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The prediction of surface drift of floating objects is an important task, with applications such as marine
transport, pollutant dispersion, and search-and-rescue activities. But forecasting even the drift of surface
waters is very challenging, because it depends on complex interactions of currents driven by the wind,
the wave field and the general prevailing circulation. Furthermore, although each of those can be fore-
casted by deterministic models, the latter all suffer from limitations, resulting in imperfect predictions.
In the present study, we try and predict the drift of two buoys launched during the DART06 (Dynamics
of the Adriatic sea in Real-Time 2006) and MREA07 (Maritime Rapid Environmental Assessment 2007)
sea trials, using the so-called hyper-ensemble technique: different models are combined in order to min-
imize departure from independent observations during a training period; the obtained combination is
then used in forecasting mode. We review and try out different hyper-ensemble techniques, such as
the simple ensemble mean, least-squares weighted linear combinations, and techniques based on data
assimilation, which dynamically update the model’s weights in the combination when new observations
become available. We show that the latter methods alleviate the need of fixing the training length a priori,
as older information is automatically discarded.

When the forecast period is relatively short (12 h), the discussed methods lead to much smaller fore-
casting errors compared with individual models (at least three times smaller), with the dynamic methods
leading to the best results. When many models are available, errors can be further reduced by removing
colinearities between them by performing a principal component analysis. At the same time, this reduces
the amount of weights to be determined.

In complex environments when meso- and smaller scale eddy activity is strong, such as the Ligurian
Sea, the skill of individual models may vary over time periods smaller than the forecasting period (e.g.
when the latter is 36 h). In these cases, a simpler method such as a fixed linear combination or a simple
ensemble mean may lead to the smallest forecast errors. In environments where surface currents have
strong mean-kinetic energies (e.g. the Western Adriatic Current), dynamic methods can be particularly
successful in predicting the drift of surface waters. In any case, the dynamic hyper-ensemble methods
allow to estimate a characteristic time during which the model weights are more or less stable, which
allows predicting how long the obtained combination will be valid in forecasting mode, and hence to
choose which hyper-ensemble method one should use.

� 2009 Elsevier Ltd. All rights reserved.
ll rights reserved.

ndenbulcke).
1. Introduction

The prediction of the drift of objects floating at the surface of the
ocean has various applications, for example tracking of floating
mines or pollutants such as tar balls, dispersion of algae blooms,
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marine transport, search-and-rescue activities, etc. However, due to
multiple reasons whose effects add up, drift prediction remains a
very challenging task. Even small errors in estimation can drastically
change the subsequent particle trajectories (Griffa et al., 2004). Even
when one predicts the drift of buoys configured to closely track the
drift of surface waters, and hence only the ocean current should be
taken into account, it is still useful to also take surface wind, waves,
tides, etc. into consideration. Indeed, most ocean current models do
not include wave-driven currents at all, and wind-driven currents
are not fully accurate. However, all these currents contribute (in a
complex way) to the real surface water drift, and furthermore inter-
act with one another. Thus missing dynamics in ocean current mod-
els can be partially accounted for using empirical methods with
direct model predictions of the forcing fields (winds and waves)
for these dynamics. Finally, when one tries to predict the drift of var-
ious floating objects, other parameters should be considered, such as
the specific hydrodynamic drifter response.

Even though most of these contributions can be forecast by
deterministic models (albeit with some limitations inherent to
the models), there is not yet a deterministic method to combine
them in order to reproduce the floating object drift; completely-
coupled deterministic models that take all these processes into
consideration are just now under development. In the present
study, we instead use multi-model methods to try and empirically
combine individual models of different processes that are all di-
rectly or indirectly related to surface drift. Super-ensembles (SE),
which combine different models of the same physical processes,
were applied within the atmospheric community by Krishnamurti
et al. (1999) some years before the oceanic community took on.
Other atmospheric studies followed, see e.g. Shin and Krishnamurti
(2003a,b); Williford et al. (2003); Yun et al. (2003, 2005); Mutemi
et al. (2007). Nowadays, other communities also apply the tech-
nique (e.g. oceanography, hydrology, paleoclimatology, etc.), as
they all realize its low cost, but large benefit. Generally speaking,
the technique could be applied to every field where different con-
current models aim at predicting the same variable, or even where
different models predict different variables which are all somehow
related to the desired output variable. In the latter case, the tech-
nique is rather called hyper-ensemble (HE); it was first introduced
in the oceanic community (Rixen and Ferreira-Coelho, 2007).

In the present study, we forecast surface drift using linear HE
methods both with static and dynamic weights, the latter allowing
the weights to evolve smoothly in time. Section 2 is devoted to the
description of the models and observational data used in two
experiments: the DART06 sea trial in the Adriatic Sea, and the
MREA07 campaign in the Ligurian Sea. The HE methods are de-
scribed in Section 3. We will then focus on two case studies, one
where the drifter is predominately influenced by a mean-kinetic-
energy environment (the Western Adriatic Current) and one where
the drifter is predominately influenced by an eddy-kinetic-energy
environment (Ligurian Sea). The results are then shown in Section
4 and a summary and the conclusions are given in Section 5.
2. Models and data

Surface drift of floating objects depends on various factors. It is
strongly determined by the ocean surface currents. However, the
hydrodynamic models used to forecast the currents have chaotic
components, have incomplete representations of the underlying
physics, and have uncertainties on forcing fields and model param-
eters. For a complete discussion of error causes in hydrodynamic
models, see e.g. Lermusiaux et al. (2006). The hydrodynamic mod-
els used in both experiments have high resolutions (between 1/16�
and 1/100�), and therefore represent many smaller scale processes
that are difficult to correctly phase and forecast. The fact that the
models have energies at such scales is ultimately important for
successful HE modeling, but phase problems can easily lead to
higher forecast errors than for lower resolution models (no energy
at these scales) if the higher resolution models are not corrected in
some way. On top of this, even with this high resolution, many
phenomena at yet smaller scales are not represented, whereas
the real surface drift depends on every scale present.

