
Naval Research Laboratory
Stennis Space Center, MS 39529-5004

NRL/MR/7320--09-9171

Approved for public release; distribution is unlimited.

Data Assimiliation in the Littoral Zone
Part I: Analysis of the Navy Coupled
Ocean Data Assimilation System (NCODA)
Timothy R. Keen
Richard Allard

Ocean Dynamics and Prediction Branch
Oceanography Division

February 27, 2009

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
	 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
	 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Data Assimilation in the Littoral Zone
Part I: Analysis of the Navy Coupled Ocean Data Assimilation System (NCODA)

Timothy R. Keen and Richard Allard

Naval Research Laboratory
Oceanography Division
Stennis Space Center, MS 39529-5004 NRL/MR/7320--09-9171

Approved for public release; distribution is unlimited.

Unclassified Unclassified Unclassified
UL 106

Timothy Keen

(228) 688-4950

This report describes the detailed operation of the quality control component of the Navy Coupled Ocean Data Assimilation system for processing
two- (2D) and three-dimensional (3D) fields. In addition to the conventional flow charts and tree diagrams used to describe sequential programs,
several Unified Modeling Language (UML) diagrams are used to demonstrate the relationship between objects within the system. This Object
Oriented (OO) analysis is intended to aid in future development and application of the NCODA system. UML is an abstract model of a system,
which can be used to describe/develop systems that can be implemented in different computer languages. The UML model can be transformed
to other representations (e.g., FORTRAN) for application. The UML diagrams are used to demonstrate three aspects of the NCODA system: (1)
the static structure of the system can be easily cast as OO classes; (2) functional requirements (user-computer interaction) of the system; and (3)
the dynamic behavior of the system with respect to file system access.

27-02-2009 Memorandum Report

Office of Naval Research
One Liberty Center
875 North Randolph St.
Arlington, VA 22203-1995

73-6774-A9-5

ONR

0602435N

NCODA
Numerical algorithms

Model output

Table of Contents
1 Introduction... 1
2 Structure.. 2

2.1 NCODA system structure .. 2
2.2 The OO class diagram.. 3

3 System input/output .. 13
3.1 Directories .. 13
3.2 The grid file.. 13
3.3 Climatology Files ... 13

3.3.1 Wavewatch.. 13
3.3.2 Sea Ice from ECMWF .. 13
3.3.3 GDEM climatology Files.. 13
3.3.4 MODAS .. 14

3.4 Observation Data Files ... 14
3.5 Work files... 20
3.6 Restart Files.. 22
3.7 NOGAPS boundary files.. 22
3.8 Summary of file IO within CODA... 22

4 Bathymetry and grids.. 33
4.1 Specifying a grid. ... 33
4.2 Bathymetry databases and the dictionary... 33
4.3 Adding a bathymetry set to the database.. 34
4.4 Multiple nests ... 38
4.5 Moving nests .. 38

5 System input variables and parameters... 41
5.1 Grid namelist .. 41
5.2 Ocean analysis namelist ... 42
5.3 Directory namelist .. 42

6 Operation .. 55
6.1 Overview .. 55
6.2 Two-dimensional analysis.. 56

6.2.1 Processing Observations ... 57
6.2.2 Detrending the Observations... 59
6.2.3 Form Super-Observations for Water Types.. 60
6.2.4 Set the Observation Error Field .. 60
6.2.5 Forecast/Analysis Fields ... 60
6.2.6 Calculate Horizontal Correlation Parameters ... 61
6.2.7 Compute Analysis Volumes ... 62

iii

6.3 Three-dimensional analysis.. 62
6.3.6 Generate Synthetic Fields ... 62
6.3.7 Direct Assimilation Of Modas Synthetics .. 63
6.3.8 Prepare Climatology Data for MVOI ... 64
6.3.9 Prepare Gridded Obs. (MASS_OBS and VELC_OBS) 64
6.3.10 Generate Direct Assimilation SSH Synthetic Obs.. 66
6.3.11 MODAS Assimilation of SSHA Synthetic Obs ... 67
6.3.12 Prepare the Observations for MVOI (MV_PREP) ... 68

