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An efficient implementation of background-error correlation modeling for ocean data assimilation based
on the implicit solution of a diffusion equation is presented in this work. This study is an extension of
Weaver and Courtier (2001), which sought to model error correlations based on the explicit solution of
a generalized diffusion equation. The implicit solution is unconditionally stable, therefore larger time
steps can be used in the calculation than in the explicit solution, which needs smaller time steps to
maintain stability. This is especially true when modeling anisotropic correlations, or when using a
non-uniform model grid (e.g. curvilinear grid spacing). Both implicit and explicit methods are tested in
terms of numerical efficiency and practical implementation. To that end, a set of simulated and real data
assimilation experiments are carried out using a three-dimensional variational (3D-Var) algorithm that
has been developed as a test-bed for these correlation models. The results of both the implicit and explicit
method are compared to show that while the implicit method provides the same correlation shape, size,
and magnitude as the explicit, it does so at a much lower computational cost. For the experiments shown
here the implicit solution can be up to five times as efficient in terms of CPU time than the explicit, while
also providing a nearly identical analysis and forecast in terms of deviation from independent
observations.

Published by Elsevier Ltd.
1. Introduction

The specification of background error covariances in any assim-
ilation scheme is one of the most important tasks in the field of
data assimilation. Until recently, most data assimilation schemes
have assumed the structure of the covariances to be isotropic
and homogeneous. However, more recent studies suggest that this
is a major shortcoming of most data assimilation methods (Kalnay
et al., 1997; Houtekamer and Mitchell, 1998; Errico, 1999; Purser
et al., 2003b) as this assumption restricts the flow of observational
information to circular regions surrounding the measurement
location on the analysis grid. Otte et al. (2001) points out that
assuming a circular influence region ignores important features
such as temperature and wind gradients that may provide valuable
information as to the structure of the air mass.

Several studies have been made to investigate the construction
of anisotropic and inhomogeneous error correlations on the analy-
sis grid. Purser et al. (2003b) suggest that it is possible to obtain
some measure of local anisotropy depending on the geometry of
the chosen analysis grid. They point to studies done by Shapiro
and Hastings (1973) and Benjamin (1989) who perform an analysis
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in isentropic coordinates, which provides increased vertical resolu-
tion in regions that exhibit high static stability. This approach can
be troublesome, however, due to the lack of control on the degree
of anisotropy as well as being limited in the variety of shapes one
could use. Instead, it has been suggested by numerous studies,
most notably by Purser et al. (2003b) and Weaver and Courtier
(2001), that to obtain a controllable inhomogeneous and aniso-
tropic structure, one must define an error correlation operator
(as a component of the full covariance) with the built-in capability
to model these anisotropic features.

Purser et al. (2003a) introduce a method to define a correlation
operator based on recursive filters. In this work the filters are
purely homogeneous and isotropic. They demonstrate a method
to extend the filter algorithm to include anisotropic structures.
3D anisotropic features are captured by utilizing a type of hexad
algorithm that applies the filter in the direction of six nonstandard
grid lines to achieve some form of ‘‘stretching” in the structure
functions. This covariance application has been utilized in several
studies, most notably in Wu et al. (2002) and Liu et al. (2007)
where it was applied in a 3D-Var environment in an effort to
assimilate GPS slant-path water vapor observations.

The work in this study is an extension of that done by Weaver
and Courtier (2001) who aim to model anisotropic and inhomoge-
neous correlations for the ocean on a sphere using the diffusion
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equation. Weaver and Courtier (2001) build on previous studies
done by Egbert et al. (1994) and Derber and Rosati (1989) who
proposed the use of an iterative Laplacian grid-point filter to build
error correlations. In the case of Weaver and Courtier (2001) the
Laplacian operator is interpreted to be a time-step integration of
a diffusion equation, where the integral kernel of the equation is
the representation of a covariance function. Their work demon-
strates the ability to model anisotropic correlations by defining
the diffusion coefficient as a function of the analysis grid. This
method has been employed successfully in numerous studies,
including Weaver et al. (2003), Ngodock (2005), Weaver et al.
(2005), and Pannekoucke and Massart (2008).

