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A New Mixing Diagnostic
and Gulf Oil Spill Movement
Igor Mezić,1* S. Loire,1† Vladimir A. Fonoberov,2† P. Hogan3

Chaotic advection has served as the paradigm for mixing in fluid flows with simple time dependence.
Its skeletal structure is based on analysis of invariant attracting and repelling manifolds in
fluid flows. Here we develop a finite-time theory for two-dimensional incompressible fluid flows
with arbitrary time dependence and introduce a new mixing diagnostic based on it. Besides
stretching events around attracting and repelling manifolds, this allows us to detect hyperbolic
mixing zones. We used the new diagnostic to forecast the spatial location and timing of oil washing
ashore in Plaquemines Parish and Grand Isle, Louisiana, and Pensacola, Florida, in May 2010
and the flow of oil toward Panama City Beach, Florida, in June 2010.

Chaotic advection theory (1–3) explains
the phenomenon of mixing behavior in
fluid flows with simple time dependence.

This is achieved using hyperbolicity concepts
associated with attracting and repelling lines, as
well as hyperbolic zones with strongly chaotic
behavior (4). However, chaotic advection and
mixing phenomenology in that case depend on
the recurrence of hyperbolic behavior and thus
are difficult to extend to analyze flows with com-
plex time dependence, such as those occurring in
the ocean and atmosphere. Detecting geometric
structures has become increasingly important in
analyzing fluid flows with complex time depen-
dence because of the realization that even tur-
bulent flows feature Lagrangian structures that
can be understood from the perspective of finite-
time dynamical systems theory (5–7). This has led
to the development of the theory of Lagrangian
coherent structures (8), within which researchers
focused on finite-time behavior, such as find-
ing the attracting or repelling finite-time invar-
iant curves (5, 6, 9, 10). In (11), an alternative
approach stems from studies of the statistical
properties of dynamical systems, showing that
Lagrangian time-averages of physically relevant
functions on state space enable the detection of
invariant sets of dynamical systems, including
experimentally realizable fluid flows with simple
time dependence (12–14). Here we develop this
theory further, based on the gradient of the av-
erage Lagrangian velocity field.

Consider the time evolution of a fluid flow on
time interval t = [t0, t0 + T ]. The dynamics of fluid
particles in an incompressible two-dimensional
(2D) flow on a domain A ⊂ R2 is given by

ẋ ¼ v(x,t) ð1Þ

where ∇ · v = 0. The position of the fluid particle
starting at time t0 at a cartesian spatial location x0 =
(x0, y0) moves to (x(t0 + T, x0, y0, t0), y(t0 + T, x0,
y0, t0)) at time t0 + T

x(t0 þ T ,x0,y0,t0) ¼ x0 þ ∫
t0þT

t0
vx(t,x(t0 þ

t,x0,y0,t0), y(t0 þ t,x0,y0,t0))dt ð2Þ

y(t0 þ T ,x0,y0,t0) ¼ y0 þ ∫
t0þT

t0
vy(t,x(t0 þ

t,x0,y0,t0), y(t0 þ t,x0,y0,t0))dt ð3Þ

If we denote by v*(x0, t0, T ) = (vx*(x0, y0,
t0, T ),vy*(x0, y0, t0, T )) the average La-
grangian velocity on t starting from x0, we have

x(t0 þ T ,x0,y0,t0) ¼ x0 þ Tv∗x (x0,y0,t0,T ) ð4Þ

y(t0 þ T ,x0,y0,t0) ¼ y0 þ Tv∗y (x0,y0,t0,T ) ð5Þ
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and Department of Mechanical Engineering, University of
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Barbara, CA 93101, USA. 3Naval Research Laboratory, Stennis
Space Center, MS 39529, USA.
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Fig. 1. (A) A cellular, divergence-free velocity field described in Eq. 6. (B) Hypergraph map for the
velocity field shown in (A), for T = 0.94248. (C) Poincaré map for the time-periodic, divergence-free
perturbation of the velocity field shown in (A) by a vector field described in Eq. 7, with e = 0.1. (D)
Hypergraph map for the time-periodic velocity field whose Poincaré map is shown in (C), for T = p.
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We call v*(x0, t0, T) the mesochronic veloc-
ity field (15).

