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ABSTRACT

The impact of the number of satellite altimeters providing sea surface height anomaly (SSHA) information

for a data assimilation system is evaluated using two comparison frameworks and two statistical methodologies.

The Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) dynamically interpolates satellite

SSHA track data measured from space to produce high-resolution (eddy resolving) fields. The Modular

Ocean Data Assimilation System (MODAS) uses the NLOM SSHA to produce synthetic three-dimensional

fields of temperature and salinity over the global ocean. A series of case studies is defined where NLOM

assimilates different combinations of data streams from zero to three altimeters. The resulting NLOM SSHA

fields and the MODAS synthetic profiles are evaluated relative to independently observed ocean temperature

and salinity profiles for the years 2001–03. The NLOM SSHA values are compared with the difference of the

observed dynamic height from the climatological dynamic height. The synthetics are compared with obser-

vations using a measure of thermocline depth. Comparisons are done point for point and for 18 radius regions

that are linearly fit over 2-month periods. To evaluate the impact of data outliers, statistical evaluations are

done with traditional Gaussian statistics and also with robust nonparametric statistics. Significant error re-

duction is obtained, particularly in high SSHA variability regions, by including at least one altimeter. Given

the limitation of these methods, the overall differences between one and three altimeters are significant only

in bias. Data outliers increase Gaussian statistical error and error uncertainty compared to the same com-

putations using nonparametric statistical methods.

1. Introduction

Sea surface height anomaly (SSHA) measurements

from space provide a global and nearly real-time repre-

sentation of ocean dynamical features and are the most

important observation component of the U.S. Navy’s

operational global ocean prediction system. Observations

of SSHA are particularly useful for mapping eddies,

meandering currents, and fronts that are associated with,

for example, planetary waves and geostrophic currents.

This information is utilized by assimilation into the 1/328

Naval Research Laboratory (NRL) Layered Ocean

Model (NLOM; Shriver et al. 2007). NLOM has dem-

onstrated skill as a dynamical interpolator of satellite

altimeter observations transforming the along-track data

into high-horizontal-resolution (eddy resolving) SSHA

fields that accurately represent the mesoscale variability.

Because NLOM is a layered model with high horizontal

but low vertical resolution, it does not independently

provide a realistic vertical structure. A more complete

depiction is made by using the SSHA fields from NLOM

within the Modular Ocean Data Assimilation System

(MODAS) to construct subsurface three-dimensional

temperature and salinity fields. These global fields, which

we call synthetics, are generated through the use of

gridded statistical relationships between SSHA, sea sur-

face temperature (SST), and historical in situ profile

observations of temperature and salinity (Fox et al.

2002a,b). MODAS synthetics are generated for several

experimental cases that differ according to the selection

of zero to three satellite altimeter data streams to be as-

similated by NLOM. These synthetic fields of temperature
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and salinity provide the basis for the present study and are

compared with independent in situ ocean profile obser-

vations to evaluate their relative accuracy.

A main goal of this analysis is to evaluate the relative

prediction accuracy resulting from different numbers and

configurations of altimeters providing data for NLOM

and MODAS. Another equally important goal is to de-

velop validation methodologies for error assessment of

ocean prediction systems in general. To accomplish these

objectives, we apply two comparison frameworks and two

statistical methodologies. Comparisons are made point

for point and in binned overlapping 18 radius regions

60 days long. Error analyses are then computed using

both traditional Gaussian and also robust nonparam-

etric statistical methods. The metric used for the eval-

uation is thermocline depth (TD) because the SSHA is

most highly correlated with the thermocline (Hurlburt

1986).

During the analysis time period, there were three sat-

ellite altimeter platforms used in daily operations. Main-

taining that level of satellite coverage is expensive, and

thus a clear understanding regarding the prediction im-

pact of multiple satellites is of interest. Recent scientific

literature shows the importance of satellite altimeters and

their influence on ocean prediction. Use of the Navy’s

Coastal Ocean Model (NCOM) to predict SSHA, in

assimilative and nonassimilative modes, was evaluated

relative to tide gauges by Barron et al. (2004). Other

studies assimilate altimeter SSHA and surface drifter data

together (e.g., Lin et al. 2007; Fan et al. 2004; Ishikawa

et al. 1996). In a study by Smedstad et al. (2003), identical

twin numerical experiments simulated the SSHA error

versus the number of assimilated satellite altimeters in

a 1/68 version of NLOM. The present analysis provides

a similar error comparison but with assimilation of real

altimeter measurements in 1/328 NLOM and MODAS and

in situ observations as the validation reference.

Numerical models can capture the statistical charac-

teristics of the spatial and temporal variability relatively

well. Climate studies often require that the underlying

mechanisms and general character of the prediction is

correct (e.g., Doney et al. 2007), while the specific skill

of predicting temperature and salinity at a point is less

important. Other validation studies evaluate the long-

term temporal variability of models (Kara and Hurlburt

2006). More detailed predictions are often required by

the fishing industry, the navy, and others for prediction

of the synoptic variability. For example, the positions of

fronts are often used by the maritime community to

evaluate model skill (e.g., Oey et al. 2005).

An even more detailed method for comparing model

results is to compare the model at the exact location of

the observation point for point. This type of comparison

is a very stringent measure for model evaluation, be-

cause the observations are influenced by all the physical

processes present in the ocean, some of which may not

be adequately represented in the prediction system. For

example, turbulent diffusion is parameterized, and in-

ternal waves and tides are not included in the prediction

systems we evaluate here. Point-for-point comparisons

can exaggerate the influence of small displacement er-

rors of mesoscale features. If the predictions represent

the mesoscale features relatively well but with slight

shifts in the horizontal, relatively large point-for-point

errors may occur.

A second type of comparisons begins with overlapping

data bins with a 18 radius and 60-day time window. The

data in these bins are then linearly fit in a least squares

sense, providing a statistical representation (superposi-

tion data) of thermocline depth within the bin. This

methodology is applied to produce both superobservation

and superprediction data. The main advantages are an

evening of the data weights between high- and low-

density observation regions and estimates of time rate

of change. Results using this procedure are compared

with results from point-for-point comparisons to eval-

uate the impact of the comparison framework.

