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The HYbrid Coordinate Ocean Model (HYCOM) has been configured for the Gulf of California (GOC) at
1/12� and 1/25� horizontal grid resolution and has been nested inside a basin-scale 1/12� Pacific version
of HYCOM. The nested GOC models are used to study the upper-ocean GOC response to Hurricane Juliette.
The model results indicate that Juliette’s winds forced strong poleward coastal baroclinic currents
(meridional velocity >60 cm/s) along the southwestern coast of the GOC. That reversed the well-observed
mean equatorward currents along the southeastern coast of the Baja California Peninsula. These Juliette-
induced currents forced a transport variation of >0.2 Sv along the entrance of the GOC. In addition,
Juliette’s winds increased the mixed layer depth (from �5 m to �40 m) and induced strong upwelling
(vertical velocity >30 m/day) along the southeastern coast of the Baja California Peninsula. The model
simulated upwelling is corroborated by model independent analysis of SeaWiFS chlorophyll-a satellite
measurements. During its early stage Juliette generated a coastally trapped wave (CTW) along mainland
Mexico. After its generation the CTW propagated poleward along the coasts of the mainland and GOC,
where it reached the shelf break between the 28�N and 29�N and it reversed the direction and propagated
equatorward along the western coast of the GOC. Next, the CTW propagated to the southwestern coast of
the GOC, where it partially modulated the intensity of the Juliette-generated coastal upwelling.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

‘‘The eastern tropical Pacific area of cyclone formation is rela-
tively small compared with other cyclogenetic regions, but it ac-
counts for nearly 17% of the global total of tropical storm
development, with an average value of 14 storms per year (Hasten-
rath, 1991)” (Amador et al., 2006). Hence the eastern tropical Paci-
fic area of generation of tropical cyclones is one of the most prolific
regions of the planet, however, so far as we are aware, only five
articles (Christensen et al., 1983; Enfield and Allen, 1983; Merri-
field, 1992; Gjevik and Merrifield, 1993; Zamudio et al., 2002) have
investigated some of the oceanographic processes generated by the
passage of the tropical cyclones on the eastern Pacific. These valu-
able articles have mainly concentrated on the study of the evolu-
tion of coastal waves generated by the tropical cyclones.

On September 25, 2001 Hurricane Juliette sea-level pressure
dropped to 923 mb. That is the second lowest measured sea-level
pressure on record in the northeastern tropical Pacific Ocean. Asso-
ciated with that low pressure, Juliette’s winds intensified to 64 m/s
and Juliette was upgraded to category 4 hurricane on the Saffir-
Simpson Hurricane scale (http://www.nhc.noaa.gov). In general,
Juliette followed an offshore pathway approximately parallel to
ll rights reserved.

il (L. Zamudio).
the west coast of Mexico (Fig. 1a) and Juliette’s winds generated
a coastally trapped wave (CTW) between Acapulco and Manzanillo
and lowered the sea surface temperature �5 �C (Zamudio et al.,
2002). During its path Hurricane Juliette neared the entrance of
the Gulf of California generating significant variability on the circu-
lation and volume transport, and forcing coastal upwellings.
Hence, using the HYbrid Coordinate Ocean Model (HYCOM) as
the main research tool, the present study documents some of the
oceanographic processes generated by Hurricane Juliette around
the southern end of the Gulf of California (GOC).

Since HYCOM is becoming a community model, the publicly
accessible (http://www.hycom.org/dataserver) daily output of
pre-operational global HYCOM can be used as boundary conditions
for regional models. The coupling of global (or basin scale) to regio-
nal HYCOM is a one-way (from the outer grid to the inner grid) ro-
bust routine, which has been documented by Bleck et al. (2001)
and Halliwell et al. (2009). This HYCOM to HYCOM coupling rou-
tine has been used to isolate dynamical processes at relatively
low computational cost (Prasad and Hogan, 2007; Zamudio and
Hogan, 2008; Zamudio et al., 2008; Kourafalou et al., 2009; Halli-
well et al., 2009; Gierach et al., 2009) and has been extended to
nest the Regional Ocean Model System (ROMS) into Atlantic and
Global HYCOM. It has also been used in process studies along the
West Florida Shelf (Barth et al. (2008a,2008b,2008c)) and the
Philippine Archipelago (Han et al., 2009). Thus, the present study

