific sea surface residual height.
Calling Sequence: obstime(time,icycle,ntrack,idx,isdata)
Data Declaration: Integer icycle, ntrack, idx
 Double Precision time
 Logical isdata
I/O: read intime
Common Blocks: common/cmission, /constsr8, /constsi4, /cunits

6.1.9 (OTIS/bin/openfiles.f)
Subroutine Description

openfiles OPENFILES opens all files required to read and interpret the ocean pathfinder ERS1
collinear database.
Calling Sequence: n/a
Data Declaration: n/a
I/O: write iout6, stdout; open inephm, inmss, inflag, intime, inssh, indir
Common Blocks: common/cmission, /cfnamersr, /cunits

6.1.10 (OTIS/bin/otis_check_files.f)
Subroutine Description

otis_check_files This program reads and inspects OTIS input files and output from OTIS forward and
final solution models.
Calling Sequence: n/a
Data Declaration: n/a
I/O: write 6, 21, 22, 23, 32, 33, 42, 43, 52, 53, stdout; open, read, close 199, write 20,
read 10
Common Blocks: common/cmission, /cfnamersr, /cunits

6.1.11 (OTIS/bin/rtloadtopex.f)
Subroutine Description

rtlooadtopex Subroutine RTLOADtopex loads ephemeredes for a specific track of a repeat cycle for
TOPEX.
Calling Sequence: rtloadtopex(ntrack,nperiod,ilat,ilon)
Data Declaration: Integer ilat, ilon,nperiod,ntrack
I/O: read inephm
Common Blocks: common/cunits

6.1.12 (OTIS/bin/topexinit.f)
Subroutine Description

topexinit This subroutine initializes TOPEX specific constants for reading collinear databases.
It initializes names and record sizes of all files used.

24

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
Calling Sequence: n/a
Data Declaration: n/a
I/O: n/a
Common Blocks: common/cmission, /cflag, /cfnamersr

6.2 Primary TOPS Subroutines (OTIS/src)

6.2.1 Forward Time Step Subroutines

6.2.1.1 (Otis/src/fwd_ts/interepSAL.f)
Subroutine Description

interpSAL Interpolates complex n x m SAL array sal (from TPXO) onto the model grid.
Calling Sequence: interpSAL(sal0,n0,m0,th_lim0, phi_lim0, theta_lim, phi_lim, mz,

ierr, sal)
Data Declaration: Integer mz, ierr, n0, m0
 Complex sal0, sal
 Real th_lim0, phi_lim0, theta_lim, phi_lim
I/O: n/a
Common Blocks: n/a

6.2.2 MKB Subroutines

6.2.2.1 (OTIS/src/mkb/create_A.f)
Subroutine Description

create_A

This subroutine was tuned to the tide gauge data as they were in old, Mediterranean
tpxoMED.dat, that is, already harmonically analyzed for eight constituents,
constituent number: ic=int((k+1)/2), where "k" is the row number (starting from 0).
lat lon 0 h(ic).Re 0 0.0
lat lon 0 h(ic).Im 1 0.0
lat lon 0 h(ic+1).Re 2 0.0
lat lon 0 h(ic+1).Im 3 0.0
Calling Sequence: create_A(k,A)
Data Declaration: Integer k
 Complex A
I/O: n/a
Common Blocks: n/a

6.2.2.2 (OTIS/src/mkb/def_cid.f)
Subroutine Description

def_cid

Calling Sequence: def_cid(nc0,cid,ind)
Data Declaration: Integer nc0,ind
 Character cid

25

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
I/O: stdout
Common Blocks: n/a

6.2.2.3 (OTIS/src/mkb/def_form.f)
Subroutine Description

def_form

Calling Sequence: def_form(fname,ifmt)
Data Declaration: Integer ifmt
 Character fname
I/O: open, read, rewind, close unit 1; stdout
Common Blocks: n/a

6.2.2.4 (OTIS/src/mkb/filter_outliers.f)
Subroutine Description

filter_outliers

Calling Sequence: filter_outliers(t1,t2,h1,h2,L)
Data Declaration: Integer L
 Real t1,t2,h1,h2
I/O: stdout
Common Blocks: n/a

6.2.2.5 (OTIS/src/mkb/height.f)
Subroutine Description

height

This real function returns height from a model array of complex constituents.
Calling Sequence: filter_outliers(t1,t2,h1,h2,L)
Data Declaration: Integer nc
 Complex A,P
I/O: n/a
Common Blocks: n/a

6.2.2.6 (OTIS/src/mkb/loadModel.f)
Subroutine Description

cut Integer function.
Calling Sequence: cut(name)
Data Declaration: Character name
I/O: n/a
Common Blocks: n/a

loadModel

This subroutine reads binary model files with the following Fortran unformatted binary
format:

• Rec 1 (header): n, m, nc, theta_min, theta_max, phi_min, phi_max, const_1,
const_2, ...const_nc, where const_j - constituent ID char*4.

• Rec 2: 1st constituent elevations (n x m complex).
• Rec 3: 2nd constituent elevations.
• Rec nc+1: constituent nc elevations.

26

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
Calling Sequence: loadModel(Pr,n,m,nc0,cid,th_mod,ph_mod,mask,fname)
Data Declaration: Integer n,m,nc0, mask
 Complex Pr
 Character cid, fname
 Real th_mod, ph_mod
I/O: open, read, close unit 1; stdout
Common Blocks: n/a

rd_constituents Calling Sequence: rd_constituents(cid)
Data Declaration: Character cid
I/O: stdout, open, read, close unit 17
Common Blocks: n/a

6.2.2.7 (OTIS/src/mkb/loadModel_uv.f)
Subroutine Description

loadModel_uv

This subroutine reads binary model transport files with the following Fortran
unformatted binary format:

• Rec 1 (header): n, m, nc, theta_min, theta_max, phi_min, phi_max, const_1,
const_2, ...const_nc, where const_j - constituent ID char*4.

• Rec 2: 1st constituent transports (2 x n x m complex).
• Rec 3: 2nd constituent transports.
• Rec nc+1: constituent nc transports (m2/s).

Calling Sequence: loadModel_uv(Pru,Prv,n,m,nc0,cid,th_mod,ph_mod,mu,mv,fname)
Data Declaration: Integer n,m,nc0, mu,mv
 Complex Pru,Prv
 Character cid, fname
 Real th_mod, ph_mod
I/O: open, read, close unit 1; stdout
Common Blocks: n/a

6.2.2.8 (OTIS/src/mkb/lp_tide.f)
Subroutine Description

lp_tide

This real function is a long period tide height correction. It assumes that entire nodal
correction arrays pu(20), pf(20) are passed ==> offset=17.
Calling Sequence: lp_tide(time,lat,pu,pf)
Data Declaration: Real time, lat, pu, pf
I/O: n/a
Common Blocks: n/a

6.2.2.9 (OTIS/src/mkb/make_a.f)
Subroutine Description

make_a

This subroutine computes A matrix elements for one data point if t2==0. It computes A
for absolute height at t1 if t2>0, and computes A for cross-over difference (h1-h2) at

27

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
(t1,t2).
Calling Sequence: make_a(interp,ind,nc,t1,t2,pu,pf,w,A,l_sal)
Data Declaration: Real t1,t2,w,pu,pf
 Logical interp, l_sal
 Integer ind, nc
 Complex A
I/O: stdout
Common Blocks: n/a

mkw Calling Sequence: mkw(interp,ind,nc,wr)
Data Declaration: Real wr
 Logical interp
 Integer ind, nc
I/O: n/a
Common Blocks: n/a

6.2.2.10 (OTIS/src/mkb/makeB.f)
Subroutine Description

makeB

Program MAKEB creates a dense A matrix for a time series of data points at one
location, stores it in real format, performs singular value decomposition (SVD), and
finally assembles the results into a B matrix.
Calling Sequence: n/a
Data Declaration: n/a
I/O: read, write stdout; open, write, close units 10, 13, 21; open, read, close units 1, 10,
13
Common Blocks: n/a

wrBha Calling Sequence: wrBha(irec,iounit,m_type,lat,lon,hhat,theta,dummy)
Data Declaration: Real hhat, theta, lat, lon, dummy
 Integer irec, iounit, m_type
I/O: write iounit
Common Blocks: n/a

6.2.2.11 Astronomical Tide Subroutines (OTIS/src/mkb/nodal.f)
Subroutine Description

arguments This is a kernel routine for HAT53 subroutine. It calculates tidal arguments.
Calling Sequence: arguments(time1, arg, f, u)
Data Declaration: Double Precision time1, arg, f, u
I/O: write iounit
Common Blocks: n/a

astrol This subroutine computes the basic astronomical mean longitudes s, h, p and N. N is
not N’, as N is decreasing with time. These formulae are for the period 1990-2010 and
were derived from David Cartwright (pers. comm. 11/90). Time is UTC in decimal
MJD. All longitudes are returned in degrees.
Calling Sequence: astrol(time, shpn)

