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This study consisted in the characterization of internal waves in the south of the Strait of Messina (Italy).
The observational data consisted in thermistor string profiles from the Coastal Ocean Acoustic Changes at
High frequencies (COACH06) sea trial.

An empirical orthogonal function analysis is applied to the data. The first two spatial empirical modes
represent over 99% of the variability, and their corresponding time-dependent expansion coefficients take
higher absolute values during internal wave events. In order to check how the expansion coefficients vary
during an internal wave event, their time derivative, called here changing rates, are computed. It shows
that each wave of an internal wave train is characterized by a double oscillation of the changing rates.
At the front of the wave, both changing rates increase in absolute value with opposite sign, and then
decrease to become null at the maximum amplitude of the wave. At the rear of the wave, the changing
rates describe another period, again with opposite sign. This double oscillation can be used as a detector
of internal waves, but it can also give information on the width of the wave, by measuring the length of
the oscillation, as this information may sometimes be hard to read straight out of the data. When plotting
the changing rates one versus another, the resulting scatter diagram puts on a butterfly shape that illus-
trates well this behaviour.

� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

The Strait of Messina separates the Italian Peninsula from the is-
land of Sicily. It is a natural connection between the Tyrrhenian Sea
in the north and the Ionian Sea in the south. Consequently two
water masses are encountered in the strait, the Tyrrhenian surface
water and the colder and saltier Levantine Intermediate Water,
ll rights reserved.
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making it a rich dynamical area where many ocean features can
be encountered. The strait is 3 km wide and 80 m deep at the sill.
In the northern basin, the water depth increases gently whereas
the slope is steeper in the southern basin (Fig. 1). During maximum
tidal flow from the Tyrrhenian Sea to the Ionian Sea (rema scen-
dente) and inversely (rema montante), only one type of water is
present over the sill, thus annihilating the two-layer structure usu-
ally encountered over the sill: the tidal barotropic aspect of water
motion was analyzed by Defant (1961). Although tidal sea surface
displacements are very small in the strait of Messina (the order of
10 cm), Defant (1940) explained the existence of strong currents in
the strait by the fact that the tides for the open strait boundaries
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Fig. 1. Bathymetry of the Strait of Messina. The blue point shows the thermistor string position.

2 G. Casagrande et al. / Ocean Modelling 31 (2010) 1–8
oscillate almost in opposition, thus leading to a sea surface slope of
1–2 cm km�1 generating strong currents (Mosetti, 1988) as high as
3 m s�1 in the sill region during spring tides (Bignami and Salusti,
1990).

Strong barotropic tidal flow, steep bathymetry, and stably strat-
ified environment are the three required ingredients for internal
wave generation (Zeilon, 1912). The generation process was dem-
onstrated analytically in Baines (1973, 1982). Several hydrody-
namic modelling studies have been done and have showed that a
tidal flow going over steep topography creates an interfacial
depression of the pycnocline that generates an internal bore (Del
Ricco, 1982; Mosetti, 1988; Lamb, 1994; Brandt et al., 1997; Warn
Varnas et al., 2003, 2005, 2007). Concerning the Strait of Messina,
the heavier Levantine Intermediate Water crosses the sill during
rema montante. The pycnocline is thus lifted at the sill, and then de-
pressed in the northern basin. The depression generates a south-
wards and a northwards propagating bore. The northwards
travelling bore keeps propagating in the Tyrrhenian Sea whereas
the southwards propagating bore is stopped by the sill. When
the semi-diurnal tide reverses to rema scendente, the southwards
propagating internal depression undergoes a hydraulic jump over
the sill and into the southern basin where it propagates away from
the sill. As it propagates, nonlinear effects steepen its leading edge
until it disintegrates into a series or ‘‘train” of interfacial nonlinear
short internal waves. This disintegration is due to effects of fre-
quency and amplitude dispersions, as well described in Warn Var-
nas et al. (2007). Internal waves in the Strait of Messina are
characterized by a propagation speed between 0.80 and 1.15 m
s�1, with oscillations of temperature up to 2 �C amplitude. When
the train is well formed, 4–10 internal solitary waves per train
can be observed with periods ranging from 8 to 30 min, covering
an average total duration of about 2 h (Alpers and Salusti, 1983;
Casagrande et al., 2009).