Paldor et al. (2004) shows that instantaneous winds have more
influence on surface drift than climatic surface currents; Rixen and
Ferreira-Coelho (2007) confirm this by showing that in an atmo-
spheric–oceanic hyper-ensemble, the (weighted) wind model has
more importance; ocean advection has less impact. However, the
wind-driven surface current is still poorly understood. Observa-
tions show, in addition to inertial oscillations, a drift of the order
of 2–4% of the wind speed with directions that vary from 0� to
30� to the right of the wind in the Northern Hemisphere, and to
the left in the Southern Hemisphere (Tsahalis, 1979). These varia-
tions may be understood as the combination of a wave-induced
Stokes drift, roughly aligned with the wind, and a drift due to the
wind-driven current. The magnitude and deflection angle of this
current depend strongly on the vertical structure of turbulence.
For example, the classical Ekman (1905) theory with a constant
eddy viscosity give a 45� deflection angle, while linear eddy viscos-
ity profiles give deflections of the order of 10� (Madsen, 1977). Re-
cent evidence for strong mixing in the upper ocean [e.g. (Agarwal
et al., 1992)] suggest that the eddy viscosity profile may be piece-
wise-linear with a strong surface value. This should produce a sur-
face current limited to about 0.5% of the wind speed in open ocean
conditions without stratification, and about 1% with a strong strat-
ification. Given that the surface Stokes drift (see below) is of the or-
der of 1.2% of the wind speed, the total surface drift explained by
models with realistic mixing is of the order of 2% of the wind speed
(Rascle et al., 2006; Rascle and Ardhuin, 2009). This is generally on
the low side of the reported values for surface drift. This difference
may be due to fetch variations (e.g. laboratory compared to field
conditions), convergence-related biases (such as caused by Lang-
muir circulations) or yet unknown processes. As a ‘‘rule-of-thumb”,
we will consider that the wind sets up a surface current of roughly
3% of the wind speed, 15� to the right of the downwind direction.
But similarly to the ocean models mentioned before, the atmo-
spheric models used to forecast the wind field suffer of their own
limitations: they are also chaotic, also have only an incomplete
representation of the real atmospheric physics, etc.

The wave theory leads to the so-called Stokes drift, which in-
duces a movement of water particles in the direction of the waves.
The displacement velocity depends on the ratio of wave height and
wavelength; it also strongly decreases with depth and becomes
negligible at a depth equal to a fourth of the wavelength. The Cori-
olis force induces yet another net transport, the so-called Hassel-
mann drift, which depends on the turbulence, and has a direction
opposed to the Stokes drift. The sum of vertically-integrated net
transports of the Stokes and Hasselmann drifts is zero, leading to
a zero net water transport. However, the different vertical profiles
for Stokes and Hasselmann drifts indicate that the former is more
important than the latter at the surface, leading to a net surface
transport in the direction of the waves (below the surface, there
is a transport in the opposed direction).

Finally, surface drift still depends on other phenomena such as
tides.

Most of the drifters used in the DART06 and MREA07 experi-
ments were CODE drifters manufactured by Technocean (model
Argodrifter). CODE designs were developed by Davis (1985) to
measure the currents in the first meter under the sea surface. More
details about these drifters can be found in Poulain (1999) and
Ursella et al. (2006). Measurements with dye (D. Olsen, Personal
Communication) and through direct measurements of relative flow
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(P.-M. Poulain, Personal Communication) revealed that the CODE
drifters follow the surface currents to within 2–3 cm/s. The
wind-driven components of the CODE drifter velocities, including
Ekman currents and slip, were recently assessed by Poulain et al.
(2009) and related statistically to ECMWF winds. Using complex
linear regression models, they found that the wind-driven currents
amount to 1% of wind speed and are rotated by 28� to the right of
the wind.

The majority of the drifters were localized by Glob al Position-
ing System (GPS) at hourly intervals. Their data were telemetered
via the Argos system orbiting on the NOAA satellites. The drifter
positions were edited for outliers using automatic statistical and
manual procedures (Barbanti et al., 2007; Ursella et al., 2006).

Finally, lets note that the HE methods, inclusive the ‘‘tricks”
(discussed in Section 3), might actually also account for the slip
and leeway response of the particular drifters considered.

2.1. DART06 experiment

We first try and predict the displacement of drifters launched in
the Adriatic Sea during the DART06 sea trials; drift data for the re-
gion were compiled by Veneziani et al. (2007). During this cam-
paign, extensive data sets were collected by multiple means, and
made available in near real-time. Drifters were launched and data
was made available in near real-time by Istituto Nazionale di
Oceanografia e di Geofisica sperimentale (OGS) and the NATO/SAC-
LANT Undersea Research Centre (NURC). Model predictions of the
  16oE   17oE
 30’ 

  40oN

 30’ 

  41oN

 30’ 

  42oN

 30’ 

Fig. 1. Trajectories of the drifters launched during DART06. The dark track corresponds t
week of data, which is effectively used in this study, is in red. All other tracks are gray. (Fo
to the web version of this article.)
Gargano region (41�45
0
N, 16�E) were used to direct the launching

of pairs of drifters with the goal of maximizing the coverage of
the sampling area. Some drifters were found to separate at loca-
tions and in the directions given by the model finite-size Lyapunov
exponents (FSLE) (Haza et al., 2007). The trajectories are shown in
Fig. 1; we will focus only on drifter a06956 (Barbanti et al., 2007)
flowing around the Gargano peninsula as it exhibits a typical
behavior. We consider only the first week of the drifter trajectory,
as afterward at least one model does not cover the area anymore.

At the same time, a wide range of atmospheric, ocean and wave
models were provided operationally. However, increasing the com-
plexity of the problem could lead to less accurate results if over-fit-
ting occurs (Everitt, 2002), and hence only two wind models and
two hydrodynamic models are used in the HE combinations (i.e.
no wave models are used). The following models were used in
the present study:

1. Meteo France Aladin, output fields provided by the Service
Hydrographique et Océanographique de la Marine (SHOM),
http://www.cnrm.meteo.fr/aladin. The horizontal resolution is
0.1�; hourly model outputs are available. This model is further
referred to as Aladin-FR. The predicted drift is obtained from
the following rule-of-thumb: the time interval multiplied by
3% of the wind speed, with a direction 15� to the right.