7 Notes. .. 80
7.1 Update Cycle .. 80
7.2 The first-guess appropriate time (FGAT)... 81
7.3 Error calculation condition... 81
7.4 Logical Flags for Initialization... 82

8 References... 84
APPENDIX 1. Abbreviated List of Subroutine Calls for NCODA Prep. 85
APPENDIX 2: Argument List Mapping for COAMOA calling CODA_PREP 94
APPENDIX 3. Sample FORTRAN program to generate a 1-record bathymetry file for the
topography database.. 97

iv

1 Introduction

This report describes the detailed operation of program NCODA_PREP. This file describes the
sequence of operations for processing two- (2D) and three-dimensional (3D) fields. The related
programs, NCODA and NCODA_POST, are only discussed briefly because of the similarity of
many of their functions to NCODA_PREP. Details of the theoretical and numerical algorithms
that define the MultiVariate Optimal Interpolation (MVOI) scheme used by NCODA are
presented elsewhere (Cummings, 2005; Goerss and Phoebus, 1992; Lorenc, 1981). In order to
assist the reader in understanding the numerical code, references to the description of the
system in Cummings (2005) will be made where possible.

The NCODA system is coded in FORTRAN 77 with some extensions from newer versions of
the language (e.g., dynamic memory allocation). Although this language limits the programs to
sequential architecture, the overall processing of the input data is naturally object oriented.
Thus, the description of the system's structure and operation will include Object Oriented (OO)
analysis. This is intended to aid in future modifications and development of the overall method.

The most common way of depicting OO systems is with Unified Modeling Language (UML)
diagrams (Page-Jones, 2000). UML is an abstract model of a system, which can be used to
describe/develop systems that can be implemented in different computer languages. The UML
model can be transformed to other representations (e.g., FORTRAN) for application. The UML
diagrams can be used to represent three different views of a system model: (1) static structure;
(2) functional requirements; and (3) dynamic behavior. The functional requirement view
represents the users perspective, whereas the static structural view uses objects, attributes,
operations, and relationships to show how a system is built. Finally, the collaborations among
objects and changes to internal states of objects are seen through the dynamic behavior view.
This report will use examples of each kind of UML diagram to describe the NCODA system
within the appropriate section.

1

Manuscript approved January 15, 2009.

2

2 Structure

The NCODA system consists of three independent programs written in FORTRAN 77 but with
many extensions: (1) NCODA_PREP; (2) NCODA; and (3) NCODA_POST. The
NCODA_PREP program is also called OCEAN-QC. This is the component that is discussed
most thoroughly in this report and in Cummings (2005). It processes available observations and
computes the covariances and errors for the MVOI that is performed in the NCODA program.
The third component is the NCODA_POST program, which processes the OI fields and updates
all of the analysis fields. This section presents the relationships between these components
using several software analysis tools.

One goal of this section is to demonstrate the object-oriented relationships inherent in the
NCODA system. This will prove useful in future modifications of the system for application to
a range of littoral data processing problems. Section 2.1 shows the basic architecture of the
system using traditional subroutine structure. Section 2.2 attempts to display the inherent
classes that make up the NCODA system. This report will use the following conventions in
referring to components of the system: (a) subroutines will be given in UPPER CASE; (b)
variables within the programs will use italics; and (c) file names will use a fixed-width
font. Classes will be shown in bold type. Where appropriate for clarity, bold type will also
be used for FORTRAN arrays.

2.1 NCODA system structure

The NCODA system consists of three program units. These programs are run sequentially as
shown in Figure 2.1-1. If a full 3D analysis is necessary, they must first be run with opt = 2d
and then with opt = 3d (command line). The details of the program commands are not discussed
in this report, however. The purpose here is to show how the subroutines are related in order to
facilitate future program development. A full listing of subroutine calls is given in Appendix 1.