In this paper, we present an original way of detecting and char-
acterizing internal waves through empirical orthogonal function
(EOF) decomposition applied to in situ data from the COACH06
cruise (late October – beginning of November 2006). After a brief
presentation of the data set and the EOF analysis theory, the com-
puted expansion coefficients are analyzed by studying the behav-
iour of their time derivatives, and the corresponding scatter
diagrams. In the presence of an internal wave, a characteristic fea-
ture, also giving information about the wave width, appears.

2. Experimental data

For this study, the measurements came from one thermistor
chain bottom-moored south of the sill (Fig. 1), at location
(15�38’57”E, 38�02’24”N), from 4 November 16:48 UTC to 7
November 07:12 UTC, with a 1-min temporal resolution which al-
lows clear observations of internal solitary wave events. The chain
consisted of 10 sensors ranging from 14 to 128 m depth, providing
a vertical resolution of about 10 m. Fig. 2 shows the density com-
puted from the temperature measurement of the thermistor string
using the unesco equation of state (salinity was considered con-
stant with a value of 38.10 psu).

The pycnocline depth stands around 95 m for the first day and
half, and rises slowly to a 60 m depth after 6 November. Five inter-
nal solitary wave train events can be identified on the whole per-
iod; they occur every half day, corresponding to the tidal period.
The maximum amplitudes of the internal waves range from 40 to



Fig. 2. Density computed from thermistor string measurements from 4 November 2006 16:48 UTC to 7 November 2006 07:12 UTC. The 28.5 density contour (corresponding
to a temperature of 16 �C) is plotted to underline the density variability due to occurrence of internal waves. Density units are ‘‘sigma-t”.
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50 m. The trains have two to four internal solitary waves. The first
and second waves are very neat in the data. On average, it was ob-
served that the internal wave trains appear on the thermistor
string data 6–6.5 h after the tide reversal from rema montante to
rema scendente. Considering the hypothesis made by Alpers and
Salusti (1983) that, for southwards propagating internal solitary
waves, the internal bores are generated at slack waters when the
flow reverses from north to south, the average speed of the internal
waves train was estimated between 1.03 and 1.15 m s�1.
3. EOF analysis

An empirical orthogonal function (EOF) decomposition of the
time series of density was carried out to gain more information
on the internal wave structure. This decomposition determines
the main spatial patterns of variability as well as their variation
in time and gives a measure of importance of each pattern (Emery
and Thomson, 1997). Each EOF mode represents a standing oscilla-
tion pattern (Preisendorfer, 1988). The projection of the data onto
the EOF modes gives an estimate of how the pattern oscillates in
time. These projections are called principal component time series
or expansion/projection coefficients of the EOFs.

In our study, the EOF analysis was applied on the vertical to the
density anomaly obtained from the thermistor string measure-
ment, so that the density rðz; tÞ could be written as:

rðz; tÞ ¼ hrðzÞi þ
XM

n¼1

anðtÞ/nðzÞ ð1Þ

where hrðzÞi is the time-averaged vertical density profile, M is the
number of considered EOF modes, anðtÞ is the amplitude (or ‘expan-
sion coefficient’) of the nth orthogonal mode at time t and /nðzÞ the
nth EOF. This equation says that the time variation of the dependent
scalar variable rðz; tÞ at each depth results from the linear combina-
tion of M spatial functions /n, whose amplitudes are weighted by M
time-dependent expansion coefficients anðtÞ. The weights anðtÞ tell
how the spatial modes /n vary with time. As there are many termi-
nologies for EOF analysis, we insist on the fact that the use of ‘‘EOF”,
or EOF mode, refers to the spatial vertical pattern /n, and that
‘‘expansion coefficient”, or projection coefficient, refers to the tem-
poral patterns or weights anðtÞ.
With the inherent efficiency of this statistical description, a very
few empirical modes are needed to describe the fundamental vari-
ability in a very large data set. Here the first mode represents over
95% of the variance, the second mode drops to 4.5%, the others are
negligible. So only the first two modes, representing 99.5% of the
variance, are taken into account, and represented in Fig. 3 with their
respective expansion coefficients. The two vertical modes are very
clean and smooth. The amplitude of the first EOF does not change
sign over the water column, it is maximum at a depth of 90 m.
Therefore, all the isopycnals oscillate in the same direction (Vázquez
et al., 2006) with maximum displacement at 90 m. It represents the
vertical displacement of the pycnocline; the oscillation, where the
EOF is not null, can be felt between 45 and 130 m depth, which cor-
responds well to what is observed on Fig. 2. The second EOF has two
extrema, as a consequence of the orthogonality constraint, and
changes sign close to the first EOF maximum depth. This indicates
that isopycnals are moving in opposite directions above and below
the pycnocline (Vázquez et al., 2006). It represents a change in the
thickness of the pycnocline, and consequently a modification of
the vertical density gradient. Interpreting EOFs must always be
done cautiously as empirical modes do not necessarily correspond
to physical modes (Dommenget and Latif, 2002). The physical mode
base functions have increasing number of sign changes as the verti-
cal mode number increases. The first mode does not change sign.
The second mode changes sign once. This is similar to first and sec-
ond EOF functions. They both track vertical variability but their
equivalence or non equivalence remains to be determined.