2. Aladin/Croatia, run by the Meteorological and Hydrological Ser-
vice of Croatia (see Ivatek-Sahdan and Tudor (2004) and http://
meteo.hr/index_en.php). The horizontal resolution is 0.03� and
  18oE   19oE

o drifter a06956 studied later in this paper, and called ‘‘track 1” further on; the first
r interpretation of the references to color in this figure legend, the reader is referred

http://www.cnrm.meteo.fr/aladin
http://meteo.hr/index_en.php
http://meteo.hr/index_en.php
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the ‘‘time resolution” (i.e. when the model outputs are saved to
disk) is 3 h. This model is further referred to as Aladin-HR. The
predicted drift is again obtained by the same rule-of-thumb.

3. AdriaROMS, an operational ocean forecasting system for the
Adriatic Sea run by the HydroMeteorological Service of ARPA
Emilia Romagna, Bologna, Italy (see e.g. Chiggiato and Oddo
(2008) and references herein, and http://www.arpa.emr.it/
sim/?mare), further referred to as ROMS. The resolution is
0.025� and 3 h.

4. NRL (Navy Research Laboratory) regional Navy Coastal Ocean
Model. NCOM was implemented over the Adriatic sea (Martin
et al., 2009), and subsamples were made available in near
real-time; here we use the area2 subset covering the central
Adriatic Sea only, with a horizontal resolution of 0.08� and time
resolution of 3 h. It is further referred to as NCOM_D06.

The reader is referred to the official documentation of the rele-
vant operational centers or above cited journal papers for descrip-
tions of the models. All in all, with the constant (bias) model added,
there are 5 weights to determine in order to obtain a linear HE
(which may be real or complex numbers depending on the method
used), or less if principal component analysis (PCA, see Section 3.3)
is applied beforehand.

2.2. MREA07 experiment

We also try out the hyper-ensemble techniques with data from
the MREA07 experiment in the Ligurian Sea. This campaign also
aimed at collecting a vast amount of observations, and drifters data
   6oE    7oE    8oE 
 41oN

 42oN

 43oN

 44oN

 45oN

Fig. 2. Trajectories of the drifters launched during MREA07. The dark track corresponds
‘‘track 5”. The two red boxes correspond to later Fig. 14 (largest box) and Fig. 16 (smallest
referred to the web version of this article.)
were again provided by NURC and OGS. The trajectories are shown
in Fig. 2 [see (Zanasca et al., 2007)]. We focus only on the entire
track a74875 later in this study.

At the same time, multiple models were applied to the domain.
We again use two atmospheric models and two hydrodynamic
models in our ensemble. In order to add some complexity, we will
also include a Stokes drift model, even though remembering that it
might be correlated to the wind contribution. Furthermore, ob-
served drifter trajectories (see Fig. 2) indicate that the inertial
oscillations are quite important. Hence, we also add a synthetic
model corresponding to a circular trajectory. This was not neces-
sary in the case of the DART06 experiment, where the considered
drifter is mainly constrained by the relatively strong Western Adri-
atic Current (WAC), leaving little contribution to inertial oscilla-
tions. In the Ligurian Sea, the inertial period is about 17.9 h. Of
course, this synthetic model by itself will not be able to represent
real drifter trajectories, because it lacks the correct amplitude and
phase. However, when this is corrected for during the training per-
iod, and a bias model is also considered, the obtained synthetic
forecast may correspond surprisingly well to reality, particularly
if other currents, winds, etc. are weak. In an ensemble of models,
the synthetic model may compensate incorrect (e.g. dephased)
inertial oscillations of some models.

All in all, the following models were used:

1. Meteo France Aladin (provided by SHOM). This model is further
referred to as Aladin-FR; predicted drift is obtained from the
same rule-of-thumb as before. Horizontal and time resolution
are 0.1� and 1 h, respectively
   9oE   10oE   11oE

to drifter a74875 (Zanasca et al., 2007) also studied later in the paper, and called
box). (For interpretation of the references to color in this figure legend, the reader is

http://www.arpa.emr.it/sim/?mare
http://www.arpa.emr.it/sim/?mare
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2. COSMO-ME (www.cosmo-model.org/content/tasks/operational/
default.htm) run operationally by CNMCA – Italian Meteorologi-
cal Service (http://www.meteoam.it), further referred to as
COSMO-ME; and again drift is obtained from the rule-of-thumb.
The resolutions are 0.03� and 1 h.

3. Mediterranean Forecasting System run by INGV, Bologna, Italy,
see Pinardi et al. (2003) and (http://www.bo.ingv.it/mfs/) for
the whole forecasting system, and Tonani et al. (2008) for the
model itsef, further referred to as MFS. Resolutions are
0.0625� and 1 day.
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Fig. 3. DART06 experiment: average (over all segments) final (blue) and hourly average (
the last 12 h of the training period (upper panel) and during the forecast (lower panel). Th
the references to color in this figure legend, the reader is referred to the web version of
4. NRL NCOM (see Coelho et al. (in press)), further referred to as
NCOM_M07, with resolutions 0.005� and 1 h.

5. WaveWatch III (SHOM), further referred to as CMO WW3. The
resolution is 0.1� and 3 h. The predicted drift is obtained as
the time interval multiplied by the velocity; the latter is
obtained from the wave model as 3:2 H2

s

T3
m
, where Hs is the signif-

icant wave height and Tm the mean period of a broad spectrum
of waves (Carniel et al., 2002).

6. a synthetic model of inertial oscillations with a
period 17.9 h.
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red) error [km] for the drifter position after 12 h, using various HE methods, during
e results are averaged over all 12-h segments of track a06956. (For interpretation of
this article.)
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Thus, considering a bias model, at most seven (real or complex)
weights are to be determined with the HE methods.