Both traditional Gaussian and robust nonparametric

statistical methods are used in the present analysis. Ocean

observations rarely exhibit Gaussian data distributions

that are assumed when using Gaussian statistical methods.

To evaluate the impact of non-Gaussian data distributions,

nonparametric and Gaussian statistical methods are ap-

plied to all comparisons in this analysis.

In section 2, the observations are described, and spe-

cial attention is paid to the vertical resolution because it

has a large influence on the TD computations. The dy-

namically interpolated SSHA fields from NLOM are

described in section 3a, and sections 3b and 3c describe

MODAS and the details of the synthetic variants, re-

spectively. The TD metric and superdata and statistical

methods are described in section 4. The results are

presented in section 5, with a summary of conclusions in

section 6.

2. Profile observations

Observed profiles of temperature and profile pairs of

temperature and salinity from the World Ocean Data-

base 2005 (WOD05; Boyer et al. 2006), the U.S. Navy’s

Master Oceanographic Observation Dataset (MOODS;

Teague et al. 1990), and Argo (Roemmich et al. 2004)

are combined. Because the data sources for MOODS

and WOD05 are mostly the same, much of these data

are duplicated, but each set contains unique profiles.

The WOD05 has less stringent quality-control (QC)
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procedures than MOODS. Argo data are contained in

the MOODS and WOD05 datasets but not up to the

present time. In addition, the Argo profiles in MOODS

are from the real-time system and thus lack some of the

QC procedures specifically designed for floats performed

at the Argo data acquisition centers (DAC). Also, further

QC recommendations are periodically available, such as

the pressure sensor error that was discovered for certain

float types (available online at http://www.argo.ucsd.

edu). For these reasons, the latest Argo data from the

DACs have been used in place of the same profiles

present in WOD05 and MOODS.

The data for this study are temperature profiles from

2001 through 2003 that have the shallowest depth level

above 12 m, the deepest depth level below 150 m, and

at least temperature values. Most profiles are expend-

able bathythermographs (XBTs), but many are from

conductivity–temperature–depth (CTD) recorders. The

total number of profiles for this time period is 225 160,

with 73 549 having profiles pairs of temperature T and

salinity S (Fig. 1a) and 151 611 having T only (Fig. 1b).

An additional restriction is that, in the upper 150 m, no

profile may have any gaps in depth levels exceeding

25 m. This restriction reduces the numbers to 222 772

total, 72 586 for T and S, and 150 186 for T only.

Although the data are quality controlled, errors in-

cluding profile location, XBT drop rate, and other po-

tential errors may still exist. The effect of location errors

and how the QC procedures can miss this type of error

are discussed by Kara et al. (2009).

FIG. 1. The locations of the publicly available profile observations that have (a) temperature and (b) paired values of

temperature and salinity.
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3. Prediction system

a. NLOM

NLOM is a global numerical primitive equation lay-

ered formulation model with six dynamic layers and a

bulk mixed layer. The operational eddy-resolving 1/328

global ocean prediction system has 1/328 by 45/10248

(latitude by longitude) resolution and an embedded

mixed layer depth (MLD) model independent from

the six dynamic layers (Shriver et al. 2007). The mixed

layer can extend across more than one dynamical layer

(Wallcraft et al. 2003), and the system assimilates both

satellite IR SST (Barron and Kara 2006) and SSHA

observations (Barron et al. 2009).

The SSHA assimilation scheme was developed for the

efficiency requirements of operational systems and uses

an incremental updating technique (Smedstad et al.

2003). First, an optimum interpolation deviation analy-

sis of SSHA is performed using a model forecast as a first

guess and the mesoscale covariance functions of Jacobs

et al. (2001). The deviation analysis is used to apply

weights to all observations according to their space and

time locations, in a 3-day window, during which the

observations are incrementally updated in the model.

The satellite altimeter products used for assimilation are

from 1) Jason-1, 2) European Remote Sensing Satellite-2

(ERS-2)/Envisat, and 3) the Geosat Follow-On (GFO).

SST is assimilated through a heat flux relaxation scheme

that depends on a 3-h e-folding time scale and the mixed

layer depth. The surface information is transferred

through all dynamic layers via the statistical inference

technique of Hurlburt et al. (1990). This technique up-

dates the pressure field in all layers below the surface.

An important aspect of NLOM is its estimate of the

bottom pressure anomaly, which is used to split the SSH

signal into steric and nonsteric components. The SSHA

used in this study is NLOM’s total SSH minus the SSH

proportional to the bottom pressure anomaly minus

NLOM’s long-term mean steric SSH (Barron et al.

2007). As a result, this SSHA is the steric SSH anomaly

that is required for MODAS (see section 3b).

A modified version of the 1/128 5-min gridded elevations/

bathymetry for the world (ETOPO5) bottom topogra-

phy (National Oceanic and Atmospheric Administration

1986) is used in the NLOM simulations. The topography

is first interpolated to the model grid and then smoothed

twice with a nine-point smoother to reduce energy gen-

eration at smaller scales that are poorly resolved by the

model. The maximum depth of the model is set at 6500 m.

The minimum depth, set at 200 m, is used as the model

boundary, with a few exceptions where shallower

depths are needed to connect semienclosed seas. Shelf

regions are excluded, because the NLOM formulation

requires all layers to exist with positive thickness at all

points.

Although assimilation of SSHA has an effect on

NLOM’s embedded MLD through the divergence of

near-surface layer currents, its influence is more strongly

seen in the TD. The influence of SSHA on MLD is

indirect through the prognostic equation for MLD

(Wallcraft et al. 2003),

›(h
m

)

›t
1 $ � (h

m
v

1
) 5 v

m
, (1)

where hm is the thickness of the embedded mixed layer,

vm is the entrainment rate at the base of the mixed layer,

and v1 is the velocity of NLOM’s top layer. Assimilated

SSHA is used to update layer thicknesses (which are

related to the pressure gradient) and a geostrophic cor-

rection is applied to currents outside the near-equatorial

band (approximately 58N–58S) to rebalance the currents

with respect to the new model SSHA. Because diver-

gence is a second-order computation, we do not use the

NLOM embedded MLD in the analysis metrics. Instead,

we compare the dynamic height deviations of in situ

profile observations from climatology with NLOM’s steric

SSHA. We also use NLOM’s SSHA within MODAS to

generate three-dimensional synthetic temperature and

salinity fields for direct comparison with in situ profile

observations.