28

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
Data Declaration: Double Precision time, shpn
I/O: n/a
Common Blocks: n/a

nodal

Calling Sequence: nodal(dtime,latitude,pu,pf)
Data Declaration: Real dtime, latitude, pu, pf
I/O: stdout
Common Blocks: n/a

6.2.2.12 (OTIS/src/mkb/rd_com_line.f)
Subroutine Description

rd_com_line

Calling Sequence: rd_com_line(prior,data,long_p,ha_only,sub_only,interp,cor_mod,
con8, ave,tg, append, l_sal,umod,err_cm,Bha, one_point, ifmt,
mod_fname,data_fname, out_fname,cor_fname)

Data Declaration: Logical prior, data, long_p, ha_only, sub_only, interp,
cor_mod, con8, ave, tg, append, l_sal, umod, Bha,
one_point

 Character mod_fname, data_fname, out_fname, cor_fname
 Integer ifmt
 Real err_cm
I/O: stdout; open, read, close unit 1
Common Blocks: n/a

usage Calling Sequence: n/a
Data Declaration: n/a
I/O: stdout
Common Blocks: n/a

6.2.2.13 (OTIS/src/mkb/read_adcp.f)
Subroutine Description

read_adcp

Calling Sequence: read_adcp(i_unit,irec,lat,lon,t1,h1,iuv,ief,ifmt)
Data Declaration: Logical ief
 Integer i_unit, irec, iuv, ifmt
 Real t1,h1, lat, lon
I/O: read, write stdout, read i_unit
Common Blocks: n/a

write_adcp Calling Sequence: write_adcp(i_unit,lat,lon,t1,h1,d1)
Data Declaration: Integer i_unit
 Real t1,h1,d1, lat, lon
I/O: write i_unit
Common Blocks: n/a

6.2.2.14 (OTIS/src/mkb/read_cm.f)
Subroutine Description

29

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
read_cm

Calling Sequence: read_cm(iounit,irec,cid,lat,lon,hu,iuv,ief,uerr,ifmt)
Data Declaration: Logical ief
 Integer iounit, irec, iuv, ifmt
 Real hu,uerr, lat, lon
 Character cid
I/O: read, write stdout; open, read, write, close iounit
Common Blocks: n/a

6.2.2.15 (OTIS/src/mkb/read_rad.f)
Subroutine Description

defps Calling Sequence: defps(fname,ctmp,k1,k2)
Data Declaration: Integer k1,k2
 Character fname, ctmp
I/O: open, read, close unit 2; stdout
Common Blocks: n/a

read_rad

Calling Sequence: read_rad(fname,irec,lat,lon,hu,the,phi,ief,cid,uerr,ifmt)
Data Declaration: Logical ief
 Integer irec, ifmt
 Real hu,the,phi,uerr, lat, lon
 Character cid, fname
I/O: open, read, close unit 15; stdout
Common Blocks: n/a

6.2.2.16 (OTIS/src/mkb/read_tg.f)
Subroutine Description

read_tg

Calling Sequence: read_tg(iounit,irec,cid,lat,lon,h1,ief,ifmt,ertg)
Data Declaration: Logical ief
 Integer iounit, irec, ifmt
 Real h1,ertg, lat, lon
 Character cid
I/O: read, write stdout; read, rewind, write, close iounit
Common Blocks: n/a

6.2.2.17 (OTIS/src/mkb/readTpxo.f)
Subroutine Description

readTxpo

Calling Sequence: readTpxo(i_unit,irec,L,lat,lon,t1,h1,t2,h2,ief,dif,ifmt)
Data Declaration: Logical ief,dif
 Integer i_unit, L, irec, ifmt
 Real t1,h1,t2,h2, lat, lon
I/O: read, close i_unit; write unit 19; stdout
Common Blocks: n/a

30

NRL/MR/7320—10--9209 TOPS SDD

6.2.2.18 (OTIS/src/mkb/ts_syn.f)
The code ts_syn gives a simple, generalized program for synthesizing elevation, transport and
currents time series at a chosen location/time using any tidal solution in the standard format. The
code is compiled in OTIS/local/“MyArea”/exe/ as other OTIS codes, but is not tuned to a
certain grid. Therefore, the user may generate time series from the same directory for tidal
models on any grids covering a chosen location.

Subroutine Description
caldat This subroutine converts Julian day to month, day, & year. The code is from Press et

al., 1986. The only modification is that real arithmetic is done in r*8. To convert
modified Julian day, call this routine with Julian = MJD + 2400001.
Calling Sequence: caldat (Julian,mm,id,iyyy)
Data Declaration: Integer Julian, mm,id,iyyy
I/O: n/a
Common Blocks: n/a

date_mjd This subroutine converts date to MJD.
Calling Sequence: date_mjd(mm,id,iyyy,mjd)
Data Declaration: Integer mm,id,iyyy,mjd
I/O: n/a
Common Blocks: n/a

ts_syn

Time series synthesis program using a tidal solution in interpreting a standard format.
Calling Sequence: n/a
Data Declaration: n/a
I/O: read, write stdout; write sdate, unit 3; open, read, close units 1,3
Common Blocks: n/a

6.2.2.19 (OTIS/src/mkb/write_cm.f)
Subroutine Description

write_cm

Calling Sequence: write_cm(iounit,cid,lat,lon,hu,uerr,du,iuv)
Data Declaration: Integer iounit, iuv
 Real hu,du, lat, lon,uerr
 Character cid
I/O: write iounit
Common Blocks: n/a

6.2.2.20 (OTIS/src/mkb/write_rad.f)
Subroutine Description

write_rad

Calling Sequence: write_rad(iounit,cid,lat,lon,hu,du,the,phi)
Data Declaration: Integer iounit
 Real hu,du, the,phi,lat, lon,uerr
 Character cid
I/O: write iounit
Common Blocks: n/a

31

NRL/MR/7320—10--9209 TOPS SDD

6.2.2.21 (OTIS/src/mkb/write_tg.f)
Subroutine Description

write_tg

Calling Sequence: write_tg(iounit,cid,lat,lon,h,d,damp,dph,dReIm)
Data Declaration: Integer iounit
 Real h,d, damp,dReIm, dph, lat,lon
 Character cid
I/O: write iounit
Common Blocks: n/a

6.2.2.22 (OTIS/src/mkb/writeTpxo.f)
Subroutine Description

writeTpxo

Calling Sequence: writeTpxo(i_unit,irec,L,lat,lon,t1,h1,t2,h2,ifmt)
Data Declaration: Integer i_unit,irec, ifmt
 Real h1,h2,t1,t2, lat,lon,L
I/O: stdout; write i_unit
Common Blocks: n/a

6.2.3 RP_DP Subroutines (OTIS/src/rp_dp)

6.2.3.1 (OTIS/src/rp_dp/atgf.f)
Subroutine Description

atgf

Calling Sequence: atgf(ic,c_id,cobc)
Data Declaration: Integer ic
 Character c_id, cobc
I/O: n/a
Common Blocks: n/a

force_in Calling Sequence: force_in(cforce)
Data Declaration: Character cforce
I/O: open, read unit 1
Common Blocks: n/a

rd_obc Calling Sequence: rd_obc(nob,cobc,hobc)
Data Declaration: Integer nob
 Character cobc
 Complex hobc
I/O: stdout; open, read, close unit 1
Common Blocks: n/a

rd_obc_uv Calling Sequence: rd_obc_uv(nob_u,nob_v,cobc,u_obc,v_obc)
Data Declaration: Integer nob_u,nob_v
 Character cobc
 Complex u_obc, v_obc
I/O: open, read unit 1; stdout
Common Blocks: n/a

32

NRL/MR/7320—10--9209 TOPS SDD

6.2.3.2 (OTIS/src/rp_dp/BSI_weights.f)
Subroutine Description

BSI_weights

This is a bilinear spline interpolation (BSI) weight subroutine for delta forcing.
Calling Sequence: BSI_weights(node,theta,phi,theta_lim,phi_lim, dx,dy,mask,n,m,

ww,iw,jw)
Data Declaration: Character node
 Real theta, phi, theta_lim, phi_lim, dx, dy,ww
 Integer mask, n,m,iw,jw
I/O: stdout
Common Blocks: n/a

ipshift Function IPSHIFT creates periodic shift maps i to i+ish, mod n; (always between 1 and
n, never 0).
Calling Sequence: ipshft(i,ish,n)
Data Declaration: Integer i, ish, n
I/O: n/a