http://www.nhc.noaa.gov
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Fig. 1. (a) The path of Hurricane Juliette is represented with the blue line. The locations of Acapulco (ACA), Manzanillo (MNZ), Cabo Corrientes (CC), Mazatlán (MZT), Guaymas
(GUA), Puerto Peñasco (PEN), and Cabo San Lucas (CSL) are indicated. The black rectangle indicates a domain of the 1/12� GOC and 1/25� GOC nested HYCOM. The four green
west-east lines inside of the GOC indicate the positions of the cross-sections where the transport of Fig. 8 is calculated. Time series of observed (black line) and 1/12� Pacific,
1/12� and 1/25� GOC HYCOM simulated (green, red, and blue lines, respectively) sea level at: (b) Manzanillo, (c) Mazatlán, (d) Guaymas, (e) Puerto Peñasco, and (f) Cabo San
Lucas. The observed data have been de-tided, corrected for atmospheric pressure loading effects and a 1-day running mean filter has been applied. The correlation coefficient
(r) between the observed and simulated time series is indicated.
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exploits the HYCOM to HYCOM nesting capability to simulate the
GOC response to Hurricane Juliette.

The upper-ocean (0–100 m) mean circulation at the entrance of
the GOC is characterized by eastern boundary poleward currents
along the western coast of mainland Mexico and by western
boundary equatorward currents along the eastern coast of the Baja
California Peninsula (Castro et al., 2000; Zamudio et al., 2008).
However, the model results of this study show that: (1) Hurricane
Juliette’s winds reversed this mean circulation generating strong
poleward coastal-attached currents along the eastern coast of the
Baja California Peninsula, (2) Juliette’s winds induced strong vari-
ability in the volume transport at the entrance of the GOC, (3) Jul-
iette’s winds forced strong upwelling along the southwestern coast
of the GOC, and (4) Juliette’s winds generated a CTW, which was
measured by several tide gauges along the coast. During its propa-
gation this CTW modulates the evolution of the upwelling forced
by Juliette at the entrance of the GOC.
2. Model

HYCOM is the HYbrid vertical Coordinate Ocean Model, which is
isopycnal in the open stratified ocean, terrain-following in shallow
coastal regions, and z-level in mixed layer and unstratified regions.
This generalized vertical coordinate approach is dynamic in space
and time via the layered continuity equation that allows a smooth
dynamical transition between the coordinate types. HYCOM (Bleck,
2002) was developed from the Miami Isopycnic Coordinate Ocean
Model (MICOM) using the theoretical foundation for implementing
a hybrid coordinate system (Bleck and Benjamin, 1993). Since a
single vertical coordinate (depth, density, or terrain-following sig-
ma) cannot by itself be optimal everywhere in the ocean, the hy-
brid approach is an option that uses the best of the three vertical
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Fig. 2. Sea surface height snapshots (color contours in cm) over a subregion for six differe
6 hourly winds and daily averaged thermal forcing. The different positions of the coastally
12� and 1/25� GOC nested HYCOM.
coordinates depending of the ocean characteristics. HYCOM appli-
cation to the Pacific and Gulf of California modeling has been dis-
cussed by Metzger et al. (2004), Zamudio et al. (2004), López et al.
(2005), Cheng et al. (2007), Kelly et al. (2007), Kara et al. (2008),
and Zamudio et al. (2008).

The eddy-resolving (1/12� equatorial resolution) Pacific HYCOM
domain extends from 20�S to 65.8�N and from 98.9�E to 77.6�W, and
both the 1/12� and 1/25� nested GOC HYCOM domains extend from
118�W to 105�W and from 20�N to 32�N. The geographical extension
of these two nested GOC models is indicated by a black rectangle in
Fig. 1a. Note that the GOC HYCOM domain is larger than the real
GOC. These three HYCOM configurations are identically forced with
1� horizontal resolution six-hourly winds and daily averaged heat
fluxes from the Fleet Numerical Meteorology and Oceanography
Center’s Navy Operational Global Atmospheric Prediction System
(NOGAPS) (Rosmond et al., 2002), and they include monthly rivers
and turbidity forcing (Kara et al., 2005a,b,c). Pacific HYCOM ran for
all of 2001 while the nested GOC HYCOM simulations integrate over
September and October 2001. In addition, the models include realis-
tic bottom topography and coastline geometry that are based on a
modified version of the 1/30� NRL DBDB2 topography (http://
www.7320.nrlssc.navy.mil/DBDB2_WWW). The models use the 10
meter isobath as a land-sea boundary, include 20 vertical coordinate
layers, allow isopycnals to intersect sloping topography by allowing
zero thickness layers, and do not include ocean data assimilation. In
addition, the models include five different embedded ocean mixed
layer sub-models, which can be used to simulate the variability of
the mixed layer. In this particular study, the K-Profile Parameteriza-
tion mixed layer model of Large et al. (1994) is used.