Looking now at the expansion coefficients on Fig. 3 bottom, it
can be observed that their behaviour is related to internal wave
occurrences, both coefficients assuming much larger absolute val-
ues during internal wave events. It can also be noticed how well
the first expansion coefficient agrees with the pycnocline oscilla-
tion of Fig. 2, once again confirming that the first mode corre-
sponds to the vertical displacement of the pycnocline.

As most of the variance was contained in the first two spatial
modes and as the expansion coefficients have a similar behaviour,
we looked at the scatter diagram formed by plotting the first
expansion coefficient a1 versus the second expansion coefficient
a2. The result reveals a crescent shaped distribution (Fig. 4) mean-
ing that both expansion coefficients are dynamically linked (Casa-
grande et al. 2008). We have reminded this result here as when it
was first published in Casagrande et al. (2009), a lot of questions



Fig. 3. Top, amplitude of first two EOFs /1 and /2 calculated from the thermistor string density. Only the first two EOFs are represented as they give over 99% of the variance
(95% and 4.5%). Bottom, expansion coefficients for the first two EOF modes. The first expansion coefficient clearly represents the vertical oscillation of the pycnocline in time
(compare with density contour 28.5 on Fig. 2). Both coefficients have stronger (absolute) values during internal wave events.
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arose from the reviewers and the scientific community. EOFs are
built under some orthogonal constraints: (1) the EOF modes /iðzÞ
are orthogonal in space meaning that there is no correlation be-
tween any two EOFs (/i � /j ¼ dij) and (2) the expansion coefficient
time series aiðtÞ are orthogonal in time meaning that there is no
simultaneous temporal correlation between any two expansion
coefficients (ai � aj ¼ dij). These two constraints were checked and
respected for the first two EOF modes considered here: /1/2 ¼ 0
and a1a2 ¼ 0. The scatter diagram of the expansion coefficients
having a specific shape is not in contradiction with the orthogonal-
ity constraint, it only highlights a dynamical interaction between
these two modes illustrating that the vertical oscillation of the
pycnocline during an internal wave event is related to the modifi-
cation of its gradient.
Two regimes can be distinguished in Fig. 4. In the centre of the
distribution where the cloud of points is thick and dense, a1 takes
small values meaning a weak variation of the pycnocline depth. a2

is negative. This corresponds to density profiles with a pycnocline
depth close to the average and a gradient typical of a well stratified
water column (Casagrande et al., 2008). This regime represents a
‘‘rest regime” with no internal wave events. Looking now at the
‘‘branches” of the ‘‘crescent”, one can see how both coefficients in-
crease in absolute values in a correlated way. This regime repre-
sents the internal wave dynamics. More details are available in
Casagrande et al. (2009). This crescent shape scatter diagram was
confirmed by numerical simulations (Fig. 4) from the fully non-
hydrostatical 2.5D Lamb model (1994) described in Casagrande
et al. (2008, 2009).