6.2.3.3 (OTIS/src/rp_dp/CDG.f)
Subroutine Description

op_C

Calling Sequence: op_C(u1,v1,u_v,v_u,t)
Data Declaration: Complex u1,v1,u_v, v_u
 Character t
I/O: n/a
Common Blocks: n/a

op_C1 Calling Sequence: op_C1(u1,v1,u_v,v_u)
Data Declaration: Complex u1, v1, u_v, v_u
I/O: n/a
Common Blocks: n/a

op_C2 Calling Sequence: op_C2(u1,v1,u_v,v_u,t)
Data Declaration: Complex u1, v1, u_v, v_u
 Character t
I/O: n/a
Common Blocks: n/a

op_D Calling Sequence: op_D(u1,v1,z1)
Data Declaration: Complex u1, v1, z1
I/O: n/a
Common Blocks: n/a

op_G Calling Sequence: op_G(z1,u1,v1,t)
Data Declaration: Complex u1, v1, z1
 Character t
I/O: n/a
Common Blocks: n/a

op_IB Calling Sequence: op_IB(u1,v1,ic)
Data Declaration: Complex u1, v1
 Integer ic

33

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
I/O: n/a
Common Blocks: n/a

6.2.3.4 (OTIS/src/rp_dp/checklim.f)
Subroutine Description

checklim Calling Sequence: checklim(t_lim,p_lim,n0,m0,nc0)
Data Declaration: Real t_lim, p_lim
 Integer nc0, m0, n0
I/O: write unit 6, 0
Common Blocks: n/a

6.2.3.5 (Otis/src/rp_dp/constit.f)
Subroutine Description

constit_all Calling Sequence: constit_all(nc,c_id,omega,alpha,ispec,ph,amp)
Data Declaration: Real alpha, ph, amp, omega
 Character c_id
 Integer nc,ispec
I/O: write unit 0
Common Blocks: n/a

constit_in This subroutine gets the constituent information from the constituents file.
Calling Sequence: constit_in(cconstit,c_id)
Data Declaration: Character c_id, cconstit
I/O: open, read, close unit 1; write unit 0
Common Blocks: n/a

constit_omega Calling Sequence: constit_omega(nc, c_id,omega)
Data Declaration: Real omega
 Character c_id
 Integer nc
I/O: write unit 0, 6
Common Blocks: n/a

6.2.3.6 (Otis/src/rp_dp/covsc_in.f)
Subroutine Description

cov_white This subroutine is using scales for each constituent. They are determined by averaging
over the grid, reset for “white noise” covariance.
Calling Sequence: covsc_white()
Data Declaration: n/a
I/O: n/a
Common Blocks: n/a

covsc_in Calling Sequence: covsc_in(ccov,ob_var_sc,rb_var_sc,int_var_sc)
Data Declaration: Real ob_var_sc, rb_var_sc, int_var_sc
 Character ccov

34

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
I/O: open, read, close unit 1; stdout; write unit 6
Common Blocks: n/a

6.2.3.7 (Otis/src/rp_dp/dcomb.f)
Subroutine Description

blspwt_set Calling Sequence: blspwt_set()
Data Declaration: n/a
I/O: write unit 28; stdout
Common Blocks: common/datablk

blspwt_set Calling Sequence: blspwt_set(ndat)
Data Declaration: Integer ndat
I/O: stdout
Common Blocks: common/datablk

dcomb Calling Sequence: dcomb(ic,bname,nrep1,nrep2)
Data Declaration: Character bname
 Integer ic, nrep1, nrep2
I/O: open, read, close unit 10; stdout
Common Blocks: common/datablk

dcomb_cg Calling Sequence: dcomb_cg(x_in, nx, ik)
Data Declaration: Real x_in
 Integer ik, nx
I/O: n/a
Common Blocks: common/datablk, /rmultblk

read_sites Calling Sequence: read_sites(vel_rep)
Data Declaration: Logical vel_rep
I/O: stdout; open, read, rewind, close unit 1
Common Blocks: common/datablk

6.2.3.8 (Otis/src/rp_dp/delta.f)
Subroutine Description

delta This subroutine takes the location of a point elevation measurement and information
about whether it is to be treated as a boundary elevation, and outputs the forcing and
BCs for the backward problem.
Calling Sequence: delta(itype,theta,phi,th,ph,ierr)
Data Declaration: Integer itype, ierr
 Real theta, phi, th, ph
I/O: stdout
Common Blocks: n/a

6.2.3.9 (Otis/src/rp_dp/diffuse.f)
Subroutine Description

diffuse Calling Sequence: n/a

35

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
Data Declaration: n/a
I/O: open, read, close unit 99; stdout; write unit 11
Common Blocks: n/a

6.2.3.10 (Otis/src/rp_dp/ds_subs.f)
Subroutine Description

comp_S Calling Sequence: comp_S(ic,ip,iq)
Data Declaration: Integer ip, iq, ic
I/O: n/a
Common Blocks: n/a

f16 Calling Sequence: f16(ip,iq)
Data Declaration: Integer ip, iq
I/O: n/a
Common Blocks: n/a

f17 Calling Sequence: f17(ip,iq)
Data Declaration: Integer ip, iq
I/O: n/a
Common Blocks: n/a

f20 Calling Sequence: f20(ip,iq)
Data Declaration: Integer ip, iq
I/O: n/a
Common Blocks: n/a

f21 Calling Sequence: f21(ip,iq)
Data Declaration: Integer ip, iq
I/O: n/a
Common Blocks: n/a

f24 Calling Sequence: f24(ip,iq)
Data Declaration: Integer ip, iq
I/O: n/a
Common Blocks: n/a

f25 Calling Sequence: f25(ip,iq)
Data Declaration: Integer ip, iq
I/O: n/a
Common Blocks: n/a

f28 Calling Sequence: f28(ip,iq)
Data Declaration: Integer ip, iq
I/O: n/a
Common Blocks: n/a

f29 Calling Sequence: f29(ip,iq)
Data Declaration: Integer ip, iq
I/O: n/a
Common Blocks: n/a

36

NRL/MR/7320—10--9209 TOPS SDD

6.2.3.11 (Otis/src/rp_dp/fwd_fac.f)
Subroutine Description

caoutb Calling Sequence: caoutb(z_unit,uv_unit)
Data Declaration: Integer z_unit, uv_unit
I/O: write z_unit, uv_unit
Common Blocks: n/a

fwd_fac This is a CM-FORTRAN direct solver for LTEs. The program must be compiled with
the correct grid size (set in 'include/gridsize.h'). If the grid size specified in the
grid file is not the same, the program will terminate with a warning. By default all
input files are expected to be in the default input directory (set in CPATHIN ... see
below), and to have standard names. The default input directory can be changed with
the -i option, and the full path name of any input file can be specified with the -g, -c,
and -b options.
INPUT files:
(1) grid (change with -g<file>).METRY: This is a bathymetry grid file that contains
a list of open boundary nodes, a header specifying gridsize latitude and longitude
limits, and time step in sec. Its format is FORTRAN sequential binary; 3 records. The
first is the number of OB nodes, the second is a list of OB nodes (i,j) and the third is
bathymetry (=depth), with pos. real numbers = 0 on land.
(2) constituents (change with –c<file>). It is specified with character*2 strings (e.g.,
'm2') and also contains information on how many time steps to take. The format
ASCII.
(3) obc This is the open boundary condition file. It is made using the first two files to
specify the open boundary locations and constituents list, then sampling the current
global file (TPXO.3.ot) to estimate the open boundary elevations. The format is
FORTRAN sequential binary; one record = a complex*16 array n_obc(nc,nob), where
nc is the number of constituents specified in file (2), and nob is the number of open
boundary nodes specified in the header record for file (1).
Calling Sequence: n/a
Data Declaration: n/a
I/O: stdout; read arg; open, close units 1, 3; open, write, close units 10,11
Common Blocks: n/a

glob_case This subroutine is an addition to the FWD_FAC program for the global case.
Calling Sequence: glob_case(BS,SB,nm,m3,x2,ic,ipiv)
Data Declaration: Integer nm, m3, ic, ipiv
 Complex x2, BS, SB
I/O: stdout; open, read, write,close unit 15
Common Blocks: n/a

glob_case_c This is a conjugate to the GLOB_CASE subroutine above for the global case.
Calling Sequence: glob_case_c(BS,SB,nm,m3,x2,ic,ipiv)
Data Declaration: Integer nm, m3, ic, ipiv
 Complex x2, BS, SB
I/O: stdout; open, read, write, close unit 15
Common Blocks: n/a

37

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
usage Calling Sequence: usage()

Data Declaration: n/a
I/O: stdout
Common Blocks: n/a

6.2.3.12 (Otis/src/rp_dp/glob_case.f)
Subroutine Description

glob_case This subroutine is an addition to the fwd_fac for the global case.
Calling Sequence: glob_case(BS,SB,nm,m3,x2,ic,ipiv)
Data Declaration: Complex BS, SB, x2
 Integer nm, m3, ic, ipiv
 I/O: stdout, open, read, close unit 15
Common Blocks: n/a