Weaver and Courtier (2001) base their method on the explicit
solution to a generalized diffusion equation. A consequence of this
is that the correlation operator is only conditionally stable.
Depending on the degree of anisotropy in the correlation struc-
tures, this method could require several hundred or even thou-
sands of time stepping iterations to produce a correlation field
due to the CFL stability criterion. Purser et al. (2003b) point out
that one of the main advantages of their filter approach is the rel-
ative speed in comparison to the diffusion method.

The work presented in here illustrates the use of the implicit
solution to a diffusion equation to increase the computational effi-
ciency of the Weaver and Courtier (2001) algorithm. In the next
section a detailed examination of the implicit-solution scheme is
presented as well as a general comparison between the correlation
shapes produced from the implicit and explicit solutions of the dif-
fusion equation. Section three then outlines the set-up and results
for both the simulated and the real data assimilation experiments
in the Monterey Bay and Hawaiian regions, respectively. These
experiments demonstrate the usefulness of the error correlation
operator in a three-dimensional variational (3D-Var) assimilation
algorithm and illustrate the advantage of using the implicit solu-
tion to the diffusion equation rather than the explicit. Section four
summarizes the presented work and provides a brief discussion of
the intended future work.

2. The background-error correlation operator

Weaver and Courtier (2001; hereto WC2001) based their work
on that done by Derber and Rosati (1989) who demonstrate that
an iterative Laplacian grid-point filter can be used to model
correlations. One application of this approach assumes that the
Laplacian filter be viewed as a time-step integration of a diffusion
equation (Egbert et al., 1994; Bennett et al., 1997). WC2001 build
on this approach to define 2D and 3D univariate correlation models
that are not only efficient in terms of computational speed, but also
provide a method for constructing anisotropic and inhomogeneous
correlations. For a more complete description of this error correla-
tion operator, the authors refer the reader to WC2001.

2.1. Correlation operator using the implicit solution of a diffusion
equation

As noted, the correlation operator is built upon the solution to
the standard diffusion equation:

@g
@t
¼ r � ðjrgÞ; ð1Þ

where the diffusion coefficient is a spatially varying quantity and
therefore can be used to modify the length scale and shape of the
correlation based on any predetermined field; it should be noted
that the Laplacian operator is three-dimensional. The explicit solu-
tion of (1) is of the form:

gnþ1 ¼ gn þ Dtr � ðjrgnÞ: ð2Þ
It can be proved that in order to maintain stability the time step
(M) should be set as M P 2(L/e)2, where L is the correlation length
scale and e the horizontal grid resolution. This requirement in the
explicit solution affects the computational cost of modeling aniso-
tropic and inhomogeneous correlations. The result is a dramatic
increase in computational time for the explicit solution since M
would need to be computed using the ratio of the largest correla-
tion length scale value to the horizontal grid step (Lmax/e). Due to
this, we introduce another approach to solve for (1) using an impli-
cit scheme. Here, the solution to (1) can be written as

gnþ1 ¼ gn þ Dtr � ðjrgnþ1Þ: ð3Þ

The solution (3) is unconditionally stable and does not require pro-
hibitively small time steps for integration (Weaver and Ricci, 2004).
From (3) if A = Dtr � (jr), then Eq. (3) can be re-arranged to the
form,

ðI � AÞgnþ1 ¼ gn; ð4Þ

which can be solved using a conjugate gradient algorithm. Using (4)
for the filter design reduces the computational time required over
the explicit solution. Using the conjugate gradient for solving (4)
requires a stopping criterion for convergence. A series of experi-
ments have been done to investigate the impact of the convergence
criterion on the solution. Experiments with stringent convergence
criterion (residual less than 1.0 � 10�5) have displayed no substan-
tial gain when compared to looser criterion. It can be shown that
any value of the residual between 1.0 � 10�2 and 1.0 � 10�5 can
provide adequately accurate results (as defined by a comparison
to the explicit-solution operator), however, it should be noted that
a residual value of 1.0 � 10�1 has been found to be inadequate for
the purposes of this correlation operator. For the work shown here,
a residual criterion of 1.0 � 10�5 has been selected as a balance be-
tween accuracy and efficiency; however a looser criterion could
have also been used and would have afforded an even greater cost
savings over the explicit-solution operator than is shown here.