We denote by ftþT
t0

ðx0Þ as the map of A
mapping the fluid particle starting at time t0 at
point x0 ∈ R2 to its position x at time t0 + T. This
map represents the solution of Eq. 1. Its derivative
DftþT

t0
ðx0Þ is the Jacobian matrix J(x0) = ∂x/∂x0.

Because v is divergence-free, the eigenvalues l1,2(x0)
of J(x0) satisfy det(J(x0)) = l1(x0)l2(x0) = 1. Thus,
they are either real with l1(x0) = 1/l2(x0) or
complex-conjugate on the unit circle, |l1,2(x0)| =
1. We call a trajectory starting at x0 mesohyper-
bolic (hyperbolic on average) if l1,2(x0) are real
and different from 1, and mesoelliptic (elliptic on
average) if the eigenvalues are complex-conjugate.

The calculation shown in (4) now leads to
the conclusion that a trajectory starting at x0 is
mesohyperbolic on t, provided that det∇v*(x0) <
0 or det∇v*(x0) > 4/T2, whereas it is mesoellip-
tic, provided that 0 < det∇v*(x0) < 4/T2. There
are also differences in behavior between the case
det∇v*(x0) < 0 or det∇v*(x0) > 4/T2. The local,
linearized map behavior in the case det∇v*(x0) <
0 is a pure strain (fig. S4A), whereas in the case
of d det∇v*(x0) > 4/T2, it is strain combined with
a 180° rotation (that is, reflection across the x
and y axes) (fig. S4B). When T goes to zero, the
mesohyperbolicity/mesoellipticity criterion goes
to the well-known Okubo-Weiss criterion (16, 17)
for instantaneous snapshots of time-dependent
velocity fields, where a region is called elliptic
provided that det∇v > 0 in that region and hy-
perbolic in the region where det∇v < 0.

The Lagrangian coherent structures theory is
based on the calculation of the ridges of the finite-
time Lyapunov exponent (FTLE) field (7, 18, 19).
In contrast to the theory of Lagrangian coherent
structures that determines the stretching skeleton
of a fluid flow depending on the extrema of the
FTLE field [or the extrema of det∇v (x0, t, t0) over
a time interval [t0, t] (20)], our approach is putting
emphasis on the average behavior of trajectories
over an interval of time. In contrast to the FTLE
method, the mesohyperbolicity calculation dis-
tinguishes between two different regions of hy-
perbolic behavior (which we show in examples
below enables characterization of mixing regions)
and provides the ability for gradation of the elliptic
regions. For more detailed comparison, see (4).

Although the field we use to distinguish kin-
ematically separate regions is not frame-invariant,
it can be improved to account for the rate of rota-
tion of the strain along the lines pursued in (21, 22).

The field det∇v*(x0) becomes the centerpiece
of our finite-time diagnostics of the Lagrangian
properties. To build intuition, we begin with a sim-
ple, well-understood, cellular velocity field shown
in Fig. 1A, described by

u(x) ¼ −sin(2px1)cos(2px2)
cos(2px1)sin(2px2)

� �
ð6Þ

This divergence-free flow has families of pe-
riodic orbits around elliptic fixed points bounded
by heteroclinic orbits that connect hyperbolic

Fig. 2. (A) Ocean hypergraph map around the Mississippi Delta on 14 May, forecasting strong mixing
activity (mixture of red and blue) in the following 3 days. (B) NOAA’s oil spread estimate around the
Mississippi Delta on 17 May. The coastal areas affected were predicted by the hypergraph map on the left
3 days earlier. (C) Ocean hypergraph map around Grand Isle, Louisiana, on 19 May, forecasting strong oil
incursion (circled) in the following 3 days. (D) NOAA’s oil spread estimate around the Mississippi Delta on
22 May. The coastal areas around Grand Isle affected by oil spread were predicted by the hypergraph map
on the left 3 days earlier.