6.2.3.13 (Otis/src/rp_dp/glob_case_c.f)
Subroutine Description

glob_case_c This subroutine is a conjugate to the glob_case.f for the global case.
Calling Sequence: glob_case_c(BS,SB,nm,m3,x2,ic,ipiv)
Data Declaration: Complex BS, SB, x2
 Integer nm, m3, ic, ipiv
I/O: stdout, open, read, close unit 15
Common Blocks: n/a

6.2.3.14 (Otis/src/rp_dp/gsmooth.f)
Subroutine Description

gsmooth This subroutine will only work if LTECO has previously been called and the common
blocks are intact.
Calling Sequence: gsmooth(atmp,gm,iuvflag,niter)
Data Declaration: Integer iuvflag, niter
 Real atmp, gm
I/O: stdout
Common Blocks: n/a

6.2.3.15 (Otis/src/rp_dp/h_uv.f)
Subroutine Description

h_uv This subroutine will only work if LTECO has previously been called and the common
blocks are intact.
Calling Sequence: h_uv(ic,ll)
Data Declaration: Integer ic
 Logical ll
I/O: stdout
Common Blocks: n/a

38

NRL/MR/7320—10--9209 TOPS SDD

6.2.3.16 (Otis/src/rp_dp/inner.f)
This file contains all of the various inner product functions. All files contain
‘../include/fwd_common.h’.

Subroutine Description
eval_crms Calling Sequence: eval_crms(atmp,ma)

Data Declaration: Integer ma
 Real atmp

eval_rms Calling Sequence: eval_rms(atmp,ma)
Data Declaration: Integer ma
 Real atmp

function
eval_mean

Calling Sequence: eval_mean(atmp,ma)
Data Declaration: Integer ma
 Real atmp

Weighted Inner
Products

eval_ipu Calling Sequence: eval_ipu(atmp,btmp)
Data Declaration: Real atmp,btmp

eval_ipv Calling Sequence: eval_ipv(atmp,btmp)
Data Declaration: Real atmp,btmp

eval_ipz Calling Sequence: eval_ipz(atmp,btmp)
Data Declaration: Real atmp,btmp

Unweighted
Inner Products

eval_ipu0 Calling Sequence: eval_ipu0(atmp,btmp)
Data Declaration: Real atmp,btmp

eval_ipv0 Calling Sequence: eval_ipv0(atmp,btmp)
Data Declaration: Real atmp,btmp

Boundary
Intervals

Note that z is written as an area integral. The user must remember to divide out by the
appropriate quantity.

eval_ibu Calling Sequence: eval_ibu(atmp,btmp)
Data Declaration: Real atmp,btmp

eval_ibv Calling Sequence: eval_ibv(atmp,btmp)
Data Declaration: Real atmp,btmp

eval_ibz Calling Sequence: eval_ibz(atmp,btmp)
Data Declaration: Real atmp,btmp

Complex Inner
Products

eval_icu Calling Sequence: eval_icu(tmpc)
Data Declaration: Complex tmpc

eval_icub Calling Sequence: eval_icub(tmpc)
Data Declaration: Complex tmpc

eval_icv Calling Sequence: eval_icv(tmpc)
Data Declaration: Complex tmpc

39

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
eval_icvb Calling Sequence: eval_icvb(tmpc)

Data Declaration: Complex tmpc
eval_icz Calling Sequence: eval_icz(tmpc)

Data Declaration: Complex tmpc
eval_iczb Calling Sequence: eval_iczb(tmpc)

Data Declaration: Complex tmpc

6.2.3.17 (Otis/src/rp_dp/interp_rpx.f)
Subroutine Description

interp_rpx This subroutine interpolates a complex nt x n x m array uv at point xlat, xlon.
Calling Sequence: interp_rpx(uv,nt,n,m,mz,th_lim,ph_lim,xlat,xlon, uv1,ierr,mtype)
Data Declaration: Integer ierr, n,m, mtype, mz, nt
 Real th_lim, ph_lim, xlon, xlat
 Complex uv, uv1
I/O: stdout
Common Blocks: n/a

6.2.3.18 (Otis/src/rp_dp/ipshift.f)
Subroutine Description

ipshift Function IPSHIFT creates periodic shift maps i to i+ish, mod n; (always between 1 and
n, never 0).
Calling Sequence: ipshft(i,ish,n)
Data Declaration: Integer i, ish, n
I/O: n/a

6.2.3.19 (Otis/src/rp_dp/lteco.f)
Subroutine Description

lteco This subroutine opens and reads a grid file. It constructs Finite Difference Coefficients
and masks and depths for u and v nodes. All coefficient arrays are full.
Calling Sequence: lteco(cgrid,b,ah,h0)
Data Declaration: Real b, ah, h0
 Character cgrid
I/O: open, read unit 1; stdout; open, write unit 12
Common Blocks: n/a

read_ob Calling Sequence: read_ob(nob,iob)
Data Declaration: Integer nob, iob
I/O: read unit 1
Common Blocks: n/a

6.2.3.20 (Otis/src/rp_dp/makeE, makeE_fwd.f)
Subroutine Description

40

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
fr_vel With this subroutine, when ik=1, u scales are read. When ik=2, v scales are read.

Calling Sequence: fr_vel(ik)
Data Declaration: Integer ik
I/O: open, read unit 1; stdout
Common Blocks: n/a

makeE This subroutine computes the inverse matrix E for a single constituent. It is the REPX
version of MakeE.
Calling Sequence: makeE(ic)
Data Declaration: Integer ic
I/O: open, close unit 1; stdout
Common Blocks: n/a

makeE_d This subroutine computes direct matrix E, using forcing gu, gv, gz with no inverting. It
is the horizontal gradient of tide generating potential and boundary conditions for a
forward problem.
Calling Sequence: makeE_d(ic)
Data Declaration: Integer ic
I/O: open, close unit 1; stdout
Common Blocks: n/a

makeE_fwd This subroutine computes the inverse matrix E for a single constituent. It is the
FWD_FAC version of MakeE with special drag treatment.
Calling Sequence: makeE(ic)
Data Declaration: Integer ic
I/O: stdout; open, read, close unit 1
Common Blocks: n/a

6.2.3.21 (Otis/src/rp_dp/mkwts.f)
Subroutine Description

def_seg Calling Sequence: def_seg(iseg,mask,nn,L,nseg)
Data Declaration: Integer iseg, mask, nn, L, nseg
I/O: read, write stdout
Common Blocks: n/a

def_seg_ob Calling Sequence: def_seg_ob(iob,nob,seg,nseg)
Data Declaration: Integer iob, nob, seg, nseg
I/O: n/a
Common Blocks: n/a

mkwts This program makes latitude-dependant weights for discrete approximation of integrals
on the C-grid and boundary weights are output in arrays in common block
common/misc. It also makes coefficients for HV smoother (spatial correlation part of
covariance)
Calling Sequence: mkwts()
Data Declaration: n/a
I/O: open, read, close unit 99; read, write stdout; open, write, close unit 20
Common Blocks: n/a

41

NRL/MR/7320—10--9209 TOPS SDD

6.2.3.22 Model Covariance Smoother Subroutine (Otis/src/rp_dp/modelcov.f)
Subroutine Description

ahv This subroutine applies Ah/Av to all horizontal/vertical segments.
Calling Sequence: ahv(alpha_VH,nm,nseg,iseg,guv,w,ik)
Data Declaration: Integer nm, nseg, iseg, ik
 Complex guv
 Real w, alpha_VH
I/O: stdout
Common Blocks: n/a

modelcov This routine applies the diffusion model covariance smoother to adjoint system
solution vectors. More precisely, in the notation of EBF this computes C_f*W-
1*u,where u is the input vector, stored in arrays gu, gv (including
unsmoothed/unscaled forcing and coastal boundary conditions), and gz (open boundary
conditions). The smoothed and scaled fields are returned in the same arrays.
Of note:
1) Input arrays gu, gv, gz are produced from array z (solution to conjugate transposed
wave equations) by routine WAVEFRCT.
2) Only one constituent/one representer is done at a time, denoted by ic. Arrays for
covariance scaling currently allow for interconstituent correlations. This is reflected in
the two indices for usc and vsc. This version assumes NLP = 1, and NL = NC
3) This routine first multiplies u by W-1, where W is a diagonal matrix of integration
weights (necessary for solving a conjugate transpose system, not adjoint, as with time
stepping).
4) After calling this routine, call WAVEFRC to convert smoothed forcing and
boundary conditions into the RHS of the factored wave equation solution.
Calling Sequence: modelcov(ic,gu1,gv1,gz1)
Data Declaration: Integer ic
 Complex gu1, gv1, gz1
I/O: stdout
Common Blocks: n/a

smth_1d Calling Sequence: smth_1d(obseg,d,nseg,alpha)
Data Declaration: Integer nseg
 Complex obseg
 Real alpha, d
I/O: n/a
Common Blocks: n/a

smth_ob Calling Sequence: smth_ob(nob,lob,iob,gz1,ob,nseg_ob,alpha,bseg,zvar)
Data Declaration: Integer nob, lob, iob, nseg_ob, bseg
 Complex gz1
 Real ob, alpha, zvar
I/O: stdout; open, read, close unit 20
Common Blocks: n/a