A set of simulations using NLOM were run for years

2001–03, differing only in the number of altimeter data

streams assimilated, from 0 to 3. Each altimeter data

stream provides, in one day, approximately 35 000 ob-

servations globally. An additional three-altimeter sim-

ulation was started from a different initial condition

(same day, different climatological year). Both three-

altimeter cases produce similar results, except in areas

where the variability is nondeterministic.

b. MODAS

MODAS estimates profiles of temperature and salinity

from inputs of SST and/or SSHA using gridded poly-

nomials at standard depths with coefficients determined

by least squares fit to historical observations (Fox et al.

2002a,b). The SSHA input for the greatest MODAS ac-

curacy is the offset from the steric height anomaly relative

to 1000 m in the background climatology. If SST and/or

SSHA are not available, the profile estimates revert to

the MODAS bimonthly climatology. Both the MODAS

background climatology and regression coefficients are

defined in a database centered on 15 January, 15 March,

15 May, 15 July, 15 September, and 15 November. Syn-

thetics for a given day are based on coefficients linearly

interpolated in time and space to the desired location.
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Climatological profiles are linearly interpolated in space

and time as well.

For this analysis, we provide SSHA and SST to MODAS

to produce synthetic profiles of temperature and salinity

from which we compute the thermocline depth param-

eters described in section 4a. To test the impact of as-

similating altimeter data, we pair SST from the observed

ocean profiles with SSHA from a series of NLOM ex-

periments. In addition, climatology profiles are defined

by a zero SSHA and climatological SST.

c. Synthetics

A set of synthetic profiles is derived using MODAS at

each of the observed profile locations and times de-

scribed in section 2. All of the synthetics use the shal-

lowest temperature value from the observed profile as

the SST input for MODAS; the climatology profiles use

climatological SST and zero SSHA. Eight different

SSHA estimates are used to create different sets of

synthetics. The descriptions and labels for each are listed

in Table 1. For this analysis, we focus on the relative

impact that the number of satellite altimeters have on

the combined NLOM and MODAS predictions of

SSHA and thermocline depth.

4. Methods

a. Metrics

Two TD parameters computed from temperature pro-

file observations and synthetics made during 2001–03

are listed in Table 2. The parameters are based on two

isothermal layer depth (ILD) algorithms computed us-

ing freely available software described in Lorbacher

et al. (2006) and Kara et al. (2000). These methodologies

can also be applied to density profiles to compute MLD,

but this is not considered here because not all profiles

have both temperature and salinity and we are primarily

considering thermocline depth.

The ILD algorithms have been well tested, and their

characteristics are known. For example, the Lorbacher

et al. (2006) ILD selects the first curvature peak of the

temperature profile and tends to be relatively shallow.

Because the Lorbacher et al. (2006) ILD method is cur-

vature based, the label we use is ILD$, where the sub-

script $ represents the gradient associated with curvature.

The Kara et al. (2000) ILD method selects the depth

where a change in temperature relative to the near sur-

face exceeds a threshold. Because the Kara et al. (2000)

ILD is based on a change in temperature, the label we

use is ILDD, where the subscript D indicates that it is

a threshold methodology. Hereafter, the unadorned ILD

will refer to the isothermal layer depth in general. The

ILDD values tend to be deeper than ILD$ and are most

closely associated with the seasonal ILD (e.g., Helber

et al. 2008).

TABLE 1. The SSHA estimates and other details used in the generation of MODAS subsurface synthetics. All cases but CLIM use SST

from the observation profile. The labels are used in the figures and text to denote each case.

No. Label Description

1 CLIM The MODAS background climatology without SSHA or SST input (the only case without the observed SST).

2 TONLY The MODAS synthetic without SSHA input.

3 MODAS The two-dimensional optimally interpolated SSHA fields produced using all three available altimeters by

MODAS independently of NLOM.

4 BEST The difference of the dynamic height computed from the observation profile and the dynamic height of the

MODAS background climatology. This is the SSHA value that corresponds to MODAS’s best possible

representation of the observation. This is unavailable in practical applications and represents the upper limit

on prediction accuracy.

5 A0 NLOM SSHA produced without SSHA assimilation. Surface fluxes and SST assimilation is still used.

6 A1J The NLOM SSHA assimilation is from Jason-1 only.

7 A1G The NLOM SSHA assimilation is from GFO only.

8 A2EG The NLOM SSHA assimilation is from ERS-2/Envisat and GFO.

9 A3EGT The NLOM SSHA assimilation from all available altimeters: Jason-1, ERS-2/Envisat, and GFO.

10 A3EGT2 As in A3EGT, but the initial conditions are perturbed slightly to help identify the nondeterministic response

to the initial conditions.

TABLE 2. The upper thermocline metric parameters that are

computed from observations and synthetics.

No. Label Description

1 ILDD Temperature threshold ILD Kara et al. (2000)

2 ILD$ Temperature profile curvature ILD Lorbacher

et al. (2006)

3 TDD TD below ILDD

4 TD$ TD below ILD$

5 TSD TS, (DT/2)/(TDD 2 ILDD): DT is from the

TDD computation

6 TS$ TS, (DT/2)/(TD$ 2 ILD$): DT is from the

TD$ computation
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For a small percentage of profiles, each ILD method

has certain shortcomings. For example, for profiles where

the water column is mixed all the way to the bottom of the

profile, ILD$ returns a value of zero. This is because the

algorithm cannot find a curvature peak (Kara et al. 2009).

For similar cases, particularly at high latitudes, the

threshold value for ILDD is too large and returns an ILD

that is unrealistically deep or at the bottom of the profile.

To eliminate this problem, profiles are discarded if the

ILD estimates are at the bottom of the profile and more

than 50 m from the ocean bottom (based on the navy’s

2-min bathymetry) because in these cases the observa-

tions do not allow for an accurate estimate of the ILD.

The TD parameter is computed by first determining

two temperatures: 1) the temperature of the profile at

the ILD T0 and 2) the change in temperature between T0

and the temperature 100 m below the ILD, DT. The

depth below the ILD where the temperature is equal to

T0 2 DT/2 defines TD. Because we have two estimates of

the ILD, there are two corresponding estimates of TD,

TDD and TD$, which correspond to ILDD and ILD$,

respectively.