Fig. 4. Expansion coefficient scatter diagram for the thermistor string data (grey) and the Lamb model (1994) output (black). The scatter diagram is obtained by plotting the
first two expansion coefficients a1 and a2 versus one another. The ‘‘crescent shape” of the scatter diagram shows that the two main EOF expansion coefficients are
dynamically linked in the presence of internal waves. The ‘‘middle” of the cloud of points represents the interval between two internal wave events when the profile is close
to its mean position. The asymptotic behaviour of the cloud of points for high values of the expansion coefficients is representative of internal wave events.
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4. Results

As the observed crescent scatter diagram is representative of
internal wave dynamics and in order to see how the diagram of
the expansion coefficients is described in the presence of an inter-
nal wave event, the time derivatives of the expansion coefficients,
called here ‘changing rates’ (CR), are computed: CR1 ¼ da1=dt and
CR2 ¼ da1=dt. These changing rates represent the variation in time
of the expansion coefficients. As the expansion coefficients have
bigger absolute values during internal wave occurrences, the
changing rates should vary accordingly. They are plotted in Fig. 5
for an internal wave train observed in the thermistor string data
and for an internal wave train generated by the Lamb model
(1994). In both cases, the changing rates have a particular behav-
iour that consists in a double oscillation for each encountered wave
in the internal wave train. Let us consider three areas in a wave:
the front of the wave (first half of the wave corresponding to the
deepening of the isopycnals), the maximum of the wave (deepest
point of the wave and maximum amplitude), and the rear of the
wave. The changing rates are close to zero in the absence of inter-
nal waves. When a wave appears, the changing rates both increase
considering their absolute values: for the front of the wave, CR2 de-
scribes a positive oscillation while CR1 describes a negative oscilla-
tion; when the wave reaches its maximum amplitude, CR1 and CR2

are both back to zero; eventually at the rear of the wave, CR1 and
CR2 evolve again as two opposite oscillations but this time positive
for CR1 and negative for CR2. The first phase corresponds to the
depression of the pycnocline, the pycnocline deepens (CR1 is nega-
tive) and the gradient in the pycnocline becomes stronger as the
pycnocline becomes thinner with the steepening of the front of
the wave (CR2 is positive). When the wave reaches its maximum
depth, the changing rates are equal to zero as a consequence of null
derivative for extrema. In the last phase, the pycnocline returns to
its average shallower depth (CR1 is positive) and its thickness in-
creases to return to an average stratification (CR2 is negative). This
is what we called the double oscillation pattern; it can be identified
for each wave of the data wave train and the modelled wave train
of Fig. 5. To sum up, a positive CR1 means a shallowing of the
pycnocline and a negative CR1 means a deepening of the pycno-
cline. A positive CR2 means a thinner pycnocline and a stronger
gradient and a negative CR2 means a thicker pycnocline and a
weaker gradient (average stratification).

This methodology can then be applied to detect the internal
waves in the water column. This is illustrated for another internal
wave train extracted from the thermistor string data in Fig. 6. The
first two depressions correspond to internal waves with the partic-
ular changing rate double oscillation feature. However, the third
depression, which is visually alike the previous ones, has not the
proper evolution of the changing rates and is not to be assimilated
to an internal wave. The considered internal wave train contains
thus two waves and not three. This result is interesting as internal
wave trains are not always straightforward to detect in data. In the
thermistor string measurement of Fig. 2, internal wave dynamics
are neatly illustrated, but it is hard to tell if all oscillations of the



Fig. 5. Bottom, changing rates (time derivative of the expansion coefficients) plotted for two internal wave trains (top) extracted from the thermistor string (left) and from
the model (right). Both changing rates have a particular behaviour for an internal wave. They both increase but with opposite sign, on the front of the wave. At the deepest of
the wave, they are both back to zero to evolve in opposite ways, once again with opposite signs. This is the double oscillation pattern.