42

NRL/MR/7320—10--9209 TOPS SDD

6.2.3.23 (Otis/src/rp_dp/out_file_init.f)
Subroutine Description

out_file_init Calling Sequence: out_file_init(nrept,irep,cfout,cpathout,npathout)
Data Declaration: Integer nrept, irep, npathout
 Character cfout, cpathout
I/O: write ctemp
Common Blocks: n/a

out_file_uv Calling Sequence: out_file_uv(nrept,irep,cfout,cpathout,npathout)
Data Declaration: Integer nrept, irep, npathout
 Character cfout, cpathout
I/O: ctemp
Common Blocks: n/a

6.2.3.24 Run Parameter Subroutines (Otis/src/rp_dp/param_subs.f)
Subroutine Description

fwd_params Calling Sequence: fwd_params(pname,p,qmode,uv_obc,rad_obc,mk_drag,dfname)
Data Declaration: Real p, mk_drag
 Logical qmode, uv_obc, rad_obc
 Character pname, dfname
I/O: n/a
Common Blocks: n/a

mkb_params Calling Sequence: mkb_params(pname,mod_fname,data_fname,cor_fname, prior,
data,cor_mod)

Data Declaration: Logical prior, cor_mod, data
 Character pname, mod_fname, data_fname, cor_fname
I/O: n/a
Common Blocks: n/a

mkSpeed_params Calling Sequence: mkSpeed_params(pname,p,qmode,tfile)
Data Declaration Real p
 Character pname, tfile
 Logical qmode
I/O: stdout
Common Blocks: n/a

q_params Calling Sequence: q_params(pname,p,qmode,ramx)
Data Declaration: Real p, ramx
 Character pname
 Logical qmode
I/O: n/a
Common Blocks: n/a

rd_run_param Calling Sequence: rd_run_param(pname,p)
Data Declaration: Real p
 Character pname
I/O: open, read, close unit 1
Common Blocks: n/a

43

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
reduce_params Calling Sequence: reduce_params(nreps,p,qmode,sige,trunc,ramx,n_blk,i1,i2)

Data Declaration: Real p, sige, ramx
 Logical qmode, uv_obc
 Integer n_reps, n_blk, i1, i2, trunc
I/O: stdout
Common Blocks: n/a

repx_params Calling Sequence: repx_params(pname,p,qmode,uv_obc,mk_drag, int_var_sc,
rb_var_sc, ob_var_sc,dfname,ccov)

Data Declaration: Real p, mk_drag, int_var_sc, rb_var_sc, ob_var_sc
 Character pname, dfname,ccov
 Logical qmode, uv_obc
I/O: n/a
Common Blocks: n/a

rlc_params Calling Sequence: rlc_params(pname,p,qmode,uv_obc,mk_drag, int_var_sc,
rb_var_sc, ob_var_sc,dfname,k_rlz,z_prior,uv_prior,ccov)

Data Declaration: Real p, mk_drag, int_var_sc, rb_var_sc, ob_var_sc
 Character pname, dfname, z_prior, uv_prior, ccov
 Logical qmode, uv_obc
 Integer k_rlz
I/O: n/a
Common Blocks: n/a

sml_params Calling Sequence: sml_params(pname,p,qmode,uv_obc,mk_drag,
int_var_sc,rb_var_sc,ob_var_sc,int_var_sc_s,rb_var_sc_s,ob_var_s
c_s,dfname,ccov)

Data Declaration: Logical uv_obc, qmode
 Character pname, dfname, ccov
 Real p, mk_drag, int_var_sc, rb_var_sc, ob_var_sc,

int_var_sc_s, rb_var_sc_s, ob_var_sc_s
I/O: n/a
Common Blocks: n/a

sr_params Calling Sequence: sr_params(pname,p,qmode,prior)
Data Declaration: Real p
 Character pname, prior
 Logical qmode
I/O: n/a
Common Blocks: n/a

varest_params Calling Sequence: varest_params(pname,p,qmode,no_diff, uv_obc,mk_drag, z_prior,
uv_prior,dfname)

Data Declaration: Real p, mk_drag
 Character pname, z_prior, uv_prior, dfname
 Logical qmode, no_diff, uv_obc
I/O: n/a
Common Blocks: n/a

44

NRL/MR/7320—10--9209 TOPS SDD

6.2.3.25 Posterior Error Calculation Subroutines (Otis/src/rp_dp/pe_subs.f)
These are subroutines used for posterior error calculations and matrix reduction (including
blocking version).

Subroutine Description
b_slv This subroutine solves for b. Calculate c = U S (S*S + sig I) ^-1 W' D (and then the

representer coefficients bhat = E*c_bar).
Calling Sequence: b_slv(W,s,U,E,dp,sige,nreps,trunc,bhat,nlp,nl)
Data Declaration: Real W, s, U,dp, sige
 Character pname
 Complex E, bhat
 Integer nreps, trunc, nlp, nl
I/O: open, write, close unit 2
Common Blocks: n/a

cut This is an integer function.
Calling Sequence: cut(name)
Data Declaration: Character name
I/O: n/a
Common Blocks: n/a

mprod This is a complex matrix product subroutine.
Calling Sequence: mprod(A,na,ma,B,nb,mb,C)
Data Declaration: Complex A, B, C
 Integer na, ma, nb, mb
I/O: stdout
Common Blocks: n/a

qr_reduce_b Calling Sequence: qr_reduce_b(G,nr,ncol,rio,d,dp)
Data Declaration: Real G, rio, d, dp
 Integer nr, ncol
I/O: stdout
Common Blocks: n/a

rd_b This subroutine reads out B.dat and arranges the lats and lons of evaluation sites, as
well as the type and index of evaluation site.
Calling Sequence: rd_b(fname,nrows,rlat,rlon,mtype,mrow, B,sigma,dp)
Data Declaration: Real rlat, rlon, sigma, dp
 Character fname
 Integer mtype, mrow, nrows
 Complex B
I/O: open, read, close, unit 21; stdout
Common Blocks: n/a

rd_b1 This version of RD_B does not return matrix B, but does return nrec - to read small
B(1, nc) for a data site. It reads out B.dat and arranges the lats and lons, type and index
of evaluation sites.
Calling Sequence: rd_b1(fname,nrows,rlat,rlon,mtype,mrow,sigma,dp,nrec)
Data Declaration: Integer nrows, mtype, mrow, nrec
 Real rlat, rlon, sigma, dp

45

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
 Character fname
I/O: open, read, close unit 21; stdout
Common Blocks: n/a

rd_b1b This version of RD_B does not return matrix B, but does return nrec - to read small
B(1, nc) for a data site. It reads out B.dat and arranges the lats and lons, type and index
of evaluation sites.
Calling Sequence: rd_b1b(fname,nrows,rlat,rlon,mtype,mrow,B,sigma,dp,nrec)
Data Declaration: Integer nrows, mtype, mrow, nrec
 Real rlat, rlon, sigma, dp
 Character fname
 Complex B
I/O: open, read, close unit 21; stdout
Common Blocks: n/a

rd_bb This is a blocking version of RD_B. The blocking version does not return matrix B,
but does return nrec - to read small B(2*nc,nc) for a data site. It reads out B.dat and
arranges the lats and lons, type and index of evaluation sites.
Calling Sequence: rd_bb(fname,nrows,rlat,rlon,mtype,mrow,sigma,dp,nrec)
Data Declaration: Real rlat, rlon, sigma, dp
 Character fname
 Integer mtype, nrows, mrow, nrec
I/O: open, read, close unit 21; stdout
Common Blocks: n/a

rd_rp This subroutine loads R or P matrices.
Calling Sequence: rd_rp(fname,P,ndat,nreps,k0,l0,np,mp)
Data Declaration: Character fname
 Integer ndat, nreps, k0, l0, np, mp
 Complex P
I/O: open, read, close unit 3; stdout
Common Blocks: n/a

scale This subroutine makes an sc array for scaling data.
Calling Sequence: scale(sigma,sigtg,ndat,sc)
Data Declaration: Real sigma, sigtg, sc
 Integer ndat
I/O: n/a
Common Blocks: n/a

sigscl This routine scales data and B matrices using site dependent scales provided in sc (the
same scale for all data at one site).
Calling Sequence: sigscl(B,d,nsite,sc)
Data Declaration: Real sc,d
 Complex B
 Integer nsite
I/O: n/a
Common Blocks: n/a