Initial and lateral boundary conditions for the nested GOC
regional models are provided by Pacific HYCOM. The different
regional applications and the model-data comparisons included
in the works of Prasad and Hogan (2007), Barth et al. (2008a,b,c),
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Zamudio and Hogan (2008), Zamudio et al. (2008), Kourafalou et al.
(2009), Halliwell et al. (2009), Gierach et al. (2009), and Han et al.
(2009) provide some validation for the use of the HYCOM nesting
capability (regional-ROMS or regional-HYCOM inside global or ba-
sin scale HYCOM).
(a)
31
3. Results and discussion

This section is divided in two subsections. The first one is de-
voted to the study of the generation and propagation of the down-
welling CTW forced by Juliette along mainland Mexico. Since, this
wave plays a key role on the modulation of the coastal upwelling
generated by Juliette at the entrance of the GOC, the accuracy in
the simulation of this CTW is essential. Thus, a suite of numerical
simulations is analyzed. All these simulations are nested inside of
Pacific HYCOM and differ in horizontal resolution, extension of
the nested domain, and resolution of the wind product used to
force the model. The second subsection includes the circulation,
volume transport, and coastal upwelling forced by Juliette and
the role of the mainland CTW in the evolution of the coastal
upwelling.
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Fig. 3. (a) Sea surface height root mean square (RMS) difference (color contours in
cm) between 1/12� Pacific HYCOM and 1/12� nested GOC HYCOM over the GOC
domain. (b) Salinity RMS difference (color contours in PSU) between 1/12� Pacific
HYCOM and 1/12� nested GOC HYCOM over a cross-section along the white west-
east line at the entrance of the GOC, which is indicated in panel (a). Both panels
cover the period September and October 2001.
3.1. The mainland coastally trapped wave

3.1.1. Generation and propagation
Juliette’s coastal poleward winds generated a baroclinic CTW

between Acapulco and Manzanillo that was clearly measured
(maximum amplitude of �22 cm) by the tide gauge at Manzanillo,
and simulated (maximum amplitude of �19 cm) by Pacific HYCOM
(Fig. 1b). Juliette’s winds continued forcing the CTW and conse-
quently it propagated poleward as a forced CTW entering the
GOC HYCOM domain (represented by a black rectangle in Fig. 1a)
through the southern open boundary on September 26 (Fig. 2). In
addition, the wave increased its maximum amplitude to �40 cm
(measured) and �20 cm (simulated) in the tide gauge measure-
ments at Mazatlán, Guaymas, and Puerto Peñasco (Fig. 1c–e). This
error of 50% in the simulated amplitude of the CTW is reduced in
the results presented in Section 3.1.4. The alongshore and cross-
shore scales of the CTW simulated by Pacific HYCOM were
�580 km and �64 km, respectively (Fig. 2). The wave phase speed
was �2.7 m/s and it generated near-shore, near-surface cur-
rents >1 m/s, and subsurface currents >0.50 m/s. Furthermore,
Hurricane Juliette generated a second CTW along the southern
tip of the west coast of the Baja California Peninsula (BCP) that is
clearly recognized in the tide gauge observations at Cabo San Lucas
(maximum amplitude of �21 cm), and the model simulations
(maximum amplitude of �10 cm) (Figs. 1f and 2d). After its gener-
ation, this second CTW propagated northward and was rapidly
weakened (Fig. 2d–f) by Juliette’s upwelling favorable winds. Con-
sequently, only remnants of this CTW exit the GOC model domain
through the northern boundary of the West Coast of the BCP. Thus,
this second CTW is not well suited for studying its effects inside of
the GOC. In fact, this wave never enters the GOC. But, the first CTW
generated by Hurricane Juliette (as well as the hurricane itself)
originated outside of the black nested domain of Fig. 1a and both
entered into the nested GOC domain as well-defined signals
through the southern boundary (Fig. 2).