Fig. 6. Internal waves, to be or not to be? Same as Fig. 5 in order to illustrate that the changing rates behaviour can be used as internal wave detector. The first two
depressions correspond to internal waves with the particular changing rate feature observed and described before. However the third depression, that is visually alike the
previous ones, has not the proper corresponding changing rate behaviour and is not to be considered as an internal wave. The considered internal wave train contains thus
two waves and not three.
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pycnocline are proper internal waves. With this method, oscilla-
tions are easily identified as internal waves or not. The double
oscillation also gives an important information on the width of
the wave: when estimating the width of a wave from the data ser-
ies, an inaccuracy can lie in the estimation of the ‘beginning’ and
the ‘end’ of the wave whereas the width of the double oscillation
is easily measurable (dotted squares in Figs. 5 and 6). Even though
it is not concerning the same entity, it is interesting to notice that
these double oscillations also appear in Vázquez et al. (2006) on
the time series of the modelled vertical velocity amplitude consid-
ered at the depth where their first two EOF modes are maximum
(unfortunately, the double oscillation does not appear in the
in situ ADP measured vertical velocities). The link between these
two features is not straightforward, but the ‘coincidence’ has
enough interest to be mentioned.

Finally, as done for the expansion coefficients, the scatter plot of
the changing rates one versus another is plotted (Fig. 7). This scat-
ter plot puts on a butterfly shape, named farfalla scatter plot (as
this study was partly made in Italy). Helping our analysis with
the neat scatter plot of the model changing rates, it is seen that
the scatter diagram is divided in four zones limited by the two
lines CR2 = CR1 and CR2 = �CR1. The two quarters available in the
scatter plot correspond to j CR2 6 CR1 j. The two other quarters
are strictly forbidden, at least for the scatter plot issued from the
model. It means that the variation of the first changing rate is al-
ways stronger than that of the second one. It corresponds to what
is observed when plotting the changing rates versus time in Fig. 5.
This rule applies very well to the changing rates of the model
expansion coefficients whereas there are exceptions for the chang-
ing rates of the data expansion coefficients (e.g. first wave in Fig. 6).
In the presence of an internal wave, the positive extrema of CR2

corresponds to the negative extrema of CR1 and vice versa. When
there is no internal wave, CR2 varies very slightly around 0 while
CR1 undergoes slightly bigger oscillations thus always respecting
Fig. 7. As done for the expansion coefficients, the scatter diagram of the changing rates ve
(1994) output (black). This scatter plot has a particular shape resembling a butterfly or
the latter rule. Physically, it means that a minimum vertical trans-
lation of the pycnocline is needed to impact on the slope of the gra-
dient and lead to internal wave generation: small oscillations of
CR1, and consequently oscillations of the pycnocline, are observed
after the internal wave train in Fig. 5 for the data and for the model,
but they do not generate a change in CR2, which means no modifi-
cation in the pycnocline thickness, and are then not considered as
internal waves. Once again, this highlights the dynamical link be-
tween the two EOF modes.

5. Summary and conclusions

The Strait of Messina with its shallow sill and strong tidal cur-
rents leading to strong interfacial depressions is an important place
of internal bore generation and internal solitary wave occurrence.
As internal waves are hard to model with classical 3D ocean mod-
els (need of tidal dynamics, high resolution, non hydrostacy), alter-
native ways to detect and characterize these dynamical processes
were looked at, in particular by using statistical analysis. Our study
is based on empirical orthogonal function analysis (EOF) and uses
only the first two resulting EOF modes and their corresponding
expansion coefficients. A first study (Casagrande et al., 2009) had
shown that both expansion coefficients were dynamically linked
when plotting them one versus another in a scatter plot. In order
to develop this result for more efficient applications, the time
derivatives, named changing rates, of the expansion coefficients
were computed and studied. For each occurrence of internal wave,
these changing rates have a typical behaviour we called double
oscillation. The dynamics of internal waves are neatly visible in
time series, but it is sometimes not straightforward to identify
neatly each wave of an internal wave train for example. The double
oscillation is then a good indicator of the presence of internal
waves. Two figures can be extracted from this feature: the number
of double oscillations gives the number of waves per internal wave
rsus one another is plotted for the thermistor string data (grey) and the Lamb model
‘farfalla’ in Italian. The two dashed lines represent CR2 = CR1 and CR2 = �CR1.
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train, and their widths correspond to the widths of the considered
waves, which are usually difficult to determine accurately from
data time series. This methodology works well as the dynamics
in the Strait of Messina are essentially driven by tides and con-
strained in a small area, thus leading to a very few overwhelming
EOF modes. Yet these statistical approaches for studying internal
waves are added-value to detect and characterize a phenomenon
which is usually difficult to model.
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