46

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
sigscl_b This routine scales data and B matrices using site-dependent scales provided in sc (the

same scale for all data at one site).
Calling Sequence: sigscl_b(d,nsite,sc)
Data Declaration: Real sc, d
 Integer nsite
I/O: n/a
Common Blocks: n/a

tinv This subroutine is an inverse of an upper triangular matrix using Basic Linear Algebra
Subprograms (BLAS).
Calling Sequence: tinv(r,ncol)
Data Declaration: Integer ncol
 Real r
I/O: n/a
Common Blocks: n/a

6.2.3.26 (Otis/src/rp_dp/r_sites.f)
Subroutine Description

read_sites Calling Sequence: read_sites(fname,ntotal,rlats,rlons,rid, rtype,the,phi)
Data Declaration: Integer rid, rtype, ntotal
 Real rlats, rlons, the, phi
 Character fname
I/O: open, read, close unit 1; stdout
Common Blocks: n/a

6.2.3.27 (Otis/src/rp_dp/rd_c_alpha.f)
Subroutine Description

interp This subroutine interpolates real n x m array onto point xlat, xlon.
Calling Sequence: interp(r,n,m,th_lim,ph_lim,xlat,xlon, r1,ierr)
Data Declaration: Real r1, r, th_lim, ph_lim, xlat, xlon
 Integer ierr, n,m
I/O: read, write stdout; write unit 0
Common Blocks: n/a

ipshft This is a function that performs periodic shift maps i to i+ish, mod n; always between 1
and n, never 0.
Calling Sequence: ipshft(i,ish,n)
Data Declaration: Integer i, ipshift, n, ish
I/O: n/a
Common Blocks: n/a

rd_c_alpha This subroutine is for debugging. It may be adjusted to suit the environment.
Calling Sequence: rd_c_alpha(iuv,con,var)
Data Declaration: Real var
 Character con
 Integer iuv

47

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
I/O: stdout; open, read, close unit 7
Common Blocks: n/a

6.2.3.28 (Otis/src/rp_dp/rd_num.f)
Subroutine Description

rd_num Calling Sequence: rd_num(arg,nrep1,nrep2)
Data Declaration: Integer nrep1, nrep2
 Character arg
I/O: read arg
Common Blocks: n/a

6.2.3.29 (Otis/src/rp_dp/read_b.f)
Subroutine Description

read_b READ_B reads out B.dat and arranges lats and lons, type and index of evaluation site.
Calling Sequence: read_b(nrows,rlat,rlon,the,phi,mtype,mrow,lat2,lon2)
Data Declaration: Integer nrows, mtype, mrow
 Real rlat, rlon, the, phi, lat2, lon2
I/O: open, read, close unit 21; stdout; write unit 6
Common Blocks: n/a

6.2.3.30 (Otis/src/rp_dp/reduce_b.f)
Subroutine Description

reduce_b The routine REDUCE_B calculates the representer coefficients that are used to form
the final inverse solution. It calculates the representer coefficients. If the maximum
available RAM value is properly set in run_param, REDUCE_B will automatically
generate a warning if blocking needs to be used or if a greater number of blocks should
be used to fit the matrix calculations into available memory. By default, no blocking is
set (that is the number of blocks is equal to one), but this can be changed in
run_param or in command line using -n<number_of_blocks> option. To
compile type make reduce_b in OTIS/local/MyArea/exe/run_param.
Calling Sequence: n/a
Data Declaration: n/a
I/O: open, read, close units 3, 4, 21, 25, 26; read, write stdout; write units 13, 3, 25, 26;
read arg
Common Blocks: n/a

rlc_cg_cor Calling Sequence: rlc_cg_cor(nl,trunc)
Data Declaration: Integer nl, trunc
I/O: stdout; open, read, write, close unit 17
Common Blocks: n/a

usage Calling Sequence: usage()
Data Declaration: n/a
I/O: stdout;

48

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
Common Blocks: n/a

6.2.3.31 Representer Calculation Program (Otis/src/rp_dp/repx.f)
Subroutine Description

mk_rlc_cg_cor_in
c

Calling Sequence: mk_rlc_cg_inc(m3,nm,nl,rlc_cg_only)
Data Declaration: Integer m3, nm, nl,
 Logical rlc_cg_only
I/O: stdout; open, read, write, close unit 21; open, write, close 17
Common Blocks: n/a

repx This is a test version of the representer calculation program using a direct solver of
the wave equation in elevation. It is modified from an old time stepping version.
Calling Sequence: n/a
Data Declaration: n/a
I/O: read, write stdout; read arg; open, close unit 1; open, write, close unit 3
Common Blocks: n/a

usage Calling Sequence: usage()
Data Declaration: n/a
I/O: stdout
Common Blocks: n/a

6.2.3.32 Representer Calculation Program (Otis/src/rp_dp/rlc.f)
Subroutine Description

cut Integer function.
Calling Sequence: cut(name)
Data Declaration: Character name
I/O: n/a
Common Blocks: n/a

rlc h_uv This program used to be called DIRECTSLV.
Calling Sequence: n/a
Data Declaration: n/a
I/O: read, write stdout; read arg; open, read, close units 1, 3; write units 3, 6, bnum
Common Blocks: common/datablk

usage Calling Sequence: usage()
Data Declaration: n/a
I/O: stdout
Common Blocks: n/a

6.2.3.33 Representer Calculation Program (Otis/src/rp_dp/rpx_to_p.f)
The program RPX_TO_P creates the Hermitian representer matrix R corresponding to
harmonically analyzed data at the representer sites (i.e., the elements of R are elevation or
velocity representers, evaluated at each representer site), and the matrix P (representers for
harmonically analyzed data evaluated at all data locations). The calculation is controlled by the

49

NRL/MR/7320—10--9209 TOPS SDD

representer list in ../prm/lat_lon.rep. The matrices P and R, together with B (from the previous
step) are used to do the matrix computations needed for finding the representer coefficients. Note
that you have to run rpx_to_p twice in different modes to get both P and R. Also note that
representers must be calculated (by REPX) and placed in OTIS/local/“MyArea”/repx before
this program can be run.

Subroutine Description
mklist Calling Sequence: mklist(nrep,cfrep,cfruv,ireps)

Data Declaration: Character cfrep, cfruv
 Integer nrep, ireps
I/O: write ctemp
Common Blocks: n/a

rd_num Calling Sequence: rd_num(arg,nrep1,nrep2)
Data Declaration: Character arg
 Integer nrep1, nrep2
I/O: read arg
Common Blocks: n/a

rpx_to_p This program reads from direct access representer files (one representer per file) to
construct the generalized, possibly rectangular, representer matrix for multi-constituent
representers, which may be block correlated.
Calling Sequence: n/a
Data Declaration: n/a
I/O: read, write stdout; open, read, write, close unit 1; open, write, close new_unit,
units 13, 18; read arg
Common Blocks: n/a

usage Calling Sequence: usage()
Data Declaration: n/a
I/O: stdout
Common Blocks: n/a

wrt_blk Calling Sequence: wrt_blk(rm,n_blk,ntot,nrep,i_blk,iounit)
Data Declaration: Complex rm
 Integer n_blk, ntot, nrep, i_blk, iounit
I/O: read, write stdout; write iounit
Common Blocks: n/a

6.2.3.34 Representer Calculation Program (Otis/src/rp_dp/SALset.f)
Subroutine Description

SALset This is a direct solver version (one constituent) of the SALset found in Section
6.2.1.10. SALset reads in a tidal loading-ocean self attraction file in standard model
output format, interpolates it onto the current grid, if necessary, and computes
gradients. It adds the result to forcing arrays gu and gv. This routine is called after
calling the LTECO and ATGF subroutines. SALset uses FD coefficient weights
computed in LTECO to calculate gradients of TLOSA "equilibrium height".
Calling Sequence: SALset(ic,c_id,c_sal)

50

NRL/MR/7320—10--9209 TOPS SDD

Subroutine Description
Data Declaration: Integer ic
 Character c_sal, c_id
I/O: open, read, close unit fid; stdout; open, write, close units 0, 33
Common Blocks: n/a

6.2.3.35 (Otis/src/rp_dp/ Sfac.f)
Subroutine Description

Sfac This subroutine generates and factors a matrix for the wave equation in elevation. It is
derived from shallow water equations on the C-grid for a single constituent. The
number ic makes m3 = 3*m+4 and nm are array dimensions for SB.
Calling Sequence: Sfac(ic,m3,nm,SB,II,JJ,KK,ipiv)
Data Declaration: Integer ic, m3, nm, II, JJ, KK, ipiv
 Complex SB
I/O: stdout
Common Blocks: n/a