Fig. 3. (A) Ocean hypergraph map in front of the Biloxi-Pensacola shoreline on 25 May, forecasting
strong oil incursion toward the coastline (circled) in the following 3 days. (B) NOAA’s oil spread estimate
in front of the Biloxi-Pensacola shoreline on 27 May. The major directions of oil spread were predicted by
the hypergraph map 2 days earlier. The oil reached the shore several days later, on 2 June. (C) Ocean
hypergraph map in front of Pensacola on 8 June, forecasting a strong oil mixing event in front of the
shoreline and extension of the oil slick toward Panama City Beach in the following 3 days. (D) NOAA’s oil
spread estimate on 10 June in front of Pensacola. The oil developed a large slick forecasted by the
hypergraph map 2 days earlier and continued to flow toward Panama City Beach.

www.sciencemag.org SCIENCE VOL 330 22 OCTOBER 2010 487

REPORTS

 o
n 

O
ct

ob
er

 2
1,

 2
01

0 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org


(saddle) points. In Fig. 1B, we show the det∇v*
field for the velocity field in Fig. 1A, computed
for T = 0.94248. The color scheme is as follows:
blue indicates regions of det∇v* < 0 (mesohyper-
bolic with pure strain); white and green indicate
0 ≤ det∇v* ≤ 4/T2; and red indicates 4/T2 <
det∇v* (mesohyperbolic with strain and 180° ro-
tation). As expected, the areas around the elliptic
fixed points inside the cells are white (because
the period of calculation is close to the period of
the linear rotation around the elliptic fixed point,
over time T, particles close to the elliptic fixed
point make one full circle, and their rotation angle
is close to zero) and green, indicating mesoelliptic
behavior there. There is a red ring of hyperbolic
behavior inside the cell, due to finite-time strain
and 180° rotation (this feature is also observed in-
side the eddies produced by the model of ocean
flow in the Gulf of Mexico). The area around
heteroclinic orbits is blue, indicating pure strain
behavior. Thus, in this integrable case, the det∇v*
field represents the known properties of the dy-
namics well.

Next, we analyze the same base field u per-
turbed by a time-dependent perturbation velocity

upðxÞ ¼ e ⋅ cos(2pt)

� −sin(2p(x1 − 0:25))cos(2p(x2 − 0:25))
cos(2p(x1 − 0:25))sin(2p(x2 − 0:25))

� �

ð7Þ

where x = (x1,x2), e = 0.1. This velocity field is
time-periodic, with period 1. The standard way to
visualize such systems is the Poincaré map meth-
od. The Poincaré map for the time-periodically
perturbed cellular velocity field is shown in Fig.
1C. This Poincarémap shows thewell-understood
mixture of chaotic behavior, as indicated by orbits
filling an area of the phase space, andKolmogorov-
Arnold-Moser (KAM) orbits, surrounding ellip-
tic fixed points and elliptic periodic orbits. In Fig.
1D we show the associated det∇v* field, for time
interval T = p. The white and green zones are po-
sitioned in the same general area where KAM
curves are present. The red ring inside the KAM
zone, indicating finite-time strain with 180° rota-
tion, appears in the time-dependent flow as well.
The mixing zones in the Poincaré map plot are
indicated by the mixture (pure strain plus strain
with 180° rotation) of the mesohyperbolic behav-
ior, as indicated by the mixture of red and blue at
those mixing locations in Fig. 1D. The feature of
chaotic dynamics that we observed for the simple
time-periodic cellular flow, producing a mixture
of pure strain and strain plus 180° rotation in the
zones of intersection of stable and unstable mani-
folds, has not been observed before and is in-
teresting in its own right. We will call the plot of
the field det∇v* the hypergraph map.

As an example of this approach, we com-
puted mesohyperbolicity in a numerical model of
the Gulf of Mexico. The model has been con-
figuredwith theHybrid Coordinate OceanModel
(HYCOM) with 1/25° horizontal resolution and

20 layers in the vertical. Lateral boundary condi-
tions are taken from a 1/12° HYCOM Atlantic
model. The Gulf of Mexico system assimilates
satellite sea surface height (SSH) and sea surface
temperature (SST) observations and runs in near
real-time. TheNavy Coupled OceanDataAssim-
ilation (NCODA) system is used for quality control
and data assimilation, which includes in situ profile
assimilation in addition to the surface observations.
Surface wind and heat flux forcing are provided by
the 0.5° NOGAPS product. The model was ini-
tialized on 2 September 2003 and continues to the
present day.