3. Hyper-ensemble methods

Super-ensembles and hyper-ensembles are techniques which
aim at combining multiple models (of respectively the same and
different physical processes) in order to provide a forecast with a
higher skill. The optimal combination is obtained during a training
period, and minimizes the distance to independent observations.
Thus, SE techniques can be considered as data assimilation meth-
ods, as they aim to optimally combine different sources of informa-
tion (in this case, multiple models, and observations). The main
question for these techniques is whether the obtained combination
will still be optimal in the forecasting mode, i.e. one needs to know
a characteristic time during which the combination is stable, which
means, a characteristic time during which none of the model’s skill
significantly changes. Krishnamurti et al. (1999) proposed to use an
unbiased linear combination of the available models, optimal (in
the least-squares sense) with respect to observations during a
training period of a priori chosen length; all observations have equal
importance. Rixen and Ferreira-Coelho (2007) applied the tech-
nique in the ocean, also adding non-linear combinations of the
models (i.e. using neural networks and genetic algorithms), but
found little improvement over the linear combination. This can be
understood as the combination is determined over the same train-
ing period, either by linear or non-linear methods. Thus, not much
is changed with respect to the combination being (staying) appro-
priate (or not) in forecasting mode. However, Shin and Krishnamur-
ti (2003a); Rixen et al. (in press) introduced dynamically evolving
weights in a linear combination of models, using data assimilation
techniques (Kalman filter and particle filter) adapted to the super-
ensemble paradigm. The latter techniques are able to train the
weights on a time-scale corresponding to their natural characteris-
tic time, discarding older information automatically. The weight’s
rate of change is determined by the respective (and evolving)
uncertainties of the weights themselves, of individual models and
of observations. Hence, these techniques were shown to yield sig-
nificantly better results than more simple techniques. Of course, if
Fig. 4. Results of the forecast by all HE methods for a particular 12-h segment in the tra
deployment. The forecast starts at the brown diamond; the pink diamond represents the
color in this figure legend, the reader is referred to the web version of this article.)
one desires to obtain a forecast further away in the future than this
characteristic time, no optimal combination can possibly be ob-
tained, and without other a priori knowledge, one should probably
just use a simple ensemble mean of the model forecasts.

In the current study, we try to forecast the motion of surface
drifters. Their position can be elegantly represented using complex
numbers, the longitude being the real part, and the latitude the
imaginary part. The used HE methods are described hereunder in
the context of our application.

3.1. Individual models

The simplest SE technique is called ‘‘best model”; it simply se-
lects the model which performs best during the whole training
period, and uses that one to obtain the forecast, discarding all other
models. Although potentially useful information is neglected, this
method is often used in practice.

A variant on this method is to multiply each model by a com-
plex number determined during the training period. This corre-
sponds to stretching and rotating the drift vector predicted by
the model. When considering wind models, the multiplication thus
allows to ‘‘optimize” the rule-of-thumb mentioned above (surface
drift velocity of 3% of the wind velocity, 15� to the right).

A third variant also removes the bias by searching for an optimal
combination of the considered model and a synthetic, constant
model (i.e. bias); both models are also multiplied by complex factors.

3.2. Ensemble mean

The next method is the simple ‘‘ensemble mean”. It does not use
a training period or observations and thus, cannot really be consid-
ered as a SE technique; however, it is also a widely used method,
since long known to provide better forecasts than individual mod-
els (Kalnay and Ham, 1989).

3.3. Least-squares linear combinations

Another technique consists of finding a linear combination of
the models, minimizing (in the least-squares sense) its departure
ck a06956 showed in Fig. 1, with the training period starting 24 h after the drifter’s
real drifter position at the end of the forecast. (For interpretation of the references to
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from observations during the training period. Again, the weights
are complex numbers, which corresponds to stretching and rotat-
ing each model in order for the final combination to be optimal.
Two variants of this method are also used in our study. First, we
add again a constant model, thus adding an unbiasing capability
to our ensemble. Second, we remove some of the colinearities be-
tween the models. To this purpose, we perform principal compo-
nent analysis (PCA) on the models, and decide to remove a
certain percentage of variability, e.g. 10%. For example, when con-
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Fig. 5. DART06 experiment: average final (blue) and hourly average (red) error [km] fo
panel) and forecast (lower panel) modes. The results are averaged over all 24-h segment
figure legend, the reader is referred to the web version of this article.)
sidering seven models, they would be transformed into seven prin-
cipal components, of which the last 2 ones might be discarded. This
has the further advantage of reducing the amount of weights that
need to be determined (see below).

3.4. Non-linear combinations

Another class of SE methods use non-linear combinations of
models, e.g. by feeding individual models as input to a neural
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r the drifter position after 24 h, using various HE methods, for the hindcast (upper
s of the track described before. (For interpretation of the references to color in this
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network or genetic algorithm. However, as mentioned before,
this does not change the fundamental fact that the combination
is determined to be optimal during a defined training period,
and one just hopes that it will still be adapted to the forecast
period. Even though the non-linear combination might be better
than the linear one, in practice, improved results in forecasting
mode were not observed (Rixen and Ferreira-Coelho, 2007). This
might be due to the fact that, compared to the linear combina-
tion (where one weight per model has to be determined), more
parameters must be determined for those non-linear methods,
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Fig. 6. DART06 experiment: average final (blue) and hourly average (red) error [km] fo
panel) and forecast (lower panel) modes. (For interpretation of the references to color i
even if one uses e.g. a neural network with a relatively simple
architecture. Even with linear methods, the more models are in-
cluded in the SE, the more weights need to be determined, and
hence, smaller ensembles may lead to better results (for an illus-
tration, see e.g. Maeng-Ki et al. (2004)). Thus, some improve-
ments might appear with non-linear methods if one has a
large amount of observations during the training period (and if
no over-fitting problems appear). However, this is not the case
in our study, and hence, we will not consider non-linear meth-
ods any further.
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r the drifter position after 36 h, using various HE methods, for the hindcast (upper
n this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Results of the forecast by selected HE methods for a particular 36-h segment in track a06956. Same color codes as Fig. 4. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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complex weights are represented by their magnitude and the angle they form with the eastward axis (positive clockwise).
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3.5. Dynamical methods