The explicit and implicit solutions are approximations of the
true solution to the diffusion equation. The difference between
the approximation and the true solution is related to the size of
the time step used to solve the equation either implicitly or explic-
itly; this difference is known as truncation error. Since the implicit
solution normally uses a larger time step than the explicit solution,
these two operators will provide slightly different results. This can
be mitigated by applying the implicit-solution correlation operator
numerous times, thereby shortening the time step used. This does
result in an increase in the computational cost of the operator,
however not so much as to eliminate the cost savings over the ex-
plicit-solution operator. For the results shown in this work, the im-
plicit-solution operator has been applied ten times in order to
closely approximate the results of the explicit-solution operator.
Fig. 1 compares the CPU time used to run the explicit solution
(red) and implicit solution (dashed blue) for a selected test case.
This experiment involves an arbitrary 3D grid of 157 � 130 � 46
with a resolution of 1 km. A total of 4250 Dirac impulses, at various
horizontal and vertical positions, are passed through both filters.
The computer codes for these operators are both currently serial
versions and are run on one Opteron 2200 2.8 GHz processor.
The grid resolution is fixed at 1 km, however six different horizon-
tal length scale values are used: 5 km, 10 km, 20 km, 30 km, 40 km,
and 50 km. Fig. 1 shows that the CPU time for the explicit solution
rises rapidly, whereas the CPU time for the implicit solution in-
creases at a much lower, nearly linear rate.

It should be noted that the algorithm also employs a set of
normalization factors to ensure that the solution of the algorithm
is, in fact, a correlation field. Any number of methods can be em-
ployed to calculate the normalization factors such as an explicit
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calculation or Monte Carlo techniques. The normalization factors
would then be applied to the algorithm as in Weaver and Ricci
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Fig. 2. Example correlation function centered at 78 � 65 on arbitrary grid; center value i
field explicit minus implicit. Grid resolution and correlation length scale are fixed at 6.0
(2004). Fig. 2 shows a side-by-side comparison of an error correla-
tion in an arbitrary grid where a set of normalization factors have
been used. Fig. 2a (Fig. 2b) shows the correlation constructed using
the explicit (implicit) solution. In both figures the horizontal grid is
157 � 130 with a length scale of 60 km and a resolution of 6 km;
no length scale modification is used. The implicit solution produces
a correlation with nearly identical shape, size, and magnitude as
the explicit solution. The difference field is shown in Fig. 2c.

To demonstrate that these two methods produce similar results
when simulating anisotropic correlations, an empirical length scale
modification is employed that accounts for the changes in bathym-
etry. It has been suggested that correlations become horizontally
stretched in the along shore direction when near a coastline
boundary (Li et al., 2008; Weaver and Ricci, 2004) in shallow water.
This anisotropic feature can be approximated using a quadratic
function of bathymetry,

ji;j:k ¼ cðD� di;j;kÞ2 þ 1; ð5Þ

where ji,j,k is the set of spatially varying diffusion coefficients, D de-
fines the maximum depth of the water column where correlation
stretching will occur (model grid points with depths greater than
D will be isotropic), and di,j,k is the depth at model grid point (i, j,
k). It should be noted that the minimum value of j is never allowed
Implicit Correlation Function
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to go below 1.0 and its maximum value is capped at 5.0 by the con-
stant c. This constant is calculated as the maximum diffusion coef-
ficient value (jmax) minus the minimum value (jmin) normalized by
the square of D. Fig. 3 shows the side-by-side comparison of an er-
ror correlation using this length scale modification feature with
Fig. 3a (Fig. 3b) using the explicit (implicit) solution. The difference
field is shown in Fig. 3c. In this case, an actual geographical region is
needed with a land mass within the model domain. Here, a near-
shore example around Monterey Bay, California is used with a
81 � 58 � 41 grid and 1 km horizontal grid resolution. Both correla-
tions exhibit obvious along-shore stretching in relation to the rela-
tively shallow coastal bathymetry, shown in Fig. 3d.