The TDD is shown graphically with labels in Figs. 2a,b.

For profiles with sharp thermoclines just below the

ILDD, the TDD is relatively close to the ILDD (Fig. 2a).

For weak thermoclines, the TDD is further from the

ILDD (Fig. 2b). In this way, the TDD characterizes the

location of the highest gradients of the upper thermo-

cline from a simple, widely applicable calculation. Be-

cause the computation is a bulk estimate of the high

temperature gradient depth, it is insensitive to random

noise in the profile. Finite difference computation of

vertical gradients in observation profiles is inherently

noisy and thus avoided in this analysis. The strength of

the thermocline (TS) is the gradient of the upper ther-

mocline between the ILD and TD (Table 2; Fig. 2).

b. Superposition

As mentioned in the introduction, observation time

and locations are grouped into analysis windows to pro-

duce superposition data (‘‘superdata’’). For this analysis,

the windows are 18 radius circular regions 60 days long

computed each month for the entire analysis time period

from January 2001 through December 2003. The 18 radius

circles are centered on even-numbered latitude and lon-

gitude locations. For consistent comparison, the pre-

dictions are sampled or interpolated to the time and

three-dimensional locations of the observations and are

binned in the same manner.

In the analysis windows, superdata are defined as

linear least squares fits to the model or observation data.

The superdata values at the location and time of the

analysis window (x, y, t0) are the mean a0 and temporal

FIG. 2. The computation of TD for a typical temperature profile with a relatively (a) strong and (b) weak ther-

mocline. The temperatures at the ILD, TD, and ILD 1 100 m are T0, T0 2 DT/2, and T0 2 DT, respectively. The

thermocline gradient is computed two ways, as labeled. The ILD is computed using the threshold method (ILDD) and

has a value of (a) 49.5 and (b) 48.6 m and the corresponding TDD is (a) 56.5 and (b) 68.6 m.
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trend a1. The linear fit minimizes the squared residuals «

over all the data within the analysis window, where the

residual «j for the jth data point, dataj, within the anal-

ysis window is defined as

«
j
5 a

0
(x, y, t

0
) 1 a

1
(x, y, t

0
)(t

j
� t

0
)� data

j
, (2)

where tj is the time vector in units of days and t0 is the

value at the start of the 60-day period such that a0 is the

mean and a1 is the rate of change per day. The residual,

«, is minimized in a linear least squares sense and the

mean fit error is computed as

e 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
�
N

j51
[«

j
]2

v

u

u

t

, (3)

where N is the number of data points in the analysis

window. These fit parameters, a0, a1, and e, are computed

to produce the superobservations or superpredictions

only for bins where the data span at least 30 of 60 days.

The superdata methods reduce the weight of individual

data points in regions of the ocean with relatively high

observation density. This is because the subsequent sta-

tistical analysis treats every superdata point the same. As

a result, regions with a relatively large number of points

have the same weight as regions with a small number of

points. Both superdata and point-for-point results are

discussed in section 5.

c. Statistical error analysis methods

Standard data quality-control procedures are not per-

fect and allow some erroneous data through. In an at-

tempt to reduce the impact of this noise, we employ

robust nonparametric statistical methods, because these

methods are less sensitive to the influence of outlier data

values (e.g., Rousseeuw and Leroy 1987). Because the

nonparametric methods have analogous counterparts

in traditional Gaussian statistics, we list those first and

explain the robust methods second.

For assessment of prediction accuracy, we compute

the mean bias (MB) as

MB 5
1

N
�
N

j51
(P

j
�O

j
), (4)

the root-mean-square error (RMSE) as

RMSE 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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v

u

u

t

, (5)

and correlation coefficient R, as

R 5

1
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(6)

where N is the number of samples. For the superdata

comparison framework, N would be the number of anal-

ysis windows; for the point-for-point comparison frame-

work, N would be the number of actual observation points.

The corresponding Pj and Oj are the NLOM SSHA or

MODAS synthetic predictions and the observations, re-

spectively, in either point-for-point or superdata form. The

sign convention of bias is Pj 2 Oj, such that positive bias

corresponds to synthetics larger than the observations.

Mean values are denoted with a bar, P and O, and are

computed as

P 5
1

N
�
N

j51
P

j
and O 5

1

N
�
N

j51
O

j
.

In addition, the unbiased RMSE is also computed such

that

RMSE
unbiased

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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and

RMSE 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MB2 1 RMSE2
unbiased

q

. (8)

Equations (4)–(8) are the standard formulation for

computing statistics on variables with Gaussian distribu-

tions. In practice, oceanographic data are rarely Gaussian

and using the standard computations is often misleading.

The robust or nonparametric methods used in this anal-

ysis are the biweight mean and standard deviation de-

scribed by Lanzante (1996) and used by others (e.g., Zou

and Zeng 2006). With these methods, the analogous

quantity for mean bias is

MBbw 5 hP
j
�O

j
ibw, for j 5 1, 2, 3, . . . , N, (9)

and for root-mean-square error is

RMSEbw
unbiased 5 hhP

j
�O

j
iibw, for j 5 1, 2, 3, . . . , N,

(10)
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where h ibw represents the biweight mean operator and

hh iibw represents the biweight standard deviation op-

erator (see the appendix for details). Because the bi-

weighted standard deviation is an unbiased estimate of

the variability scale, Eq. (8) is used to provide the bi-

weighted estimate of RMSE,

RMSEbw 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(MBbw)2
1 (RMSEbw

unbiased)2
q

. (11)

The biweight methods are robust in that they are

nonparametric, meaning that the data distribution needs

not resemble an assumed form. The biweight method-

ology applies less weight to data points that are statis-

tically considered outliers of the natural distribution of

the data. The details of the biweight computations are

described in the appendix. To evaluate the impact of the

robust error statistics, the results from both Gaussian

and nonparametric statistical methods are presented in

section 5.