Note that the phase of the first and the second CTWs is well
simulated (correlation coefficients >0.90 for Mazatlán, Guaymas,
and Cabo San Lucas, and >0.83 for Puerto Peñasco) by the three dif-
ferent model simulations of Fig. 1. Nevertheless, those simulations
underestimate the amplitude of the two waves. Why is the ampli-
tude of the two waves underestimated by Pacific and GOC HY-
COM? The regional GOC HYCOM is nested inside of Pacific
HYCOM and an intrinsic problem of the nested approach is that
some level of error is always introduced across the open bound-
aries used to transmit the oceanic signals from the larger domain
to the nested domain. Then, the underestimation of the amplitude
of the two waves could be due to the nested boundaries, and/or the
1� resolution of the atmospheric forcing, which is not fine enough
to simulate the small wind scales generate by Hurricane Juliette.
Model results, which validate the nesting approach and the use
higher resolution winds to force the regional ocean models are pre-
sented and discussed in the next three subsections.
3.1.2. Validation of the nesting approach
If the existence of high-resolution regional ocean models

(nested inside of lower-resolution models) is in part due to the
ability of these models to simulate short time and space scale
processes at relatively low computational cost, then what is the
value of the 1/12� GOC simulation nested inside of the 1/12� Pacific
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simulation? In the case of the 1/12� experiments (green and red
time series in Fig. 1b–f) the nested GOC and the Pacific configura-
tions have the same horizontal and vertical resolution (1/12�, and
20 layers, respectively). Thus, considering that the GOC and the Pa-
cific models have identical forcing, any difference between the
simulations is due to the nested boundaries. Also, at 1/12� resolu-
tion the results of the GOC configuration can be compared and val-
idated (one to one) with the results of the Pacific configuration.

Here, we use a root mean square (RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðPACi �GOCiÞ

n�1

2
r

), where

PAC and GOC are the results from the Pacific and Gulf of California
simulations, respectively, n is number of data points, and i is time
(space) if producing a map (time series) as a measure of error. It
will be used to find the boundary condition parameters that pro-
duce the smallest RMS and most accurately preserve the CTW as
it propagates through the nested GOC boundaries.

Two examples of the RMS difference obtained are shown in
Fig. 3. That includes the SSH RMS difference between the 1/12�
nested GOC model and the 1/12� Pacific model over the GOC do-
main for September and October 2001 (Fig. 3a). The basin-wide
RMS difference is <1 cm and this is small compared to the actual
SSH range (�15 to 40 cm) and with the CTW amplitude >35 cm
(Figs. 1 and 2). In addition, we calculate the salinity RMS difference
between the 1/12� nested GOC model and the 1/12� Pacific model
over a cross-section along a west-east line at 23.2�N (close to the
entrance of the GOC) for September and October 2001 (Fig. 3b).
That shows a maximum RMS error (<.1 PSU) close to the sea sur-
face, but the RMS error in most of the cross-section is �0, which
means that for most of the water column, the 1/12� nested GOC
model reproduces the salinity field simulated by the 1/12� Pacific
model during September and October 2001. Later, the boundary
condition parameters (which produce the smallest RMS difference)
were used in 1/25� GOC nesting experiments.

3.1.3. The 1/25� nested GOC
Since our interest in nested high-resolution regional models is

based on their ability to simulate short-scale processes at low com-
putational cost, then a 1/25� nested GOC model was configured for
the domain indicated by the black rectangle in Fig. 1a. Thus, the
only difference between the red (1/12�) and blue (1/25�) time
series in Fig. 1c–f is the horizontal grid resolution. The time series
and correlation coefficients of Fig. 1c–f show, in essence, the same
degree of accuracy for the propagation of the wave into both the
1/12� and 1/25� nested models. That is supported by the SSH snap-
shots on September 29, 2001, which show similar horizontal and
vertical features and basically the same geographical location for
(a)

1/12° PAC

CTW
←

243 245 247 249 251 253
 

−15 −10 −5 0 5 1

243 245 247 24

21

23

25

27

29

31

Fig. 4. Sea surface height snapshots (color contours in cm) for September 29, 2001 sim
HYCOM. The coastally trapped wave (CTW) was generated by Hurricane Juliette outside
boundary.
the CTW simulated by 1/12� Pacific, 1/12� GOC, and 1/25� GOC
(Fig. 4). In addition, note the lack of significant differences between
the amplitude of the CTW simulated with the 1/12� and 1/25� GOC
models, which indicates that the 1/12� resolution is fine enough to
resolve this wave and to resolve the Rossby radius of deformation
of �30 km of the GOC region. However, it is important to keep in
mind the intrinsic limitations of the simulations. In order to simu-
late the evolution of CTWs it is necessary to incorporate the shelf’s
topography and coastline’s variations as accurately as possible, and
clearly the 1/12� or even the 1/25� resolution can not incorporate
the small features of the capes around which the CTW propagates.