3. Assimilation scheme and experiments

Testing a new error covariance scheme is an intensive and time
consuming project. Such validation normally requires many months
of trials involving numerous real-data experiments from a variety of
oceanic conditions and regimes. Conducting this sort of validation is
beyond the scope of this study. However, two experiments are pre-
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Fig. 3. Anisotropic correlation function (with length scale modification) near the coast of
difference field explicit minus implicit, and (d) shows the bathymetry.
sented here: (1) a simulated and (2) real-data experiment to demon-
strate the capabilities of this implicit solution background-error
correlation operator in a data assimilation environment.

3.1. Assimilation scheme and forecast model

For these experiments the three-dimensional variational (3D-
Var) analysis scheme is utilized. The analysis equation employed
is the following

xa ¼ xb þ BHTðHBHT þ RÞ�1ðy �HxbÞ; ð6Þ

where each variable follows the conventional definition. For sim-
plicity R is taken as the diagonal matrix containing only the obser-
vation variances.

The oceanic forecast model is the Navy Coastal Ocean Model
(NCOM) and is capable of producing ocean forecasts of tempera-
ture, salinity, sea surface height, and velocity for regional near-
shore environments or for the global oceans (Martin, 2000). The
model has a free surface and is based on the primitive equations.
Surface forcing conditions (e.g. wind stress, infrared radiation flux,
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etc.) are provided by the global Navy Operational Global Atmo-
spheric Prediction System (NOGAPS, Rosmond et al., 2002) with
0.5� horizontal grid resolution. The NOGAPS forcings are archived
every 12 h at the synoptic times of 0000 and 1200 UTC.

3.2. Monterey Bay simulated data assimilation

3.2.1. Experiment design
This experiment involves simulated data for a Monterey Bay sim-

ulation. Here the NCOM model has an 81 � 57 � 41 grid with a var-
iable horizontal grid resolution between 1 km and 4 km. For this
experiment two NCOM forecasts are run, one during the time frame
of January, 2007 and the second for the following month of February,
2007. For the sake of this discussion, the January forecast will be re-
ferred to as the control (CTRL) and the February forecast as the obser-
vations (OBS). Model profile data of temperature and salinity are
selected at 24-h intervals from the OBS model run at 13 locations
(Fig. 4) throughout the grid. A low number of profile data locations
is selected to mimic the sparse distribution of real-world profile
observations. Data from OBS are assimilated in a 24-h update cycle
and the resulting analysis is used to run another NCOM forecast
for January, 2007; OBS data from February 1st is assimilated into
the analysis for January 1st; OBS data from February 2nd is assimi-
lated into the analysis for January 2nd, and so on. This forecast will
be referred to as the optimal forecast (3DV). Here, there are two opti-
mal forecasts performed, one using an analysis created with the ex-
plicit-solution correlation operator (3DV-EXP) and one with the
implicit-solution correlation operator (3DV-IMP). Both analyses
are evaluated by examining the difference fields between the 3DV
forecasts and the OBS forecast at non-assimilated locations. And
the overall forecast is evaluated using a normalized error metric,
which is developed to evaluate many aspects of these experiments,
and is a relative measurement of either the analysis or forecast error
through time. The metric eb is defined as

eb ¼

PK
k¼1

Hxk
b�ykð Þ2
r2

obs

K

0
BB@

1
CCA; ð7Þ
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where k is the observation index, xk
b is the model state (mapped to

the observation space by H), yk is the observation, r2
obs is the obser-

vation variance. The metric is computed as a time series at each 24-
h time level and each 24-h value is normalized by the initial value at
t = 0. In order to compare results, both the 3DV-IMP and the 3DV-
EXP results have been normalized by the t = 0 values from the
3DV-IMP experiment. It should be noted that the correlation length
scale is based on the Rossby radius of deformation and is variable
between 20 and 30 km.