For consistent comparisons of data with different er-

ror variance levels, we use ‘‘summary’’ diagrams (Jolliff

et al. 2009). The advantage of these diagrams is that

many experimental results can be presented on one

figure for quick evaluation of the complete error statis-

tics. The quantities are scaled by the standard deviation

of the observations so that the magnitudes of values on

a summary diagram tend to be less than one. A value

of one indicates that the errors are as large as the

observation standard deviation. The y axis indicates

the scaled MB,

MB9 5
MB

1

N
�
N

j51
(O

j
�O)2

2

4

3

5

1/2
, (12)

or the biweight version,

MBbw9 5
MBbw

hhO
j
iibw

, (13)

and the x axis denotes the scaled unbiased RMSE,

RMSE9
unbiased

5
RMSE

unbiased

1

N
�
N

j51
(O

j
�O)2

2

4

3

5

1/2
, (14)

or the biweight version,

RMSEbw9
unbiased 5

RMSEbw
unbiased

hhO
j
iibw

. (15)

To investigate the impact of outliers, results from both

the Gaussian statistics [Eqs. (12) and (14)] and the non-

parametric statistics [Eqs. (13) and (15)] are presented in

summary diagrams and discussed in section 5.

The scaling is important because it facilitates compar-

ison of different datasets with varying variance levels.

This is the case in this experiment because TDD and TD$

have different variance levels by virtue of differences in

the ILD methodology. The summary diagrams allow

consistent comparison of these side by side.

Statistical significance is computed with the use of

bootstrap standard error estimates (Efron and Tibishirani

1986). The error bars presented in the figures of section 5

represent a 100 independent draw bootstrap standard

error estimate.

5. Results

a. Global consistency

Inspection of the model results relative to observa-

tions reveals a remarkable similarity that bolsters con-

fidence in the U.S. Navy’s ocean prediction system. For

example, Figs. 3a,b show the mean SSHA values (su-

perdata fit parameter a0) for the global observations and

the A3EGT SSHA (the SSHA used in the A3EGT

synthetics described in Table 1), respectively. Each dot

represents regions that have enough data to span 30 days

of the 60-day bins. The parameter a0 represents the

mean of 18 diameter circles centered on even latitude

and longitudes for a 60-day period starting on 1 January

for the years 2001–03. In this format, comparing the two

fields, the spatial variability appears similar and the

magnitude is close. Similarly, TDD from observations and

the A3EGT synthetics are shown in Figs. 4a,b. Compar-

isons with ILD climatologies (available online at http://

www7320.nrlssc.navy.mil/nmld/nmld.html; Kara et al.

2003) are consistent, though the TDD is expected to be

deeper.

b. SSHA accuracy

To gain an understanding of the relative accuracy of

the NLOM SSHA estimates before using them to con-

struct synthetics with MODAS, we compare them to

the BEST SSHA estimate (the SSHA used for the BEST

synthetics described in Table 1). This estimate is the

closest we have to direct in situ observations of SSHA.

As mentioned in section 4c, consistent comparisons can

be made with summary diagrams and, consequently,

all SSHA errors (relative to the BEST SSHA) using

both nonparametric and Gaussian statistical methods

are presented in Fig. 5. Using the superdata comparison
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framework (Fig. 5a), we find that the SSHA estimates

using two or three altimeters have the smallest bias,

whereas the MODAS SSHA estimate has the smallest

RMSE. In Fig. 5 and the rest of the summary diagrams,

the greater accuracy is indicated by values closer to the

top-left corner of the figures. Farther toward the left

represents smaller RMSE, and farther toward the top

represents smaller bias. Bias is decreasing upward, be-

cause in the cases considered here it is always negative.

MODAS tends to have a shallow bias in MLD and TD

because of the unrealistically smooth vertical gradients

of the synthetics.

The Gaussian statistical methods produce similar re-

sults to those for the nonparametric methods, with the

exception of the A0 case (Fig. 5a), which has larger

RMSE. For the traditional Gaussian statistical results,

the bootstrap standard error bars are unstable and sen-

sitive to the number of independent draws. For this

reason, some of these error bars extend outside the axis

limits in Fig. 5. The point-for-point comparison frame-

work has a reduction in bias error with an increase in

RMSE error only for Gaussian statistics (Fig. 5b).

Because standard error bars for the one- and two-

altimeter cases do not overlap, two altimeters are

FIG. 3. The fit parameter a0 (superdata mean; in m) for the (a) BEST and (b) A3EGT SSHA estimates for the

global ocean for a 60-day analysis window starting 1 Jan for the years 2001–03. Values exist only where data span at

least 30 of the 60 days.
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significantly more accurate than just one. One altimeter

is also clearly better than the nonassimilative NLOM

case. It is interesting to note that the A1G has smaller

errors than the A1J, suggesting the higher horizontal

resolution of the GFO orbit may reduce the overall bias.

This is consistent with the expected error estimates of

Jacobs et al. (2002).

c. TD accuracy

The primary metric for this analysis is the TD, which is

computed from the MODAS synthetics. An advantage

of this metric is that we are able to compute TD from

both the observation and the synthetic profiles, whereas

for SSHA there is no direct in situ observation. In this

section, summary diagrams for all synthetics for both

TD metrics are presented in Figs. 6a–d. In these figures,

the lowest error is again closest to the top-left corner of

the plot, because there is a shallow TD bias (MB9 , 0)

for all synthetics and RMSE9 . 0. The error bars are

from a 100 independent draw bootstrap standard error

estimate. Figure 6a uses both the superdata and non-

parametric methods and therefore should be the most

reliable global error estimate. Figure 6b also uses the su-

perdata methods, but with Gaussian statistics. Figures 6c,d

FIG. 4. The fit parameter a0 (superdata mean; in m) for the (a) observed and (b) A3EGT synthetic TDD estimate for

the global ocean for a 60-day analysis window starting 1 Jan for the years 2001–03.
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are point-for-point comparisons with nonparametric

and Gaussian statistics, respectively.

The statistical methods have the largest impact on the

results (cf. Fig. 6a with 6b and Fig. 6c with 6d). Note that

the axis limits are larger in Figs. 6b,d. Outliers increase

the errors when using Gaussian statistical techniques

because the nonparametric statistics reduce the weight

of points that exist far from the median absolute de-

viation (see appendix), whereas the impact of the su-

perdata versus point-for-point comparisons is relatively

small (cf. Fig. 6a with 6c; cf. Fig. 6b with 6d). There is,

however, less separation between the TDD and TD$

metrics for the point-for-point framework. There is also

a slight increase in error levels for the point-for-point

framework, suggesting that there are larger errors in

regions of high data density.