Model analysis and forecasts are compared to
independent (nonassimilated) infrared frontal po-
sitions and drifter trajectories. The system shows
substantial ability to simulate themajor circulation
features of theGulf ofMexico, including the Loop
Current Extension and associated Loop Current
Eddy shedding. Cyclonic shingle eddies are also
accurately simulated. The system produces a 5-day
forecast that contains information about hourly
velocities, temperature, and salinity.

The hypergraph map is computed for a 3-day
time interval starting at 0 hours [details of the com-
putation and the model are given in (4)], using
surface velocities produced by theHYCOMmodel.
Consideration of the full physical problem would
require a 3D, steady source computation of oil spill,
where oil is subject to weathering and chemical
reactions in the ocean. To simplify the problem,
in our calculations we did not account for the
differential motion between the ocean stream and
the (possibly 1-mm-thick layer of) oil; that is, we
treated oil as a passive scalar moved by the ocean
surface velocity or alternatively as indestructible
Lagrangian particles. In addition, 3D effects were

neglected. These are important near shore, but
commonly enhance intense 2Dmixing events (23),
and thus one can view our 2D mixing predictions
as an underestimate of the 3D case. The oil spill is
a steady source process, whose theoretical descrip-
tion has received attention (24, 25), but we pur-
sued the problem of surface transport of oil that
leaked several days earlier. Thus, the constant re-
plenishment, although important if the full prob-
lem of the oil spill is modeled, does not affect
our conclusions.

Figures 2 and 3 show a sequence of hyper-
graphmaps corresponding to theGulf ofMexico–
HYCOM model of the Gulf of Mexico surface
velocity fields calculated on 14, 19, and 25 May
and 8 June as compared with the estimated spread
of oil several days after the hypergraph map in-
formation. We start with the estimated boundary
of the oil spill at the date when the hypergraph
map is calculated for the future 3 days. Isolated,
elongated red and blue streaks that intersect the
oil slick boundary indicate likely advancement
directions of the oil slick. The oil is expected to
flow in that direction, form a convergence line,
and develop filaments. Diffuse zones of red and
blue mixture indicate possible mixing events. Such
events produce the extension of oil slicks to these
zoneswithin several days.We present several such
stretching and mixing events and compare those
qualitatively with available data on the oil slick
extent. The oil extent was estimated by the Na-
tional Oceanic and Atmospheric Administration
(NOAA) (26) and is also available at the New
York Times Web site (27).

The hypergraphmap for 14May 2010 around
the Mississippi Delta (Fig. 2A) forecasted strong
mixing activity (mixture of red and blue) in the

Fig. 4. (A) The hyper-
graph map for the full
Gulf of Mexico, showing
mesohyperbolic andmeso-
elliptic regions on 25
June 2010. This map is
characteristic of the maps
we computed over the 40
days of (from 10 May to
1 July 2010). (B) Zoom
of the map shown in (A),
showing another strong
mixing event around
Plaquemines Parish,
Louisiana.
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following 3 days. Figure 2B shows that such strong
mixing events occurred, 3 days later around the
Mississippi Delta and elsewhere in Plaquemines
Parish, Louisiana (27). Mixing events around the
Mississippi Delta continued to occur on a regular
basis.

The hypergraph map (Fig. 2C) on 19 May
2010 forecasted oil incursion in the following
3 days, as was seen on Grand Isle on 22 May
(Fig. 2D). The filaments seen in the data (Fig.
2D) are close to blue and red streaks in the
hypergraph map (Fig. 2C).