3.1.4. 1� NOGAPS versus 27 km COAMPS forcing
The results and discussion included in Sections 3.1.2 and 3.1.3

suggest that the underestimation of the amplitude of the mainland
CTW is due to the 1� resolution of the atmospheric forcing and not
the 1/12� resolution of the ocean model. We develop two new
experiments to provide some insight on the effects of the atmo-
spheric forcing resolution on the amplitude of that CTW. In these
experiments we use two different resolutions for the atmospheric
forcing: 1� NOGAPS (which is the forcing used in the three simula-
tions of Figs. 1–4) and 27 km Central America Coupled Ocean
Atmosphere Prediction System (COAMPS). The horizontal resolu-
tion is 1/25� and in these two experiments the GOC HYCOM do-
main extends from 118�W to 105� W and from 14�N to 32�N
(the geographical extension of these nested GOC models is indi-
cated by the red rectangle in Fig. 5a). Hence, Hurricane Juliette’s
CTW forms within the new GOC domain and does not have to be
passed across any nested boundary and consequently no error
can be attributed to the presence of nested boundaries.

Fig. 5 includes observed and simulated SSH at four different
locations along the West Coast of mainland Mexico and at one
location on the tip of the BCP. In general, there is fair qualitative
and quantitative (correlation coefficients ranging from 0.83 to
0.97) agreement between the observed and simulated phase (with-
in all the experiments) of the CTW. But is there any progress in the
simulation of the amplitude of the CTW? The three experiments of
Fig. 1 clearly underestimate the amplitude of the wave. Increasing
the resolution of the wind forcing (from 1� NOGAPS (blue time ser-
ies in Fig. 5b–f) to 27 km COAMPS (red time series)) led to a large
improvement in the simulated SSH along the Mexican west coast
stations (from Manzanillo to Puerto Peñasco), with the station at
Guaymas (Fig. 5d) showing the largest improvement in the ampli-
tude of the CTW. It is important to note that the improvement in
the simulation of SSH is not due to the difference in the domain
extent (compare Fig. 1a versus Fig. 5a), since the SSH response is
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Fig. 5. (a) The path of Juliette is represented with the blue line. The locations of Acapulco (ACA), Manzanillo (MNZ), Cabo Corrientes (CC), Mazatlán (MZT), Guaymas (GUA),
Puerto Peñasco (PEN), and Cabo San Lucas (CSL) are indicated. The red rectangle indicates a domain of the 1/25� GOC nested HYCOM. Time series of observed (black line) and
1/12� Pacific HYCOM (green line forced by 1� NOGAPS), 1/25� GOC HYCOM (red line forced by 27 km COAMPS), and 1/25� GOC HYCOM (blue line forced by 1� NOGAPS)
simulated sea level at: (b) Manzanillo, (c) Mazatlán, (d) Guaymas, (e) Puerto Peñasco, and (f) Cabo San Lucas. The observed data have been de-tided, corrected for atmospheric
pressure loading effects and a 1-day running mean filter has been applied. The correlation coefficient (r) between the observed and simulated time series is indicated.
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similar in the two domains when using NOGAPS forcing as shown
by the blue time series of Figs. 1c–e and 5c–e. Over all, the
improvement in the amplitude of the CTW is due to the increase
in the resolution of the atmospheric forcing, which on 27 km grid
COAMPS is better able to simulate the small wind scales generated
by Hurricane Juliette than can 1� resolution NOGAPS (not shown).
3.2. Upper-ocean currents, transport, and upwellings generated by
Juliette