6.2.3.36 (Otis/src/rp_dp/varest.f)
Subroutine Description

varest Calling Sequence: n/a
Data Declaration: n/a
I/O: read, write stdout; read arg; open, read, close units 1, 3, 99; open, write, close unit
15
Common Blocks: n/a

6.2.3.37 (Otis/src/rp_dp/wrt_uvsc.f)
Subroutine Description

wrt_uvsc Calling Sequence: wrt_uvsc(usc,vsc,n1,m1,ncu,gm,niter,l, gm_ob,niter_ob,l_ob,zvar)
Data Declaration: Integer n1, m1, ncu, niter, niter_ob
 Real usc, vsc, zvar, gm, l, gm_ob, l_ob
I/O: open, write, close unit 1; stdout
Common Blocks: n/a

51

NRL/MR/7320—10--9209 TOPS SDD

7.0 FORTRAN Common Blocks

7.1 COMMON Blocks (OTIS/bin)
COMMON/
CUNITS

Type Description

in5 Integer
indir Integer
inephm Integer
inflag Integer
inmss Integer
inssh Integer
intime Integer
iout6 Integer
COMMON/
CONSTRSR8

Type Description

secday Real
COMMON/
CONSTSI4

Type Description

iundf4 Integer
COMMON/
CONSTSI2

Type Description

inundf2 Integer
COMMON/
CMISSION

Type Description

ncycles Integer
nperiod Integer
nrecldir Integer
nreclephm Integer
nreclmss Integer
nreclsshf1 Integer
nrecltime Integer
numrevs Integer
COMMON/
CFLAG

Type Description

errflag Character
COMMON/
CFNAMERSR

Type Description

7.2 COMMON Blocks (OTIS/rp_dp)
COMMON/ Type Description

52

NRL/MR/7320—10--9209 TOPS SDD

DATABLK
depth
i0
i1
j0
j1
nrep
phi
rid
rph
rth
rtype
spwt
the
COMMON/
RMULTBLK

Type Description

Bm
ic
ipiv_cb
sig_e

8.0 TOPS Main Argument Variables

8.1 Primary TOPS Variables
Variable Description

alat Latitude of grid in °N.
alat2 Latitude of pt to be located in ° N.
amsk 2D land-sea mask array: =0/1 at pts to be not_plotted/plotted.
b_slv Solve for b.
cau(nc,n,m) Real and imaginary parts of steady state complex amplitudes for u.
cav(nc,n,m) Real and imaginary parts of steady state complex amplitudes for v.
caz(nc,n,m) Real and imaginary parts of steady state complex amplitudes for z.
cint Contour interval. If cint<0, contour lines are selected so that zero contour is

between two contour lines.
cmin, cmax Min and max contours. If cmin=cmax=0, min and max contours are calculated

from f.
cobc File name for open BC file.
con Constituent ID (char*4).
count Averaged values counter.

53

NRL/MR/7320—10--9209 TOPS SDD

Variable Description
cu, cv0, cvp Continuity.
cut Finds index of last, non-empty symbol in a string.
dt Time step.
du,dv Dissipation: Applied half at the forward and half at the backward time step.
e Inverse sqrt of square (calculated) representer matrix.
elon Longitude of grid in °E.
elon2 Longitude of pt to be located in °E.
f Field to be contoured.
fu,fv Coriolis.
gu(nc,n,m) Array of complex forcing amplitudes for variable u, constituent l.
gv(nc,n,m) Array of complex forcing amplitudes for variable v, constituent l.
gz(nc,n,m) Array of complex forcing amplitudes for variable z, constituent l.
hu Interpolated depth for u nodes.
hv Interpolated depth for v nodes.
i_blk Corresponds to block number.
icycle Repeat cycle number.
id Day.
id(nc) Constituent ID's (e.g., m2, s2 etc.).
idx Index within the revolution.
iflag I*2 - flag word with individual bits set.
ilat i*4 Latitude array in microdegrees.
ilon i*4 East longitude array in microdegrees.
intx, inty Number of intervals to be labeled on x and y axes.
iob,job Indices of boundary pts at elev pts.
iobi, jobi Indices of interior pts next to open bndy pts.
isdata Is .false. if there is no data available for this track.
istat Returned stats flag:

=0 pt lies outside grid.
=1 pt lies within grid, location found.

istep1, istep2 First and last time step number.
iyyy Year.
kob Index to denote direction of associated interior pt: (1 = +x, 2 = -x, 3 = +y, 4 = -y,

0 = corner pt).
lbit16 Logical array with MSB corresponding to index at 1 of array:

-true means corresponding bit in lflag is set to 1.
-false means corresponding bit in iflag is set to 0.

lendplt Logical flag to end plot (if true).
lintit Number of lines in title.
m Number of latitude subdivisions.
mjd>0 Modified Julian days.

54

NRL/MR/7320—10--9209 TOPS SDD

Variable Description
mm Month.
mn Integer m3.
mprod C=A*B (complex).
mu,mv,mz Masking arrays for u,v, and z, respectively.
mz Array mask.
n Number of longitude subdivisions.
n,m Dimensions of grid.
n,m Number of rows, columns of h-nodes.
n,m Dimensions of field f to be contoured.
n_blk Records - switch for the header.
nc Number of frequency components (tidal constituents).
ncmax Max number of tidal constituents.
ncprmx Maximum number of constituents.
ncsmx Max number of tidal constituents.
ndat Integer, number of data sites.
ndatmx Maximum number of points.
nft Starting step for harmonic analysis.
ni Leading dimension of arrays amsk and f.
nindrfi*4 Number of geo-referenced indices in revolution ntref.
nl Integer, number of constituent groups.
nlp Integer, number of constituents per group.
nmax, mmax Maximum grid dimensions (see nobmx.h).
nob Total number of open boundary pts.
nobmx Maximum allowable number of open bndy pts.
nreps Integer, number of representers.
nsamp Sampling frequency for harmonic analysis.
nsmax Max number of IHO stations in domain.
nt Number of evaluation times for temporal average.
ntrack Track number within the repeat cycle.
ntref i*4 Track number (1 - 501).
omega(nc) Forcing frequencies (angular frequency).
ph_lim Give latitude and longitude limits of grid.
pu, pv Pressure.
qr_reduce_b Blocking version of qr_reduce.
rd_b1 Read matrix ../dat/b1.dat (no b returned).
rd_b1b Read matrix ../dat/b1.dat (b returned).
rd_bb Blocking version of RD_B.
rd_rp Read ../dat/p.dat or ../dat/r.dat.
scale Find scales.
sige Error variance. If all other variances (including dynamical error variances) are

55

NRL/MR/7320—10--9209 TOPS SDD

Variable Description
correct, this should be = 1.

sigscl Scales B and d with sc.
sigscl_b Blocking version of sigscl (no B scaling).
th_lim Give latitude and longitude limits of grid.
time Modified Julian date of sea surface height (returned as decimal MJD).
title Title for plot.
u0 Coefficients for interior u nodes (horizontal smoothing).
ui Coefficients for interior u nodes (vertical smoothing).
ujm Coefficients for smoothing OB u nodes.
umax Maximum velocity scale.
umin Minimum velocity scale used in the drag coefficient.
uv Assumed given on "h-nodes" of C-grid.
v0 Coefficients for interior v nodes (horizontal smoothing).
var(n1,m1) Fractional error due to discretization of elevation gradient.
vi Coefficients for interior v nodes (vertical smoothing).
vjm Coefficients for smoothing OB v nodes.
w,s,u SVD of G matrix.
wbu Gives weights for boundary u nodes.
wbv Gives weights for boundary v nodes.
wbz Gives weights for boundary z nodes.
wcu Cos(theta) for u-rows.
wcv Cos(theta) for v-rows.
wiu Gives weights for interior u nodes.
wiv Gives weights for interior v nodes.
x,y Returned grid pt location.
xmin,xmax Min and max values of x (lon) to be labeled on plot.
xtit,ytit Titles for x and y axes.
ymin,ymax Min and max values of y (lat) to be labeled on plot.