Notice that the synthetics are more skillful for the

threshold method TDD, and the gradient method TD$

has the larger error for all cases. This occurs because

MODAS synthetic profiles tend to have overly smooth

vertical gradients that result in a shallow bias for ILDD

and therefore TDD. The shallow bias is exacerbated by

the curvature-based ILD$ algorithm when operated on

synthetics because of the reduced curvature relative to

the observed profiles.

The synthetic with the smallest overall error for both

metrics using nonparametric statistics is BEST (Figs. 6a,c),

which shows the optimal performance of the MODAS

approached by using as input the actual dynamic height

deviation from the observed profiles (see Table 1). The

smallest bias is for CLIM and TONLY, which have nearly

identical errors. The next smallest error is with the three-

altimeter synthetics A3EGT and A3EGT2. The largest

error, in MB and RMSE, tends to occur with the zero-

altimeter synthetic case A0. In terms of RMSE, all syn-

thetics, except BEST and A0, tend to have nearly the same

RMSE. The inclusion of altimeter assimilation tends to

have the largest impact on the MB.

The results using Gaussian statistics are less clear be-

cause the standard error bars are larger and the estimates

are clustered closer together (Figs. 6b,d). The general

trend is maintained, where fewer altimeters have larger

errors, but the separations between values are generally

not significant.

The authors have not found a suitable nonparametric

estimate for the correlation coefficient. The traditional

estimate computed using Eq. (6) for both comparison

frameworks is shown in Fig. 7. Although all correlations

are high, the differences between the cases are not sig-

nificant, with the exception of the difference between the

A0 and the other altimeter assimilative cases. A major

difference in correlation relative to the results shown in

Fig. 6 is the low correlation values of CLIM and TONLY.

This is consistent because climatologies do not vary on

subseasonal time scales; therefore, we would expect lower

correlations. Climatologies are designed to represent long

space and time scale averages such as those computed

for Fig. 6.

The overall results show that a significant error re-

duction is obtained by including at least one altimeter.

The difference between one and three altimeters is sig-

nificant only in bias. Given the limitations of the time

FIG. 5. The (a) superdata and (b) point-for-point summary diagram of biweight statistics RMSEbw9
unbiased (x axis) and MBbw9 (y axis, black;

25% gray error bars) and Guassian statistics RMSE9unbiased (x axis) and MB9 (y axis, 50% gray; 75% gray error bars) for SSHA for the six

NLOM and MODAS SSHA estimates denoted by the symbols in the legend. The SSHA values are those associated with the synthetics

described in Table 1. The error bars represent a 100 independent draw bootstrap standard error estimate.
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and space scales inherent in the NLOM/MODAS as-

similation, we are unable to discern a significant differ-

ence in the errors using two or three altimeters. The use

of nonparametric statistics tends be more effective in

discriminating differences among the MODAS SSHA-

derived predictions.

d. Error variability

To explore the seasonality of the error and fit pa-

rameters over the annual cycle, we choose two regions in

the northwest Pacific Ocean. The high variability (HV)

region bounded by 208–508N and 1208E–1608W has high

SSHA variability because of the meandering of the

Kuroshio Current. The low variability (LV) region

bounded by 08–208N and 1308E–1508W has relatively

low SSHA variability.

In the HV region, the fit error e is driven by the depth

of TDD such that e is larger when TDD is deeper in the

months of December, January, and March (cf. solid lines

of Figs. 8a,c). The percent error, which is the percent of

the error relative to the observed TDD given by

% error 5 100
a

(A3EGT)
0 � a

(obs)
0

a
(obs)
0

" #

, (16)

FIG. 6. (a) The superdata and nonparametric statistics summary diagram of RMSEbw9
unbiased (x axis) and MBbw9 (y axis) for TDD (black and

75% gray error bars) and TD$ (50% and 25% gray error bars) for the 10 synthetics denoted by the symbols in the legend as described in

Table 1. (b) The superdata and Gaussian statistics summary diagram of RMSE9unbiased (x axis) and MB9 ( y axis) for TDD (black and 75%

gray error bars) and TD$ (50% and 25% gray error bars). (c) The point-for-point data and nonparametric statistics summary diagram of

RMSEbw9
unbiased (x axis) and MBbw9 ( y axis) for TDD (black and 75% gray error bars) and TD$ (50% and 25% gray error bars). (d) The point-

for-point data and Gaussian statistics summary diagram of RMSE9
unbiased

(x axis) and MB9 ( y axis) for TDD (black and 75% gray error

bars) and TD$ (50% and 25% gray error bars). The error bars represent a 100 independent draw bootstrap standard error estimate.
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is related to the rate of change fit parameter a1. When

the magnitude of a1 is large the magnitude of the percent

error is also large (cf. solid black lines of Figs. 8b,d). The

percent error tends to be negative because the synthetics

have a shallow bias.

For the low variability region, which is represented by

the dashed–dotted lines in Fig. 8, the effects of season-

ality are relatively weak for a0, a1, and e, which change

little throughout the year. In Figs. 8d,e, percent error

and correlation coefficient for both HV and LV regions

are considered for both the A3EGT synthetics (in black)

and CLIM (in gray) cases. In Figs. 8d,e, the gray and

black dashed–dotted lines are relatively close together

compared to the solid lines. This suggests that the

A3EGT and CLIM cases have similar errors in the LV

region. In the HV regions, however, the CLIM case has

larger magnitude in Fig. 8d and lower correlation on

average in Fig. 8e. The average correlation coefficient

in the HV region for a0 determined from the A3EGT

synthetics is 0.93, higher than 0.83 for climatology. Av-

erage correlation is also relatively low in the LV region,

0.84 for both A3EGT and CLIM. In the LV region, the

accuracy of the A3EGT synthetics is not significantly

different from climatology. The value added by altime-

try in the MODAS synthetics is evident only in the re-

gion of high SSH variability, where the signal stands out

from the background noise.