3.2.1. Upper-ocean currents and transport
The upper-ocean mean currents at the entrance of the GOC are

characterized by broad and weak poleward eastern boundary cur-
rents along mainland Mexico that are compensated by narrow and
strong equatorward western boundary currents along the eastern
coast of the BCP (Fig. 6a). Although these mean currents have a
strong seasonal fluctuation, the equatorward currents attached to
the eastern coast of the BCP prevail throughout the year as
displayed in the monthly means of Fig. 4 in Zamudio et al.
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Fig. 6. Meridional currents (color contours in cm/s) simulated with HYCOM over
the cross-section indicated in Fig. 3: (a) 7-year mean (adapted from Zamudio et al.
(2008)), (b) instantaneous currents on September 28, 2001, and (c) 9-day mean for
the period September 25 to October 3, 2001. Positive currents indicate northward
flow.
(2008). However, this upper-ocean circulation was strongly altered
by Hurricane Juliette. During the four days of its passage, Juliette’s
winds blew poleward along the entrance of the GOC (Fig. 7). Those
winds reversed the direction of the western boundary currents
along the eastern coast of the BCP (from equatorward to poleward)
as evidenced by the instantaneous upper-ocean currents on
September 28, 2001, which are mostly strongly poleward
(Fig. 6b). Since, these poleward flows were maintained for several
days, they generated a strong coastal baroclinic jet along the east-
ern coast of the BCP (Fig. 6c). Note the reversal feature between the
long-term and nine-day upper-ocean mean currents of Fig. 6a and
c (respectively) and how the currents along the eastern coast of the
BCP are basically mirror images with opposite signs.

Juliette’s poleward winds not only reversed the upper-ocean
currents, they also generated a strong northward transport at the
entrance of the GOC (Fig. 8). This transport decreases northward,
but it is simulated as far north as 30�N. Since the GOC is a semi-en-
closed sea, then over time scales of days the imbalance in volume
storage in the GOC is close to zero. Nevertheless, Juliette’s winds
forced at the entrance of the GOC a northward transport of more
than 0.2 Sv on September 28, 2001. After the northward transport
ceased an equally intense southward transport was produced to
balance the excess of water introduced by the northward transport
(Fig. 8). Strub and James (2002) and López et al. (2005) reported
fluctuations in the transport along the complete entrance of the
GOC due to the 1997 El Niño event and the passage of equatorially
generated intraseasonal CTWs. That means those transport varia-
tions were indirectly induced by remote equatorial winds. Now,
Fig. 8 shows model evidences of the direct effect of the wind on
the transport at the entrance of the GOC.

3.2.2. Coastal upwellings
When Hurricane Juliette was approaching the GOC, the winds

along the southeastern coast of the BCP changed from basically
no wind on September 25–26, to augmented upwelling favorable
winds on September 27, to strong upwelling favorable winds on
September 28–30 (Fig. 7). A snapshot sequence of temperature
cross-section along a west-east line at 23.2�N (close to the en-
trance of the GOC) illustrates the upwelling event (Fig. 9). On Sep-
tember 25 and 26 the temperature field is characterized by a
strong horizontal stratification and a shallow mixed layer along
the complete cross-section (Fig. 9a and b). In particular, close to
the BCP coast the thermocline (based on the observations of Castro
et al. (2000, 2006) the depth of the 20 �C isotherm is used as an
indicator of the depth of the thermocline in the present study)
and the base of the mixed layer were located at �60 m and �5 m
depth, respectively. In contrast, close to the coast of mainland Mex-
ico the thermocline and the base of the mixed layer were located
deeper at �90 m and �20 m, respectively. Those are signatures of
the coastal-attached poleward Mexican Coastal Current (Zamudio
et al., 2007, 2008; Godínez et al., in press). Next, on September
27 Juliette neared the BCP (Fig. 7) generating a weak cooling in
the upper �20 m of the water column and a deepening of �10 m
in the mixed layer. Those effects are more evident close to the
BCP coast (Fig. 9c). A day latter, Juliette get closer to the BCP
(Fig. 7) and forced a transient downwelling close to the BCP coast
that moved the thermocline and the base of the mixed layer to
�80 m and �30 m depth, respectively (Fig. 9d). However, close to
the coast of mainland Mexico a downward movement of the ther-
mocline was occurring at this time as shown by the deeper ther-
mocline in Fig. 9d than in Fig. 9a–c. This downwelling effect is
expected, because of the onshore Ekman transport induced by
the wind along this coast and because the mainland downwelling
CTW (which is characterized by the downward movement of the
thermocline during its propagation) is propagating along the
southeastern coast of the GOC during September 28 (Fig. 10).
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From September 29 to October 3 Juliette’s winds generated a
strong offshore Ekman transport along the southeastern coast of
the BCP, deepened the mixed layer to �40 m depth in some regions
along the cross-section, and forced a strong upwelling event that
generated a vertical velocity > 30 m/day while raising the thermo-
cline to �20 m depth in 2 days (Fig. 9d–f). It also created and main-
tained a strong upwelling front for several days as evidenced by
the upward slope of the isotherms towards the BCP coast from Sep-
tember 29 to October 3 (Fig. 9f–i). In addition, note the distribution
of the thermocline at �252� on October 3 (Fig. 9i). That could be
indicative of Juliette generated internal waves as disscused by Gill
(1984) for internal waves induced by any moving storm and by
Keen and Allen (2000) and Jaimes and Shay (in press) for internal
waves forced by Hurricanes Andrew, Katrina, and Rita,
respectively.