In all previous methods (except the simple ensemble mean,
obviously), the length of the training period had to be chosen a pri-
ori and all observations during the training period have an equal
importance. More complicated methods can be thought of, e.g.
where the observation’s importance decreases exponentially with
time. However, it would be more useful to have a method automat-
ically adapting the weights to skill changes in models. This can be
approximated with common data assimilation (DA) techniques:
starting from our best guess, the weights are adapted during the
training period, when observations are available, up to present
time. Afterward, the weights are frozen and used during the fore-
casting period. All DA algorithms could be implemented; we will re-
strict ourselves to sequential DA and the Kalman filter (Kalman,
1960). As one might easily get confused by the unusual content of
the different matrices in the Kalman filter equations, we briefly
write them down and explain them below:

Forecast

xf ðtiÞ ¼Mti
xaðti�1Þ ð1Þ

Pf ðtiÞ ¼Mti
Paðti�1ÞMT

ti
þ Q ð2Þ

Analysis

K ¼ Pf ðtiÞHT½R þHPf ðtiÞHT��1 ð3Þ
xaðtiÞ ¼ xf ðtiÞ þ K½yo �Hxf ðtiÞ� ð4Þ
PaðtiÞ ¼ Pf ðtiÞ � KHPf ðtiÞ ð5Þ

x is the state vector, which contains the weights attributed to the
models in the SE combination; its error covariance matrix is P.
Superscript f denotes its forecasted state after prediction steps;
superscript a stands for analyzed state after the correction steps
using observations. We have no a priori knowledge about the
weight’s evolution in time, and hence, the ‘‘model” matrix M is cho-
sen as the identity matrix at all times; the state vector prediction
step is trivial. Another choice would have been to include an expo-
nential decrease of the model weights toward 1

N, (N being the
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Fig. 9. Same as Fig. 8 but for the weights with the ACEKF filter in a sin
amount of models), or even more complicated relaxation schemes.
In any case, as weights obviously do evolve in time, the chosen con-
stant model M contains errors; they are represented by the random
vector g, and have a covariance matrix Q. Although not mathemat-
ically constrained, intuitively, one expects model’s weights to sum
approximately to 1, and to lie somewhere in or close to the [0–1]
range. Hence, we estimated a reasonable standard deviation of the
(model) error for individual weights to be 0.1; the non-diagonal ele-
ments of Q are put to zero. Furthermore, the errors affecting the
state vector of weights have a covariance matrix denoted by P;
the initial standard deviation is chosen as 0.7 (as we expect a rela-
tively bad initial guess of weights), and again, non-diagonal ele-
ments in P0 are put to zero (though they will become non-zero in
time). The choices for the values of Q and P were validated by
cross-correlation. Let’s also note that the prediction step for P al-
lows it to increase by Q at each timestep, in accordance with our
intuition that the errors on weights increase with time.

Observations are represented by the vector y; in our case they
are observed surface drifts. The observation operator H linking
the state vector space with the observation space, contains the
individual model forecasts of surface drift (whereas usually, when
one assimilates e.g. temperature in a primitive equation model, H
is just an interpolation operator).

The observations’ error covariance matrix is denoted R, and
contains three contributions: instrumental errors on the observa-
tions themselves (supposed small in our experiments), representa-
tivity errors due to the fact that the model does not represent all
the physical processes included in the observations, and errors in
the observation operator H. Thus, R essentially contains the (un-
known) errors affecting all the individual, physical models; these
errors should be carefully estimated as R is a critical parameter
in the filter’s functioning. However, this is a very difficult task,
requiring also more information than simply each model’s fore-
cast: the errors and shortcomings of individual models are pre-
cisely the reason why we use an HE method for! Hence, in the
present study, R was again chosen by cross-correlation.

In oceanography, usually, the state vector contains hundreds of
thousands of points, so that low-rank approximations of the Kal-
50 60 70 80 90

ack1

aladin−fr

50 60 70 80 90

aladin−fr

gleton ensemble comprising only the Aladin (SHOM) wind model.
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man filter must be implemented, such as the SEEK filter (Pham
et al., 1998), the Ensemble Kalman filter (Evensen, 1994), etc. How-
ever, here, the state vector is very small, and hence the original,
complete Kalman filter can be implemented. Thus, apart from the
hypothesis of a linear model and a Gaussian weight distribution,
no further assumptions have to be made. Finally, it should also
be noted that at the end of the training period, the resulting weight
vector, obtained with the Kalman filter, is strictly identical to the
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Fig. 10. MREA07 experiment: average (over all segments) final (blue) and hourly average
the hindcast (upper panel) and the forecast (lower panel). The results are averaged over al
in this figure legend, the reader is referred to the web version of this article.)
one that would have been obtained with the Kalman smoother
(the same observations having been taken into account) or with
the 4D-Var filter [see e.g. (Bennett, 1992)].

The equations written above are valid for real numbers, and
hence we use them with real weights (i.e. the individual models
are multiplied with a real number before being summed together).
However, to use complex numbers as with the previous SE meth-
ods, the equations must be adapted into the so-called Augmented
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(red) error [km] for the drifter position after 12 h, using various HE methods, during
l 12-h segments of the considered track. (For interpretation of the references to color
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Complex Extended Kalman filter (ACEKF) (Goh and Mandic, 2007),
where all the initial vectors and matrices, as well as the model ma-
trix, are ‘‘augmented” in the following way:

Maug ¼
M 0
0 M�

� �
ð6Þ

with the asterisk denoting the complex conjugate. Vectors thus be-
come matrices of double length, and width equal to 2; matrices
have double length and width. For our study, all initial covariance
matrices are chosen identically as above, but are then augmented.
During the hindcast period, the state vector covariance matrix
Paug progressively becomes fully filled, with non-zero covariances
between the real and imaginary parts.

Thus, using the ACEKF, we have a tool allowing to dynamically
evolve complex weights during the hindcast period, and automat-
ically take covariances between longitude and latitude increments
into account. Finally, let’s note that the previously mentioned
‘‘tricks” (unbiasing, reduction via PCA) can also be applied for the
dynamical methods; our initial guess for the state vector is simply
taken as the result of the corresponding least-squares linear com-
bination method.