The global distribution of observed a0 values can be

seen in Fig. 9. For the 60-day period starting 1 February,

the northwest Pacific Ocean Kuroshio Extension region

(the HV region in the solid box of Fig. 9) has relatively

deep TDD in the annual cycle. In contrast, the 60-day

period starting in August has relatively shallow TDD

in the Kuroshio Extension region (see also Fig. 8). The

seasonal cycle is much weaker in the LV region (dashed–

dotted box in Fig. 9).

The rate of change of TDD is given by the fit parameter

a1, as shown in Fig. 10 globally for the 60-day periods

starting in March and November. In the Kuroshio Ex-

tension (HV) region, a1 is shoaling most rapidly in March

and April and deepening in November and December

(Fig. 8). This pattern for the annual cycle of TDD rate of

change applies generally to most regions in the mid-

latitude Northern Hemisphere.

The annual cycle of the percent error in A3EGT

synthetics is linked to the TDD rate of change. Wherever

the magnitude of a1 is large, the percent error magnitude

is large. For the Kuroshio Extension region, the 60-day

periods starting in April and December have relatively

large percent error (Fig. 8); the global distributions of

errors for these months are shown in Fig. 11. The largest

errors tend to be where SSHA variability is large: for

example, in the eddy shedding regions of the Kuroshio

and the Gulf Stream. In regions of the ocean where the

SSHA variability is weak, such as the LV region, the

errors are relatively small.

6. Summary and conclusions

The impact of the number of satellite altimeters on

upper-ocean predictions of thermocline depth (TD) are

evaluated using global, data assimilating, layered model

SSHA analyses. By varying the number of altimeters

from zero to three, the prediction accuracy is determined

relative to a global set of in situ profile observations. In

addition, methods for evaluating prediction accuracy are

presented using two comparison frameworks and two

statistical methodologies. Comparisons are made point

for point and for binned and fitted superdata regions

(18 radius, 60 days). Both traditional Gaussian and non-

parametric statistical methodologies are applied.

The general results show that accuracy provided by

the satellite altimeter datasets is greater in regions of

high SSHA variability, and significant error reduction is

achieved with the addition of at least one satellite al-

timeter dataset. Under the limitations of the analysis

methods, additional error reduction when assimilating

data from three altimeters versus one is significant only

in bias. These conclusions are drawn from both the

point-for-point and superdata frameworks when using

nonparametric statistical methods. The lack of signifi-

cant skill improvement between two and three satellite

altimeter datasets may be a consequence of the length

FIG. 7. The correlation coefficient of observed vs synthetic TDD

for each of the cases in Table 1 as listed on the x axis. The corre-

lation is computed on superdata (black) and point-for-point (gray)

values, and the corresponding vertical lines represent the 100 draw

bootstrap standard error estimate.
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and time scales associated with the NLOM assimilation

and the smoothing associated with gridded climatolog-

ical coefficients of MODAS. As a result, this system is

unable to take full advantage of the added spatial detail

provided by multiple altimeters, even though each ad-

ditional data stream adds approximately 35 000 data

points globally per day. The simulated error experiment

of Smedstad et al. (2003) also indicates that the marginal

reduction in SSHA error decreases for each additional

satellite data stream.

As expected, the BEST synthetics have the greatest

accuracy but are unavailable in practical applications

because the observed profiles are used for their deriva-

tion. The BEST SSHA estimate is fully consistent with

the observed profile within the context of MODAS syn-

thetics. This upper accuracy limits of MB9 and RMSE9

(bias and rms error scaled by the observations standard

deviation) are approximately 20.05 and 0.25, respec-

tively, for nonparametric statistics and the superdata

methodology. The next greatest MB9 accuracy is found

FIG. 8. The median fit parameters (a) a0, (b) a1, and (c) e and the (d) percent error and

(e) correlation of a0 from A3EGT synthetics (in black) and CLIM (in gray) by month, relative

to the fit parameters determined directly from observations. The solid lines are for the region

bounded by 208–508N and 1208E–1608W and the dashed–dotted lines are for the region

bounded by 08–208N and 1308E–1508W in the northwest Pacific Ocean.
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in the results from CLIM and TONLY. This somewhat

surprising result is due to climatologies being specifically

designed to globally minimize MB9 and RMSE9. The

correlation levels of CLIM and TONLY, however, are

lower than the altimeter assimilative MODAS cases.

The TONLY estimates are nearly the same as CLIM,

suggesting that SST alone has little influence on TD.

In terms of RMSE9, all of the synthetics, with the

exception of BEST and A0, have nearly the same value.

The differences in RMSE9 of these synthetics are not

statistically significant. The lowest accuracy in both MB9

and RMSE9 comes from the zero-altimeter synthetic A0.

This is because, without SSHA assimilation, NLOM is

not constrained at all by SSHA. These lower accuracy

limits of MB9 and RMSE9 are approximately 20.2 and

0.45, respectively, for nonparametric statistics and the

superdata methodology.

In this paper, the statistical methodologies are found

to have a relatively large impact on the results. Evalua-

tion based on traditional statistics that assume Gaussian

FIG. 9. The fit parameter a0 (superdata mean; in m) for the observed TDD for the global ocean for a 60-day analysis

window starting (a) 1 Feb and (b) 1 Aug for the years 2001–03. The rectangles represent the regions for the com-

putations in Fig. 8.
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data distributions result in inflated error and error

uncertainty estimates. Using nonparametric statistics

circumvents the need for strict and often unfounded

assumptions about the data distribution. The two com-

parison frameworks used in this analysis have a lesser

impact. The effect of the superdata methods is to even

the influence of data between low- and high-density

observation regions. Because the global error results for

the point-for-point framework are slightly larger than

for the superdata framework, high-density observation

regions tend to occur in areas with larger errors.

The errors associated with SSHA (Fig. 5) are gener-

ally larger than the errors found for TD (Fig. 6). This is

due to representation errors associated with the SSHA

comparison, because there are no direct in situ estimates

of SSHA. Instead, we use the difference in observed

dynamic height from climatology. Climatology, how-

ever, is not identical to the mean sea surface as measured

from satellites or associated with NLOM. These mis-

representations add to the errors found in this analysis.