It is interesting to note that even though Juliette’s winds forced
a strong upwelling, they did not ventilate the thermocline and
generate ‘‘Full Upwelling” as defined by Csanady (1977). Why did
Juliette not generate a ‘‘Full Upwelling” along the eastern coast of
the BCP? A plausible answer to this question is as follows. Fig. 10
includes a snapshot sequence of subsurface (150 m depth) currents
showing the currents forced by Juliette and the currents associated
with the evolution of the mainland CTW inside of the GOC. Those
two features are indicated by the yellow sign ‘‘JC” and the white
sign ‘‘CTW”, respectively. The subsurface currents on September
27 neither include evidence of the presence of the CTW nor of
Juliettes’s currents (Fig. 10a). The CTW arrives to the GOC on
September 28 and it is characterized by subsurface alongshore cur-
rents with maximum speeds of �50 cm/s. During this day Juliette’s
subsurface currents are not evident yet (Fig. 10b). Next, from Sep-
tember 29 to October 1, the CTW continues its northward propaga-
tion interacting with the capes and ridges along the eastern coast
of the GOC. At the same time, Juliette forced strong poleward
subsurface currents along the southwestern coast of the GOC
(Fig. 10c–e). By October 2 the CTW reaches the shelf break between
28�N and 29�N when a significant part of the CTW reversed the
direction and propagated equatorward along the western coast of
the GOC. The region of this reversal is indicated by the yellow sign
‘‘CTW” in Fig. 10f. The reversal of a CTW propagating along the
coast of the GOC was previously modeled by Martínez and Allen
(2004). Furthermore, the Juliette induced poleward subsurface cur-
rents along the southwestern coast of the GOC prevail as well-de-
fined signal at this time (Fig. 10f–g). However, on October 3 the
CTW reaches the southwestern coast of the GOC and starts to inter-
act with the Juliette’s poleward currents. Finally, from October 4 to
October 5 the CTW propagates around the southern tip of the Baja
California Peninsula opposing and partially weakening the Juliette
induced poleward subsurface currents and the development of the
‘‘Full Upwelling”.

The inclusion of the mixed layer depth in the temperature
cross-sections of Fig. 9 facilitates the visualization/separation of
the temperature fluctuations due to mixing and/or upwellings.
That is not a trivial separation when both mixing and upwelling
are induced by the same hurricane in the same region (Babin
et al. 2004). Thus, the Juliette induced-upwelling injected cold
nutrient-rich subsurface water into the euphotic zone. Next, the
sunlight stimulated phytoplankton growth producing a phyto-
plankton-bloom and this bloom was measured by the SeaWIFS sa-
tellite as elevated concentrations of chlorophyll-a along the
southeastern coast of the BCP (Fig. 11). Note the low concentration
of chlorophyll-a during the period September 25–28, along the
southeastern coast of the BCP, and how this chlorophyll-a concen-
tration increases dramatically under the influence of the Hurricane
Juliette (September 29 and 30). After the passage of the hurricane
the chlorophyll-a concentration decreases slowly returning to a le-
vel closest to a pre-Juliette level in �3 weeks (not shown). To the
best of our knowledge, Figs. 9 and 11 represent the first modeling
and observational evidence for the existence of hurricane-induced
upwelling along the east coast of the BCP. However, they are not
rare occurrences since this Juliette-induced upwelling and the
associated phytoplankton-bloom are similar to the satellite obser-
vations reported by Babin et al. (2004) of hurricane-induced phyto-
plankton blooms in the oceanic desert of the Sargasso Sea region of
the North Atlantic. The upper-ocean biophysical response of the
Gulf of Mexico to the major hurricanes of 2005 was also reported
by Gierach and Subrahmanyam (2008).
4. Summary and concluding remarks