Other dynamical methods can be thought of. For example, if one
supposes that the weights of the models in the combination do not
have normal probability density functions, the Kalman filter should
 36’  40’    9oE 
 44.00’ 

 48’ 

 35’ 

 40’ 

 45’ 

 50’ 

 55’ 

 44oN 

SE Kalman real

Fig. 11. Training and forecast using the Kalman filter. Training starts at the blue diamo
colored segment. The actual forecast starts at the brown diamond, the pink diamond rep
references to color in this figure legend, the reader is referred to the web version of thi
not be used. Particle filters (see e.g. Doucet et al. (2000), or van
Leeuwen (2003) for an implementation in oceanography) alleviate
this hypothesis of gaussianity. In our SE paradigm, one particle is
one specific linear combination of models. The cost is that one
has to use a relatively large ensemble of particles in order to ensure
convergence. As in our experiment, the model M is the identity
model, this is not necessarily a limitation; however, in the present
study, the most time-consuming step is the spatial and temporal
interpolation in relatively massive (physical) models output files.
The results of a standard Sequential Importance Resampling (SIR)
filter were similar to those of the Kalman filter (see Section 4),
and about 1000 particles were required for convergence, leading
to much longer computing times.

4. Results

For the two experiments, drifter observations and model fore-
cast fields are interpolated in order to have one position every
hour. Each hour, model velocity fields are also interpolated spa-
tially to the exact drifter location. During the training as well as
the forecast period, we use model casts with at least 24 h forecast
lead time. In other words, we do not use a model hindcast for the
training period, but use a forecast at least 24 h old. This ensures
that models’ skills are not artificially higher during the training
 52’ 

drifter data
ALADIN-FR
COSMO-ME
NCOM_M07
INGV MFS
CMO WW3
filter results

nd; hourly displacements predicted by each individual model are represented by a
resents the real drifter position at the end of the forecast. (For interpretation of the

s article.)
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due to the fact that data is assimilated during hindcasts. Our train-
ing period is chosen as 48 h (keeping in mind that dynamical meth-
ods can discard older information). Forecasts are obtained for three
horizons: 12 h, 24 h and 36 h.

4.1. DART06 experiment

Fig. 3 shows the position error after 12 h of forecast (blue bars)1

and the hourly mean error during these 12 h (red bars), for each of
the HE methods, averaged over the first week (i.e. five daily fore-
casts) of the drifter track starting on 11 March 2006 (the first track
in Fig. 1), when it flows along the Gargano peninsula. This track is
the most rectilinear one of the experiment, but this does not neces-
sarily make model predictions correspond more accurately with
observations. Indeed, at the end of the first week, at least one model
predicted that the drifter would hit the shore, which was not the
case. The upper panel shows the results in a hindcast period (i.e. a
non-independent pseudo-forecast obtained during the last 12 h of
the training period, which means the weights should be particularly
well adapted); the lower panel shows the results in the independent
forecast. These results are typical for all the tracks in the WAC. After
12 h, all individual (wind or current) models have errors of 6.5–
17 km, and of course perform equally well during hindcast and fore-
cast (on average). In general, multiplying an individual model by a
weight (obtained during the training) improves the hindcast slightly.
The absolute value of the weights in question is generally comprised
between 0.8 and 1.2; the angle is small for the ocean models and
sometimes larger for the wind models.

Adding a bias model improves the results very significantly,
with errors dropping to less than 1 km and 2 km in hindcast and
forecast mode respectively. This can be understood as the trajec-
tory is very linear, and hence the bias model takes a lot of the
1 For interpretation of color in Figs. 1–7, 10, 11, 13, 14 and 17, the reader is referred
to the web version of this article.
weight (i.e. we are using persistence); the considered model func-
tions as a correction to the bias or persistence model. In summary,
correcting any of the models for bias and multiplying it with a
weight, yields much better forecasts than the common ‘‘best mod-
el”, or, for that matter, ‘‘ensemble mean” strategies.

Combining all the models improves results only slightly com-
pared to unbiased, weighted individual models; and adding the
PCA ‘‘trick” does not improve the forecast skill a lot either in this
case, albeit that the latter method yields the smallest forecast error
of all static methods.

When real weights are evolved during the training period with
a real-number Kalman filter, results are relatively bad (final error
about 8 km). Indeed, real weights only allow stretching the drifter
displacement vectors predicted by the model, but not rotating
them. When one adds PCA, the first principal components are ori-
ented toward the direction with largest variations, and hence the
rotation induced by complex weights is less critical; results are
better, comparable to those of the linear combination with com-
plex weights. Finally, when one updates complex weights with
the ACEKF, the best results are obtained, and the predicted drifter
position is very close on the real position (error smaller than 1 km).
In this case, adding PCA does not bring any improvement; the only
benefit would be to remove redundant information, which appears
unnecessary here.

As an example, Fig. 4 shows the results of the forecast by all HE
methods for the third 12-h segment in the track discussed above.
The real drifter trajectory is represented in blue, with hourly data
represented by a dot. The training stops at the brown diamond;
12 h later, the drifter is at the pink diamond. All four individual
models bring the drifter too much southward; but the unbiased,
weighted, and particularly the dynamical methods can cope with
this and correct the forecast.

Figs. 5 and 6 show the results for 24 h and 36 h forecasts respec-
tively, for the same drifter. Results and comparisons between the
different HE methods are qualitatively the same, although of
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course the forecast error gets larger as the forecast length in-
creases. Even more than for a 12 h hindcast, the 36 h hindcast
now almost coincides with the 48 h training period, and thus the
linear combination is yielding very good results during this hind-
cast. An example of a 36 h forecast is shown in Fig. 7. It can be seen
that none of the individual models are very successful, hence the
ensemble mean is not accurate either. Corrected individual models,
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Fig. 13. MREA07 experiment: average final (blue) and hourly-average (red) error [km] fo
(lower panel). (For interpretation of the references to color in this figure legend, the rea
not shown in the figure for clarity, are closer to the real drifter than
the respective uncorrected models. However, the ensemble linear
combination is even closer, particularly when adding PCA. The real
Kalman Filter is unable to rotate models, hence the results are not
perfect, as explained higher. Finally, one can see that among all HE
methods, the ACEKF filters (with or without PCA) forecast the drif-
ter position most accurately.
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Finally, to illustrate the concept of the characteristic time dur-
ing which a HE combination remains valid, Fig. 8 shows the evolu-
tion of the complex weights during the first 3 days of the
 12’  18’    9 oE 
 24.00’ 