There are three categories of subroutines in the NCODA system: (1) main routines to do
something only once; (2) algorithms that are used several times; for example, processing
different kinds of observations; and (3) utility routines that are used repeatedly within every
level of the code. The overall structure of program NCODA_PREP for types (1) and (2) is
shown in the tree diagram of Figure 2.1-2. Note that the majority of the algorithms are used by
subroutine CODA_PREP, which is the only substantive unit called by COAMOA. There are
also three types of subroutine called by CODA_PREP: (a) those calculating grid variables and
other constants (e.g., OCN_DEPTH, SET_HGRD, and SET_VGRD). These are shown to the
left of Figure 2.1-2a. They can also be called at other points during execution; (b) Processing
observations and climatological input for use in the OI (e.g., OCN_OBS and MODAS_GRD);
and (c) subroutines for preparing the different ocean variables for the interpolation (e.g.,
SSH_PREP and ICE_PREP). The MV_PREP unit (Figure 2.1-2f) does a final check of all of
the variables prior to running the CODA program.

The NCODA program (Figure 2.1-3) shares the grid and utility routines with NCODA_PREP.
However, it also includes subroutine VOLUME_ANL, which completes both the 2D and 3D
volume analyses. The observation covariance matrices computed in OBS_COVAR and routine

3

SPPTRF (from linpac) are used to find the decomposition matrix using Cholesky
decomposition (see Horn and Johnson, 1985). The analysis coefficients are found from the
resulting linear system of equations using the linpack routine SPPTRS.

The third member of the NCODA system is the post-processing module, NCODA_POST. This
is the simplest of the three components (Figure 2.1-4). It also utilizes many of the utility
functions common to the other modules and uses the subroutine ANL_ERR as its primary
algorithm.

2.2 The OO class diagram

The NCODA system is a set of three sequential FORTRAN programs with many shared
libraries. This heirarchical structure is shown in the tree diagrams from section 2.1. There are
basic problems with this depiction, however, in that program units with similar functionality do
not have their inherent commonality explicitly shown. This shortcoming can be addressed by
examining the NCODA system from an OO perspective, which focuses on the common
purpose of the program units. This description must, however, be superficial since there are no
classes or methods represented within the system. The purpose is to indicate potential
alterations in future versions of the system as they are developed.

The UML class diagram shows the structural relationships among classes much as the tree
diagrams from section 2.1. However, instead of showing linkages in a simple hierarchy, the
class diagram lists the methods (subroutines) that are associated with a given class (category of
program unit). The class description includes the class name, the variables used by the class,
and its methods.

In Figure 2.2-1, the UML class diagram for the NCODA system is used to demonstrate a more
detailed classification than is suggested in the tree diagrams. The proposed classes include: (1)
databases; (2) grids; (3) gridded climate; (4) analysis; (5) file input/output (IO); (6)
transformations; (7) raw observations; and (8) gridded observations. This diagram shows
the variables in the lower sub-box within each class box. For example, the database class uses
the MODAS temperature, salinity, and sea surface height (ssh) climatology values whereas the
grids class uses the variables describing the analysis grid; number of cells, cell size, etc. This
view shows how the program variables can be classified by the kind of object they represent.
The class diagram also lists the class methods (subroutines) in the lowermost sub-box within
each class box. These may be available for use by other program units.

There are several features of the class diagram that should be explained in order to interpret it
correctly. The class diagram shows associations between classes with solid lines like those
between the database and gridded climate classes in Figure. 2.2-1. Since NCODA is not an
OO program, we have given these associations the name "File IO" since files are used to
communicate between all of the classes in the NCODA system. An alternative name for this
association might be "Preprocessing" for example. This association is depicted as occurring
through two classes (grids and transformations) by the use of a dashed line in the diagram.
This is because the relationship between the databases (e.g., GDEM and MODAS) and the
usable gridded result requires the subroutines and variables contained within the associative

4

classes. It is further implied by Figure 2.2-1 that File IO is an associative class for all of the
other classes; thus, it is listed to one side.