The upper-ocean response of the Gulf of California (GOC) to
Hurricane Juliette is studied using two different horizontal grid
resolutions (1/12� and 1/25�) of the HYbrid Coordinated Ocean
Model (HYCOM). These GOC models are nested inside of the
eddy-resolving (1/12� equatorial resolution) Pacific HYCOM,
which extends from 20�S to 65.8�N. The latitudinal extent of
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Fig. 9. Temperature (color contours in �C) snapshots for nine different dates in September–October 2001 as simulated with GOC-HYCOM over a cross-section along a west-
east line at �23.2�N (close to the entrance of the GOC), which has the coast of the Baja California Peninsula on the west and the coast of mainland Mexico on the east. To help
with the visualization of the Juliette-generated upwelling the 20 �C isotherm (thick black line) is added. The simulated diagnostic mixed layer depth is represented by the thin
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the Pacific model and the nested GOC approach allow direct
examination of the connectivity of the GOC with the Pacific
Ocean at high resolution and relatively low computational cost
and the free propagation of signals like coastally trapped waves
from the Pacific Ocean to the GOC. Thus, the propagation of a
Juliette-generated coastally trapped wave (CTW) along the GOC
has been studied using two configurations of GOC HYCOM,
which are forced with realistic high-frequency winds, heat
fluxes, rivers, and turbidity.

To ensure the proper connectivity between the Pacific and
the GOC nested models, the sensitivity of the nested boundary
condition parameters was examined using a suite of experi-
ments that use the 1/12� nested GOC model for the particular
case of the CTW generated by Hurricane Juliette, outside of
the GOC domain, and which propagated through the GOC
boundaries. Since the nested GOC and the Pacific configurations
have the same horizontal resolution (1/12�) and both used the
same atmospheric forcing, any difference between the results
of the GOC and the Pacific simulations is attributed to the
nested boundaries. An advantage of studying the sensitivity of
the boundary conditions parameters from the 1/12� GOC model
(instead of the 1/25� GOC model) nested inside the 1/12� Pacific
model is that the results from the 1/12� GOC configuration can
be directly validated (one to one) with the results from the 1/
12� Pacific configuration. The results of those simulations were
compared and validated (via root mean square difference) with
the 1/12� Pacific model, which is the provider of the nested
boundary conditions (Fig. 3). Secondly, the sensitivity of the
amplitude and phase of the CTW to the atmospheric forcing res-
olution was investigated using two different wind products (1�
resolution NOGAPS and 27 km resolution COAMPS) which was
tested in the 1/25� GOC models. The results were compared
with sea surface height measured by coastal tide gauges along
the west coast of Mexico and they show some improvement
in the simulation of the amplitude of the CTW when the
COAMPS wind forcing is used. That is an expected result, since
the 27 km of resolution is able to better simulate the small
wind scales generated by Hurricane Juliette than the 1� resolu-
tion NOGAPS.

Model results simulate the well observed (e.g. Castro et al.
(2000)) upper-ocean mean circulation at the entrance of the
GOC. That is characterized by eastern (western) boundary pole-
ward (equatorward) currents along the southeastern (south-
western) coast of the GOC. However, the direct effect of
Juliette’s winds reversed this mean circulation and forced a
strong poleward coastal baroclinic jet along the southeastern
coast of the BCP (Fig. 6). The direct effect of Juliette’s winds
is also reflected on the northward transport’s increment
of >0.2 Sv at the entrance of the GOC. Since the GOC is a
semi-enclosed sea, after the northward transport ceased an
equally intense southward transport was produced to balance
the excess of water introduced by the northward transport
(Fig. 8). Additionally, Juliette’s winds increased the mixed layer
depth from �5 m to �40 m in some regions along the entrance
of the GOC. Moreover, Juliette’s winds forced coastal upwellings,
which raised the thermocline at the speed of �30 m/day and
generated a upwelling front that lasted several days and was
clearly captured by the SeaWIFS chlorophyll-a satellite measure-
ments (Figs. 9 and 11). This Juliette-generated upwelling was
partially weakened by the CTW, when it propagated along the
southwestern coast of the GOC and interacted with the Juliette’s
poleward currents (Fig. 10).
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Fig. 11. SeaWiFS chlorophyll-a images for six different dates in September 2001. Blue and green (yellow and red) colors represent low (high) chlorophyll-a concentration.
Clouds and land are black. This data was obtained from the NOAA CoastWatch Program (NASA’s Goddard Space Flight Center – GeoEye) publicly accessible web site (http://
coastwatch.pfel.noaa.gov/infog/SH_chla_las.html).
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