 30’ 

 48’ 

 54’ 

  44 oN 

  6’ 

 12’ 

Fig. 14. Results of the forecast by selected HE methods for a particular 24-h segment in
diamond, the forecast at the brown diamond; the pink diamond represents the real drifte
this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Time-evolution of the absolute value and angle of the weights obtained wit
interpretation of the references to color in this figure legend, the reader is referred to th
considered track. It can be seen that the weights undergo rapid
changes starting at hour 8; at least one model probably undergoes
a strong change in skill at that time. This is verified using the com-
 36’  42’ 

Aladin−FR forecast 
Meteo−AM forecast 
NCOM_M07 forecast 
MFS forecast 
Ens. Mean 
Ens. Linear Comb. 
Real Kalman Filter 
Complex KF 
Complex KF + PCA 

the track a74875 (see the largest red box in Fig. 2). The training starts at the blue
r position at the end of the forecast. (For interpretation of the references to color in
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h the ACEKF method with PCA (result showed in Fig. 14 in dashed black). (For
e web version of this article.)
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plex Kalman filter but just on single models. For example, the ob-
tained weight evolution of the Aladin (SHOM) wind model is
shown in Fig. 9; it can indeed be seen that from hour 8, the drift
predicted by that model has to be strongly attenuated (by about
20%), the adjustment taking about 10 h.

From Fig. 8, it can be seen that similar rapid changes occur
around hours 20 and 25; but elsewhere, and particularly after hour
25, the weights are modified only slowly. Thus, as only small
changes happen after hours 25 (except the continuing adjustment),
and onward to hour 48 these changes become even smaller, one
can suppose that the models’ skills are relatively constant during
these 23 h. This gives us some confidence to use HE methods for
the forecast, rather than the ensemble mean. In particular, for
the track considered in Figs. 8 and 9, the characteristic time of
HE validity is at least 24 h. This should be related to the Lagrangian
autocorrelation time, which is about half a day to 1 day (Poulain
and Zambianchi, 2007; Rubio et al., in press).

The absolute value of the final weights obtained at hour 48 (the
end of the training period) are about 0.4 for NCOM_D06, and less
for the three other models, although no model gets a negligible
weight. Furthermore, the bias model obtains about 0.1, i.e. the
same weight as the ROMS and ALADIN (SHOM) models. The ocean
models undergo relatively small rotations, whereas the atmo-
spheric wind models are turned by about 90�.
 12’  14’  16’    9oE
 18.00’ 

 57’ 

 44oN

  3’ 

  6’ 

  9’ 

Fig. 16. Results of the forecast by selected HE methods for a particular 24-h segment in
NCOM_M07 forecast extends to 44�15

0
N, 9�03

0
W but is cut off for clarity. (For interpreta

version of this article.)
4.2. MREA07 experiment

The results in the Ligurian basin are less straightforward, as
could already be expected from Fig. 2, particularly because most
of the trajectories closely follow the coastline; hence, an error in
one of the individual models could lead the simulated trajectory
into land.

Fig. 10 shows the error bars for ‘‘track 5” (shown in Fig. 2), con-
cerning the 12 h forecast. Conclusions are, again, similar to those
obtained in the DART06 experiment. In particular, the best results
are now obtained with the real-number Kalman filter with the PCA
trick. All HE methods yield better results than the simple ensemble
mean, except the ACEKF (without PCA). In general, it can be seen
that PCA reduces the forecast errors. As shown later, this is also
the case of the 24-h and 36-h forecasts. Hence, one might suspect
that some models present colinearities (which need to be re-
moved) or that there are simply too many weights (seven complex
numbers) to be determined. For the 12-h forecast, when comparing
the real and complex Kalman filters respectively, the advantage of
having less degrees of freedom to determine outbalances the fact
that drift vectors can only be stretched, and not rotated.

An example of result obtained with the Kalman Filter method is
detailed in Fig. 11; the time-evolution of the weights is shown in
Fig. 12. One can see from Fig. 11 that none of the individual models
 20’  22’  24’ 

Aladin−FR forecast 
Meteo−AM forecast 
NCOM forecast 
MFS forecast 
Ens. Mean 
Ens. Linear Comb. 
Ens. Lin. Comb. + PCA 
Real Kalman Filter 
Complex KF 
Complex KF + PCA 

the track a74875 (see the smaller red box in Fig. 2). Same color codes as Fig. 14. The
tion of the references to color in this figure legend, the reader is referred to the web
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is quite accurate; most predicted displacements are too small (ex-
cept for NCOM_M07, which has correct amplitudes but is badly
orientated most of the time, moreover with changing error direc-
tion). However, the weights adapt permanently to the latest infor-
mation; one can see that for this particular segment, the SHOM
(Aladin-France) model obtains a larger weight; furthermore, the
bias also becomes more and more important. The circular models
keep low weights at all times, but as the weight of the COSMO-
ME and even more of the INGV MFS model are decreasing over
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Fig. 17. MREA07 experiment: average final (blue) and hourly-average (red) error [km] fo
(lower panel). (For interpretation of the references to color in this figure legend, the rea
time, the latter ultimately obtains a weight similar to the synthetic
inertial oscillations model. Finally, we notice the very large factor
affecting the wave model; one should remember that the displace-
ment itself forecasted by this model is much smaller.