The class Raw Observations contains no methods because this is a set of files to be read by the
system. However, the "transformation" association (using the class File IO) between these data
and the Gridded Observations class permits the observations to belong to the Gridded
Observations class or not, as indicated by 0.* at the Raw Observations end of the association.
Conversely, it is possible to complete an analysis using only climatology (i.e., no available
obs), as indicated by 0 at the Gridded Observations end of this association. The arrowhead at
this end of the association further indicates that the Gridded Observations are a composite of
the Raw Observations; i.e., this class cannot exist unless there are obs to process.

The final point to note about the UML class diagram is the construction of the Analysis class as
an aggregate of the Gridded Observations and the Gridded Climate classes. This means that
they may both be present or absent within it; it can even be empty. The open diamonds at the
Analysis end of the association indicate this relationship.

The above discussion shows how useful the class diagram is in understanding the NCODA
system. This information would need to be discussed separately if the tree diagrams alone were
used to describe its structure.

5

Figure 2.1-1. General structure of the NCODA system, showing subroutines called
directly by each program unit. This set of programs is run once for a 2D analysis and a
second time to generate the 3D analysis. The binary files are used to communicate
between program units and between the 2D and 3D analyses. Names in ITALICS are the
main computation subroutines. Names in CAPS ONLY are utility routines as described in
the text.

6

Figure 2.1-2a. Tree diagram of the NCODA_PREP program units. Some utility units are
omitted for clarity (Part 1 of 6).

7

Figure 2.1-2b. Tree diagram of the NCODA_PREP program units. Some utility routines
are omitted for clarity (Part 2 of 6).

Figure 2.1-2c. Tree diagram of the NCODA_PREP program units. Some utility units are
omitted for clarity (Part 3 of 6).

8

Figure 2.1-2d. Tree diagram of the NCODA_PREP program units. Some utility routines
are omitted for clarity (Part 4 of 6).

9

Figure 2.1-2e. Tree diagram of the NCODA_PREP program units. Some utility routines
are omitted for clarity (Part 5 of 6).

Figure 2.1-2f. Tree diagram of the NCODA_PREP program units. Some utility routines
are omitted for clarity (Part 6 of 6).

10

Figure 2.1-3. Tree diagram of the NCODA program units. Note that utility routines like
DTGOPS and RW_DATAO, which are called from many locations, are omitted for
clarity.

11

Figure 2.1-4. Tree diagram of the NCODA_POST program units. Note that some utility
routines, which are called from many locations, are omitted for clarity.

12

Figure 2.2-1. UML Class Diagram for the NCODA system. The FORTRAN file structure
has been interpreted to an object oriented structure. Not all subroutines are shown. This
diagram is general only. See the text for an explanation.

13

3 System input/output

3.1 Directories
There are a maximum of 4 data directories, datu_dir (unclassified data), datr_dir (restricted
data), datc_dir (confidential data), and dats_dir (secret data), in addition to the climatology
directories, clim_dir, gdem_dir, modas_dir, the global atmospheric forcing ngps_dir, the
output directory, out_dir, and the work directory, wrk_dir. If none of the input directories is
given, execution stops. The number is stored in n_dir for later use and the names are kept in
array data_dir(4).

In addition, the data come from subdirectories named after the observation sources: mcsst,
metop, lac, metop-lac, goes, amsr, atsr, msg, ship, glider, profile.

3.2 The grid file

This direct access file is a restart file as described in section 3.6 but it has a special content; it
contains one record, datao, which is a 1D array. It is located in out_dir. If this file is absent,
restart is set equal to true.

Example: datahd_sfc_000000_000000_1w0545x0536_2005030100_00240000_infofld

The input grid data are found in the first 20 entries. Projection-specific grid data are located in
entries 30-46. Parent grid, grid nest level and children grid info start with index 47. Analysis
vertical grid info starts with index 501. Finally, model vertical grid input from a previous file
starting with index 801, otherwise local dummy variables will be present.