56

NRL/MR/7320—10--9209 TOPS SDD

9.0 NOTES

9.1 Acronyms and Abbreviations

Acronym Description
ADCP Acoustic Doppler Current Profiler
AMD Advanced Micro Devices
ASCII American Standard Code for Information Interchange
BC Boundary conditions
BLAS Basic Linear Algebra Subprograms
bndy boundary
BSI Bilinear Spline Interpolation
CM Connection Machine
CODAR Coastal Ocean Dynamics Application Radar
d Day
DBDB2 Digital Bathymetric Database, resolution 2 km
DF Derivative Function
EAS East Asian Seas
ERS1/2 European Remote Sensing Satellites 1 and 2
FD Finite Difference
GUI Graphical User Interface
GVC General Vertical Coordinate
I/O Input/Output
IHO International Hydrographic Office
LHS Left Hand Side
LTEs Laplacian Tide Equations
m Meter
MB Megabytes
MJD Modified Julian Date
mm Month
NCOM Navy Coastal Ocean Model
NOAA National Oceanographic and Atmospheric Administration
NRL Naval Research Laboratory
OBC Open Boundary Conditions
OSU Oregon State University
OTIS OSU Tidal Inversion Software
PC Personal Computer
PSI Planning Systems, Incorporated
pt point
RAM Random Access Memory
RELO NCOM Relocatable Navy Coastal Ocean Model
RHS Right Hand Side
RMS Root Mean Square

57

NRL/MR/7320—10--9209 TOPS SDD

Acronym Description
SAL Self-attraction/Loading
SDD Software Design Description
SSC Stennis Space Center
SSH Sea Surface Height
SVD Singular Value Decomposition
SWE Shallow Water Equations
T Time
TBC Tidal Boundary Condition
TDB Tidal Database
TG Tide Gauge
TLOSA Tidal Loading-Ocean Self Attraction File
TOPEX TOPography EXPeriment
TOPS Tidal Open-boundary Prediction System
UTC Coordinated Universal Time
VTR Validation Test Report
WVS World Vector Shoreline

58

NRL/MR/7320—10--9209 TOPS SDD

	TABLE OF FIGURES
	1.0 SCOPE
	1.1 Identification
	1.2 Document Overview

	2.0 REFERENCED DOCUMENTS
	2.1 TOPS Software Documentation
	2.2 General Technical References

	3.0 TOPS SOFTWARE SUMMARY
	3.1 Memory Allocation and Code Specifications
	3.2 Code Modifications

	4.0 TOPS SOFTWARE INVENTORY
	4.1 TOPS Components
	4.1.1 TOPS Routines
	4.1.2 TOPS Common Blocks

	4.2 TOPS Software Organization and Implementation
	4.2.1 Directory Structure
	4.2.2 Concept of Execution

	5.0 TOPS DETAILED DESIGN
	5.1 Constraints and Limitations
	5.2 Logic and Basic Equations for OTIS/TOPS
	5.2.1 OTIS Assmimilation Method
	5.2.2 The Representer Method
	5.2.3 TOPS Functionality
	5.2.4 Spectral Dynamics
	5.2.5 Inverse Solution
	5.2.6 Reduced Basis Approach
	5.2.7 The Damping Parameter
	5.2.8 Sampling Strategy for Representers

	6.0 Primary TOPS Fortran Routines
	6.1 Initialization, Setup, and General Subroutines (OTIS/bin)
	6.1.1 (OTIS/bin/blockgen.f)
	6.1.2 (OTIS/bin/crossdat.f)
	6.1.3 (OTIS/bin/iflag16.f)
	6.1.4 (OTIS/bin/j_days.f)
	6.1.5 (OTIS/bin/lat_lon.f)
	6.1.6 (OTIS/bin/makedat.f)
	6.1.7 (OTIS/bin/mix_ave.f)
	6.1.8 (OTIS/bin/obstime.f)
	6.1.9 (OTIS/bin/openfiles.f)
	6.1.10 (OTIS/bin/otis_check_files.f)
	6.1.11 (OTIS/bin/rtloadtopex.f)
	6.1.12 (OTIS/bin/topexinit.f)

	6.2 Primary TOPS Subroutines (OTIS/src)
	6.2.1 Forward Time Step Subroutines
	6.2.1.1 (Otis/src/fwd_ts/interepSAL.f)

	6.2.2 MKB Subroutines
	6.2.2.1 (OTIS/src/mkb/create_A.f)
	6.2.2.2 (OTIS/src/mkb/def_cid.f)
	6.2.2.3 (OTIS/src/mkb/def_form.f)
	6.2.2.4 (OTIS/src/mkb/filter_outliers.f)
	6.2.2.5 (OTIS/src/mkb/height.f)
	6.2.2.6 (OTIS/src/mkb/loadModel.f)
	6.2.2.7 (OTIS/src/mkb/loadModel_uv.f)
	6.2.2.8 (OTIS/src/mkb/lp_tide.f)
	6.2.2.9 (OTIS/src/mkb/make_a.f)
	6.2.2.10 (OTIS/src/mkb/makeB.f)
	6.2.2.11 Astronomical Tide Subroutines (OTIS/src/mkb/nodal.f)
	6.2.2.12 (OTIS/src/mkb/rd_com_line.f)
	6.2.2.13 (OTIS/src/mkb/read_adcp.f)
	6.2.2.14 (OTIS/src/mkb/read_cm.f)
	6.2.2.15 (OTIS/src/mkb/read_rad.f)
	6.2.2.16 (OTIS/src/mkb/read_tg.f)
	6.2.2.17 (OTIS/src/mkb/readTpxo.f)
	6.2.2.18 (OTIS/src/mkb/ts_syn.f)
	6.2.2.19 (OTIS/src/mkb/write_cm.f)
	6.2.2.20 (OTIS/src/mkb/write_rad.f)
	6.2.2.21 (OTIS/src/mkb/write_tg.f)
	6.2.2.22 (OTIS/src/mkb/writeTpxo.f)

	6.2.3 RP_DP Subroutines (OTIS/src/rp_dp)
	6.2.3.1 (OTIS/src/rp_dp/atgf.f)
	6.2.3.2 (OTIS/src/rp_dp/BSI_weights.f)
	6.2.3.3 (OTIS/src/rp_dp/CDG.f)
	6.2.3.4 (OTIS/src/rp_dp/checklim.f)
	6.2.3.5 (Otis/src/rp_dp/constit.f)
	6.2.3.6 (Otis/src/rp_dp/covsc_in.f)
	6.2.3.7 (Otis/src/rp_dp/dcomb.f)
	6.2.3.8 (Otis/src/rp_dp/delta.f)
	6.2.3.9 (Otis/src/rp_dp/diffuse.f)
	6.2.3.10 (Otis/src/rp_dp/ds_subs.f)
	6.2.3.11 (Otis/src/rp_dp/fwd_fac.f)
	6.2.3.12 (Otis/src/rp_dp/glob_case.f)
	6.2.3.13 (Otis/src/rp_dp/glob_case_c.f)
	6.2.3.14 (Otis/src/rp_dp/gsmooth.f)
	6.2.3.15 (Otis/src/rp_dp/h_uv.f)
	6.2.3.16 (Otis/src/rp_dp/inner.f)
	6.2.3.17 (Otis/src/rp_dp/interp_rpx.f)
	6.2.3.18 (Otis/src/rp_dp/ipshift.f)
	6.2.3.19 (Otis/src/rp_dp/lteco.f)
	6.2.3.20 (Otis/src/rp_dp/makeE, makeE_fwd.f)
	6.2.3.21 (Otis/src/rp_dp/mkwts.f)
	6.2.3.22 Model Covariance Smoother Subroutine (Otis/src/rp_dp/modelcov.f)
	6.2.3.23 (Otis/src/rp_dp/out_file_init.f)
	6.2.3.24 Run Parameter Subroutines (Otis/src/rp_dp/param_subs.f)
	6.2.3.25 Posterior Error Calculation Subroutines (Otis/src/rp_dp/pe_subs.f)
	6.2.3.26 (Otis/src/rp_dp/r_sites.f)
	6.2.3.27 (Otis/src/rp_dp/rd_c_alpha.f)
	6.2.3.28 (Otis/src/rp_dp/rd_num.f)
	6.2.3.29 (Otis/src/rp_dp/read_b.f)
	6.2.3.30 (Otis/src/rp_dp/reduce_b.f)
	6.2.3.31 Representer Calculation Program (Otis/src/rp_dp/repx.f)
	6.2.3.32 Representer Calculation Program (Otis/src/rp_dp/rlc.f)
	6.2.3.33 Representer Calculation Program (Otis/src/rp_dp/rpx_to_p.f)
	6.2.3.34 Representer Calculation Program (Otis/src/rp_dp/SALset.f)
	6.2.3.35 (Otis/src/rp_dp/ Sfac.f)
	6.2.3.36 (Otis/src/rp_dp/varest.f)
	6.2.3.37 (Otis/src/rp_dp/wrt_uvsc.f)

	7.0 FORTRAN Common Blocks
	7.1 COMMON Blocks (OTIS/bin)
	7.2 COMMON Blocks (OTIS/rp_dp)

	8.0 TOPS Main Argument Variables
	8.1 Primary TOPS Variables

	9.0 NOTES
	9.1 Acronyms and Abbreviations