3.2.2. Experiment results
Fig. 5 shows a time evolution (six-panel plot) of the 3DV minus

OBS (analysis minus observation) profile difference for tempera-
ture (T) at a non-assimilated model grid point. The closest selected
assimilated OBS point to this profile location is 12 km. The CTRL
profile is shown in red, the 3DV-IMP in green, and the 3DV-EXP
in blue. The six panels show the profile for the initial time (day
1) then days 5, 10, 15, 20, and 25. The 3DV-EXP and 3DV-IMP pro-
files are remarkably similar, as the difference in correlation opera-
tor does not produce diverging results. Also, the T difference is
reduced significantly in the 3DV results when compared to the
CTRL. The analysis seems to be better at depth than near the sur-
face, but this is likely due to the fact that the ocean is more variable
near the surface (due to prevailing surface forcing conditions).
Nevertheless, the 3DV results (both implicit and explicit) show
improvement in the near surface T difference when compared to
the CTRL results. Fig. 6 shows this same profile time evolution
for salinity (S). The results shown for this profile are representative
of the entire model solution (all profiles).

Fig. 7 shows the normalized error metric for the full 28-day 3DV
forecast. The T error is shown in red, S in blue, and total velocity (V)
in green. The 3DV-IMP (3DV-EXP) results are shown as the solid
lines (dashed lines). It is clear that as the 24-h update assimilation
cycle continues through the 28-day forecast, the errors for all fields
decrease dramatically. The largest decrease occurs in the first ten
days as the errors in most fields drop from 1.0 to 0.3–0.4. Also, it
is worth noting that the 3DV-IMP and 3DV-EXP results are nearly
identical.

The timing results for this experiment indicate the improved
computational efficiency of the implicit-solution correlation
operator over the explicit version. For the experiment utilizing
the explicit-solution correlation operator, the full 28-day analy-
sis-forecast cycle ran in 128 min using a single-processor Opteron
2200 2.8 GHz computer, whereas the version using the implicit-
solution correlation operator took just under an hour at 42 min, a
savings ratio of roughly 3:1.

3.3. RIMPAC real data assimilation

3.3.1. Experiment design
The real data assimilation experiment concerns a geographical

region surrounding the Hawaiian island chain during a 15-day per-
iod from 16 June to 30 June, 2008. The NCOM grid used for this
experiment is 157 � 130 � 46 with a 6 km grid resolution with
boundary conditions supplied from the operational global NCOM
run. Observations are selected from a portion of the Navy’s RIMPAC
(Rim of the Pacific) exercise with a 24-h update cycle used to
assimilate the observations at 0000 UTC each day; assimilated data
are collected from a +/� 12-h window around the analysis time.
This 3D-Var routine is linked directly to the observation prepara-
tory and quality control program suite from the Navy Coupled
Ocean Data Assimilation (NCODA) system, known as NCODA-prep
(Cummings, 2005). This was done to ensure that the included
observations were of operational quality and to take advantage
of the well-established data selection and quality control routines
already included in the NCODA system.
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The observational data used for this experiment include many
sources such as oceanic gliders (Rudnick et al., 2004), ARGO float
profiles (Roemmich et al., 2001), and Modular Ocean Data Assimi-
lation System synthetics profiles (MODAS, Fox et al., 2002), how-
ever only three variables are considered in the analysis: T, S
(surface and sub-surface), and SSH. The background error variances
are calculated as in Cummings (2005). As in the simulated data
experiment, two assimilation model runs are conducted here.
One uses a 3D-Var with the implicit correlation operator (IMPL)
and the other with the explicit operator (EXPL).
3.3.2. Experiment results
To investigate the analysis, four observational profiles of T and S