On 25 May (Fig. 3A), the hypergraph map
forecasted strong oil incursion toward the coast-
line between Biloxi, Mississippi, and Pensacola,
Florida, in the following 3 days, along the circled
convergence lines shown in red and blue. Based
on this, we expected that filaments of the oil spill
would extend in these directions. Such filaments
were seen on 27 May (Fig. 3B). These major
directions of oil spread were predicted by the
hypergraph map 2 days earlier. The oil reached
the shore on 2 June (27).

On 8 June 2010, the hypergraph map fore-
casted a strong oil mixing event (Fig. 3C), as
evidenced by the mixture of red and blue in the
circled area, in front of the shoreline and the
extension of the oil slick toward Panama City
Beach, Florida, in the following days. On 10 June
2010, a large slick developed in the area of the
mixing event featured in the hypergraphmap 2 days
earlier, and it continued to flow toward Panama
City Beach (Fig. 3D).

Based on the simulation for the full Gulf of
Mexico region (Fig. 4A; the extent is typical for
the situation on other dates), we estimated that the
spill, if it continued, would eventually reach 80%
of the Gulf of Mexico. This is an indication of
what a future spill might cause if it is not contained
rapidly and does not evaporate quickly. The zoom
in Fig. 4B shows the situation close to the oil spill
location area around Plaquemines Parish, which
continued to show strong mixing activity.

Surface currents, 3-day average Lagrangian
velocities, and hypergraph maps for the period
from 10 May to 1 July 2010, for the full Gulf of
Mexico, and the zoom for the region around the
Deepwater Horizon spill, are animated in movies
S1 to S6 (4).

There are many physical processes that con-
trol the fragmentation of the oil slick on the sur-
face, including Langmuir circulations, that are not
captured by the HYCOM model. However, the
complexity of the arrangement of mesohyperbolic
regions (Fig. 4A) seems to control the stretching
and mixing events at large scales. This helps in
understanding the fragmentation of oil slicks on
the surface of the Gulf of Mexico featured in nu-
merous satellite images and aerial photographs.

One use of these sorts of computations is in
oil containment and cleanup. The mesohyperbol-
icity calculations can provide detailed spatial lo-
cations of mixing and concentration events days
in advance. In addition, if a layer model is used,
providing the velocity field at different depths,

information on possible locations of underwater
plumes can be uncovered and supplied to research
vessels so they can perform detailed measure-
ments at those locations.
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Oscillatory Mass Transport
in Vapor-Liquid-Solid Growth
of Sapphire Nanowires
Sang Ho Oh,1,2* Matthew F. Chisholm,3 Yaron Kauffmann,4 Wayne D. Kaplan,4
Weidong Luo,3,5 Manfred Rühle,6 Christina Scheu7

In vapor-liquid-solid (VLS) growth, the liquid phase plays a pivotal role in mediating mass transport
from the vapor source to the growth front of a nanowire. Such transport often takes place through
the liquid phase. However, we observed by in situ transmission electron microscopy a different behavior
for self-catalytic VLS growth of sapphire nanowires. The growth occurs in a layer-by-layer fashion
and is accomplished by interfacial diffusion of oxygen through the ordered liquid aluminum atoms.
Oscillatory growth and dissolution reactions at the top rim of the nanowires occur and supply the
oxygen required to grow a new (0006) sapphire layer. A periodic modulation of the VLS triple-junction
configuration accompanies these oscillatory reactions.

Vapor-liquid-solid (VLS) growth processes
are widely used to grow nanowires
composed of functional materials such

as semiconductors (1–5), oxides (6, 7), and ni-
trides (8, 9). Controlled growth of nanowires to a
desired size, orientation, morphology, and com-
position requires understanding of the atomic-
level growth mechanism. Relative to established
growth processes such as vapor deposition and
solidification, less is known about the atomic-
scale mechanisms of the reaction steps involved
in VLS growth (10–13). Here, we describe the
growth mechanism governing self-catalytic VLS
growth of (0001) sapphire (a-Al2O3) nanowires,
which we observed by in situ high-resolution
transmission electron microscopy (HRTEM).

Sapphire nanowires were grown by first form-
ing Al droplets on an a-Al2O3 single crystal by
heating the crystal above 660°C in a HRTEM
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