Because MODAS is designed to provide realistic three-

dimensional temperature and salinity structure, the TD

FIG. 10. The fit parameter a1 (superdata rate of change; in m day21) for the observed TDD for the global ocean for

a 60-day analysis window starting (a) 1 Mar and (b) 1 Nov for the years 2001–03.
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estimates have greater skill relative to direct in situ

profiles observations.

The metric TD$ has poorer accuracy than TDD because

ILD$ introduces a shallow bias in the ILD estimates. The

ILD$ methodology is based on the first curvature peak

found in the profile and therefore returns the depth of

the purely isothermal layer near the surface. This exac-

erbates the already shallow bias of MODAS, further

degrading the synthetic accuracy. Synthetics and other

predictions tend to smooth the sharp gradients found in

observations, further reducing the accuracy of both TD$

and TDD. The more unbiased threshold ILD-based es-

timate TDD does not reinforce the shallow bias of

MODAS and leads to more accurate TDD estimates.

Using summary diagrams, the errors scaled by the

observation standard deviation are plotted side by side

for consistent comparison. These diagrams are repeated

for each statistical methodology and each comparison

framework. In each rendition, the results are similar,

with the exception that Gaussian statistics inflate the

error and error uncertainty levels. The nonparamet-

ric statistical methods indicate lower error levels and

FIG. 11. The percent error for TDD A3EGT fit parameter a0 (superdata mean) for the global ocean for a 60-day

analysis window starting (a) 1 Apr and (b) 1 Dec for the years 2001–03.
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larger separation between, for example, A1J and A3EGT

synthetics, where the standard error bars do not overlap

(Fig. 6). The traditional Gaussian statistical methods are

unable to differentiate these cases because this separation

is smaller and the standard error bars overlap.

The result that the A1G SSHA estimates tend to have

better accuracy than the A1J SSHA estimates is con-

sistent with expected error estimates of Jacobs et al.

(2002). The distance between ground tracks in the GFO

orbit is about 125 km at 358N with a 17.05-day repeat

cycle, whereas the distance between ground tracks in the

Jason-1 orbit is about 260 km at 358N, with a 9.95-day

repeat cycle. The characteristics of the mesoscale tend to

have small space and long time scales relative to the

altimeter orbit spacing and repeat cycle, respectively

(Jacobs et al. 2001). This suggests that the shorter orbit

spacing should be an advantage for the A1G SSHA esti-

mate, a hypothesis corroborated in the results of this paper.

Comparing predictions to in situ observations is the

ultimate test in that the observations are the closest in-

formation we have to the true ocean condition. This type

of comparison, however, is inherently plagued with

representation errors, because the observations gener-

ally have more physical processes influencing the mea-

surements on shorter space and time scales than the

predictions are able to resolve.
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APPENDIX

Robust Nonparametric Statistics

To compute the biweight mean, first the median M

and the median absolute deviation (MAD) are com-

puted (e.g., Hoaglin et al. 1983). Then, the weights uj for

each of N data values are computed such that

u
j
5

x
j
�M

cMAD
, for j 5 1, 2, 3, . . . , N. (A1)

The recommended value for the parameter c is 7.5,

which corresponds to censoring outliers beyond at least

five standard deviations (Lanzante 1996). The censoring

is accomplished by using the condition that uj 5 1.0 for

any j where jujj $ 1 (Hoaglin et al. 1983). The biweight

estimate of the mean is then
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It is important to note that this weighting factor has

a larger magnitude for larger deviations of x from M.

The censoring is accomplished by setting uj 5 1 and

therefore 1 2 uj
2 5 0 for deviations from the median M

defined by the censor values c. Also note that there is

a small typographical error in Lanzante (1996) and

that the correction can be found online (at http://www.

gfdl.noaa.gov/;jrl/jrl_webpages/manuscripts/resistant/

IMPORTANT).

The biweight standard deviation is computed as
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Because Eq. (A3) is an unbiased estimate of the scale

of x, this corresponds to the unbiased measure of the

standard deviation.
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mixed layer depth: A subsurface proxy of ocean-atmosphere

variability. J. Geophys. Res., 111, C07010, doi:10.1029/

2003JC002157.

National Oceanic and Atmospheric Administration, 1986: ETOP05

digital relief of the surface of the earth. National Geophysical

Data Center Data Announcement 86-MGG-07, 19 pp.

Oey, L.-Y., T. Ezer, G. Forristall, C. Cooper, S. DiMarco, and

S. Fan, 2005: An exercise in forecasting loop current and eddy

frontal positions in the Gulf of Mexico. Geophys. Res. Lett., 32,

L12611, doi:10.1029/2005GL023253.

Roemmich, D., S. Riser, R. Davis, and Y. Desaubies, 2004: Au-

tonomous profiling floats: Workhorse for broad-scale ocean

observations. Mar. Technol. Soc. J., 38, 21–29.

Rousseeuw, P. J., and A. M. Leroy, 1987: Robust Regression and

Outlier Detection. John Wiley and Sons, 329 pp.

Shriver, J. F., H. E. Hurlburt, O. M. Smedstad, A. J. Wallcraft,

and R. C. Rhodes, 2007: 1/328 real-time global ocean pre-

diction and value-added over 1/168 resolution. J. Mar. Syst.,

65, 3–26.

Smedstad, O. M., H. E. Hurlburt, E. J. Metzger, R. C. Rhodes,

J. F. Shriver, A. J. Wallcraft, and A. B. Kara, 2003: An oper-

ational eddy resolving 1/168 global ocean nowcast/forecast

system. J. Mar. Syst., 40, 341–361.

Teague, W. J., M. J. Carron, and P. J. Hogan, 1990: A comparison

between the Generalized Digital Environmental Model and

Levitus climatologies. J. Geophys. Res., 95, 7167–7183.

Wallcraft, A. J., A. B. Kara, H. E. Hurlburt, and P. A. Rochford,

2003: The NRL Layered Global Ocean Model (NLOM) with

and embedded mixed layer submodel: Formulation and tun-

ing. J. Atmos. Oceanic Technol., 20, 1601–1615.

Zou, X., and Z. Zeng, 2006: A quality control procedure for

GPS radio occultation data. J. Geophys. Res., 111, D02112,

doi:10.1029/2005JD005846.

546 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 27