have been excluded from each of the assimilation cycles to be used
as independent observations for validation purposes; results from
one profile location are shown here. The location of this profile is
shown relative to other observation data in Fig. 8 (red cross) for
16 June, 2008. It should be noted that this figure includes the loca-
tion of surface-only (black dots) and profile observation locations
(red dots). The observation profiles are compared to profiles from
three model runs: (1) the first guess (FG) field, (2) a 3D-Var analy-
sis using the implicit-solution correlation operator (IMPL), and (3)
a 3D-Var analysis using the explicit-solution correlation operator
(EXPL). As in the simulated data experiment, the Rossby radius of
deformation is used here to define the correlation length scale,
resulting in correlation length scales ranging from 55 to 70 km.
Fig. 9 shows a comparison between three model profiles (from
FG, IMPL, and EXPL) and one non-assimilated observation profile at
0000 UTC 16 June, 2008. Absolute differences are calculated be-
tween the observation value and FG (red), IMPL (green), and EXPL
(blue) for T (Fig. 9a) and S (Fig. 9b). The FG field features a large dis-
crepancy with the observation value for both T and S for just below
the surface to around 500 m. This region has been identified as the
mixed layer (figure omitted), and suggests that NCOM is having
some difficulty correctly simulating the thermodynamic properties
of this layer. This discrepancy is reduced significantly in the IMPL
and EXPL results, even though the nearest assimilated profile
observation in this analysis is at 42 km distance.

The IMPL and EXPL difference profiles are very similar, espe-
cially in the S values. The T difference profiles show some dissim-
ilarities, however these are small, on order of about 0.05 �C. These
differences, however, have little impact on the overall structure of
the analysis and on the performance of the resulting forecast (to be
shown later). It is important to note that the results from the other
withheld profiles, for all time levels, are similar to the example
shown here.

A brief assessment of the real data forecast, using the 3D-Var
analysis, is shown in Fig. 10 using error metric (7). The T error is
in red, S error in blue, SSH error in green, and the IMPL (EXPL) re-
sults are shown as solid (dashed) lines. Clearly the errors in all
fields are nearly identical between the IMPL and EXPL model runs.
The error generally decreases as the forecast progresses, indicating
that the assimilation of observations is having a positive impact on
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Fig. 6. Same as in Fig. 5, but for salinity.
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the analysis and the resulting forecast. There appears to be little
statistical difference between the two forecasts, save for the
amount of CPU time required to run the two systems. For this
real-data experiment in the RIMPAC region the 3D-Var using the
IMPL out-performs the EXPL nearly 5:1, at 4 h to the EXPL’s 18 h
(using a single-processor Opteron 2200 2.8 GHz computer).
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Clearly, this represents a significant savings in terms of computa-
tional time and resources.
4. Summary and future work

An alternative method of error correlation modeling based on a
diffusion equation has been presented. It is known that a correla-
tion operator relying on the explicit solution to a diffusion equa-
tion is conditionally stable, thereby limiting the size of the time
step in order to maintain stability. This is especially true of model-
ing anisotropic correlations where the correlation length scale
changes spatially over a model grid with fixed resolution. In this
case, the explicit-solution correlation operator requires a large
number of small time steps in order to maintain stability. On the
other hand, the implicit-solution correlation operator is uncondi-
tionally stable and does not require a drastic increase in computa-
tional time to handle any correlation shape that may be desired.

Comparisons between the explicit and implicit-solution corre-
lation operators demonstrate that the implicit solution produces
correlations very similar to the explicit solution in terms of magni-
tude, shape, and spatial size. The performance of the operators is
shown in terms of both simulated and real data assimilation exper-
iments. In the real-data experiment, observations collected by the
NCODA preparation subroutines are used in a 15 day forecast, in
which a 24-h forecast cycle assimilates data daily at 0000 UTC.
Here observational profiles of temperature and salinity are with-
held at four locations in each assimilation cycle; these profiles
are then used to evaluate the performance of the assimilation
scheme and the correlation operators. The results suggest that
the correlation operators perform well in spreading information
from the observations throughout the model grid, and to locations
where no data are assimilated. Also, the results from the RIMPAC
real-data experiment show that the implicit and explicit-solution
operators provide nearly identical results in the 3D-Var system;
however, the 3D-Var using the implicit-solution correlation opera-
tor ran in approximately 1/5 the time of the system employing the
explicit operator.

The next step in this research is to perform a more robust vali-
dation of this implicit covariance operator. This would involve test-
ing the performance of the operator in real data assimilation
experiments involving numerous environmental regimes (i.e. deep
water, near shore, strong upwelling/downwelling, presence of
fronts, etc.) to assess how well the system adapts to changing
conditions.
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