The results for a 24 h forecast are shown in Fig. 13. During the
hindcast, the unbiased, weighted individual models, the unbiased
linear combination and the ACEKF combination all perform rela-
tively well (and better than the ensemble mean). However, in fore-
cast mode, the ensemble mean method leads to a smaller error than
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the linear combination! With PCA, the linear combination is some-
what better; the Kalman filter with real weights also performs rea-
sonably well. All this indicates that the characteristic time during
which the obtained combinations are valid, has approximately been
reached. The ACEFK combination, where more degrees of freedom
are present, yields a much larger error than the real-number Kal-
man; again, PCA allows to somewhat improve its performance.
Fig. 14 illustrates this for a particular segment starting 20 days after
the drifter launch (some HE methods are not shown for the clarity
of the figure). In this example, the ensemble mean and ensemble
linear combination are outperformed by the real Kalman filter;
however, the weights in the complex Kalman filter do lead to an er-
ratic forecast. With PCA, the obtained trajectory is less erratic, but
still completely incorrect. The instability of complex weights, even
with PCA, is further illustrated in Fig. 15 showing their time-evolu-
tion; all components weights undergo large variations, with each
component sometimes being important, sometimes negligible.
One more example is given in Fig. 16, starting 26 days after the drif-
ter launch; similar conclusions again apply.

The situations gets even worse when trying to predict the drift
at 36 h. Results are shown in Fig. 17. In forecasting mode, the
ensemble mean methods now yields the smallest errors; all other
methods have errors of the same order, or larger, as individual
models. This clearly indicates that the obtained combinations are
not valid anymore after (less than) 36 h; results may be somewhat
better or somewhat worse, depending purely on luck. For some
other tracks (not shown), the results are somewhat better, and
some HE methods still perform relatively well, leading to results
similar or slightly better than the ensemble mean. However, one
might conclude that, using the mentioned models, the surface drift
predictability limit in the Ligurian Sea during the MREA07 experi-
ment was somewhere between 24 and 36 h.
5. Conclusion

In the present study, we examined how hyper-ensemble (HE)
methods can improve the forecast of surface drift over forecasts
obtained with a single model, or with the mean of different models.
We used linear combinations of atmospheric and ocean models, as
well as a wave model and synthetic models (circular or constant,
corresponding to inertial oscillations or to bias). We first examined
the most common ‘‘combinations”, such as the ensemble mean or
the ‘‘best past model”. Another method is to determine the value of
the weights during a training period, by least-squares minimiza-
tion of the distance to observed surface drift. We also implemented
the Kalman filter, a data assimilation method allowing to dynami-
cally change the value of weights when new observed drifts be-
come available. The latter method also allows to estimate a
characteristic time during which the model’s skills are approxi-
mately constant, and hence help us to decide whether or not a
HE method should be used or not.

Surface drift can be represented by complex numbers; further-
more, if one also uses complex weights in the linear combination,
this allows to stretch and to rotate the predicted drift vectors. The
Kalman filter has to be adapted for using complex numbers, lead-
ing to the so-called ACEKF filter; covariances between real and
imaginary parts are automatically generated.

Whenever the forecast period was short enough, the HE lead to
strongly improved results, with the final position error reduced by
at least a factor 3 compared to individual models. It was also
shown that dynamical methods, such as the ACEKF, yield the
smallest forecast error; as mentioned before, the time-evolution
of the weights also provides insight into the HE and models perfor-
mance. When many models are available (seven in our MREA07
experiment), it is useful to reduce the amount of weights to deter-
mine, e.g. by applying a principal component analysis and remov-
ing colinearities between models.

We showed the benefit of adding one or more synthetic models
(a constant model adds unbiasing to the ensemble; a circular mod-
el can add or correct inertial oscillations). However, more models
imply more degrees of freedom to determine during the training
period, and this may render the ensemble unstable.

In general, forecasting the drift up to 12 h is always possible (in
both domains), and HE methods significantly improve results over
individual models. In particular, adding a synthetic bias model to a
single weighted model strongly decreases errors, indicating that at
this forecasting timescale, persistence is very useful. Adding more
models and combining them with dynamical methods such as the
Kalman filter allows to further improve results. However, after 24,
and especially 36 h, forecasting might become more problematic,
at least in a complex environments with strong meso- and smaller
scale eddy activity, such as the Ligurian Sea. Indeed, we showed that
model skills may change significantly over such a time period, and
hence the weighted combination of models obtained during the
training period is not optimal during the whole forecasting period.
In particular, adding a bias model to a single model does not increase
skill, indicating that persistence is not useful anymore, and that the
role of primitive equation models become truly crucial for scales
longer than 12 h: the issue of good model performance cannot be
avoided by super-ensembles! In the Ligurian Sea, HE methods per-
formed poorly for 24 or 26 h forecasts, and a simple ensemble mean
or an unbiased linear combination lead to better results than a Kal-
man filter method. Hence, it might be better to use ‘‘average”
weights obtained during a longer training period rather than adapt-
ing to the most recent data. However, the Kalman filter methods at
least allow to know how fast weights change in time, so that one
can decide which HE technique to use. Thus, when observations
and different models are available, we recommend to implement a
dynamical HE method such as the Kalman filter, and to examine
the time-evolution of the weights. If they are stable during a lapse
of time corresponding to the desired forecast horizon, then the re-
sults of the dynamical method should be used. If they are stable dur-
ing a much longer period, methods with a priori fixed training
lengths will yield approximately the same results. To the contrary,
if the weights are varying very quickly (compared to the desired lead
time of the forecast), one should use average weights.

In the case of a 2-dimensional variable such as surface velocity
(or drift), the question whether one should use real or complex
weights depends on the size of the ensemble (i.e. the degrees of
freedom to be fixed). Generally, complex weights provide better re-
sults as model-predicted drifts can be both multiplied and rotated.
However, twice as many parameters are to be fixed during the
training period. If many different models are present, or insuffi-
cient training data is available, one could then obtain better results
with real weights. PCA generally helps to decrease the amount of
degrees of freedom, and might thus allow using complex weights
where otherwise, real weights would have led to the best results.

In order to use hyper-ensembles operationally, one needs to
centralize all the forecasts, as well as the observations. The HE
computations themselves are performed very fast; a large part of
the effort goes to correctly reading and interpolating the forecasts
from the individual models into the HE algorithm. Provided that
these issues are resolved, an operational HE forecast can be pro-
vided, as has already been demonstrated (Rixen et al., 2008). As
more models are implemented in various regions, we hope the
HE techniques will improve forecasts at reduced cost.
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