3.3 Climatology Files

3.3.1 Wavewatch

The global wave climate comes from a file called "clim_dir/Wavewatch.swh.clim," which has
1441 × nodes and 721 y nodes. This must be the size of the file if it exits. The base lat/lon is
hardwired into the subroutine (-90, 0). The grid is computed from the size.

 rec 1: nx, ny
 rec 2: wrk (1441 × 721) climate error
 rec 3: wrk (1441 × 721) model error
 rec 4: wrk (1441 × 721) climatology

3.3.2 Sea Ice from ECMWF

Sea ice climatology comes the ECMWF database, which is contained in the file,
"clim_dir/ECMWF.ice_clim," which contains only one record:

clm(361 × 181)

3.3.3 GDEM climatology Files

These files are contained in the clim_dir directory.

14

gdem_tempmon.short, gdem_tstdmon.short
gdem_saltmon.short, gdem_sstdmon.short

All contain 2 records: 1. add_offset, scale_factor, missing_value
 2. an array of 1441 × 689 × 78 entries

3.3.4 MODAS

The MODAS climate fields use a smoothed topography and geoid correction; these are
contained in files, "clim_dir/MODAS.topo" and "clim_dir/MODAS.geoid". Each of these
contains one record with nx=1440 and ny=721 entries.

The MODAS data files use a naming convention like “m180+30_12.b” and contain 4 records:

1. i1, j1, m1, n1, mr1, mi1, nt1
2. wrk_beg, wrk_end, wrk1 (nt1), wrk2 (nt1), wrk3 (nt1), wrk4 (nt1)
3. iwork (mi1)
4. work (mr1)

These files are unpacked to produce lat, lon, ssh, deep T and S, and mixed layer dept (MLD).

3.4 Observation Data Files

The observations processed by the NCODA system come from satellites, ships, xbt’s, gliders,
and some supplemental profiles from MODAS or GDEM can be used. These data are cleaned
up and processed to a uniform level of quality and written to temporary files described in
section 3.5.

The formats for the files are set within the NCODA_PREP component and are not changeable.
The names are constructed from the observation source and date/time group (DTG). The
temporal sequence of accessing these files is conveniently displayed using a UML sequence
diagram, which shows the interaction (dynamic behavior) of the program objects. This method
has been applied to the interaction of NCODA with the file system as shown in Figure 3.4-1.
The objects listed across the top of the diagram are: (1) the NCODA_PREP program; (2) the
work files for the observations; (3) the restart files (discussed in section 3.6); and (4) the input
data files. Execution time is represented downward. Arrows show the direction of information
flow. The sequence for each data type is: (i) the work files are opened, (ii) the data files (e.g.,
MCSST) are accessed and the number of observations counted, (iii) the file is read, and (iv) the
quality checked observations are written to the work files after processing. Each object's time
line (vertical) is marked with X when it terminates. Each interaction line (horizontal) is labeled
with the specific data type (object) on the right and with the activity and subroutine (ALL
CAPS) on the left.

The data files are read during processing of the first nest (nest = 1). Note that the preprocessed
data files are named with "nest00" hard-wired in. This indicates that they are the raw
observations with minimal processing. They have not been checked for accuracy. The input
parameters (e.g., age, lat, lon) have all been standardized at this stage.

The work files are accessed by the individual data prep routines for analysis (Figure 3.4-1b).
The interaction of these data objects with the NCODA system is discussed in section 3.5 (Work
Files) and the details of this processing are discussed in section 6 (Operation).

15

The following observations are contained in files opened and read within subroutines called by
CR_TMP_FILE. The file naming convention is YYYYMMDDHH.var. Each data observation
in the file consists of the following:

Multi-Channel Sea Surface Temperature (mcsst):
rec 1: n_read, n_lvl, (vrsn)
rec 2: ob_cls(n_read)
rec 3: ob_glbl
rec 4: ob_lat(n_read)
rec 5: ob_lon(n_read)
rec 6: ob_age(n_read)
rec 7: ob_clim
rec 8: ob_qc(n_read)
rec 9: ob_typ(n_read)
rec 10: ob_regn
rec 11: ob_sst(n_read)
rec 12: ob_aod
rec 13: ob_dtg(n_read)
If vrsn > 1:
 rec 14: ob_err(n_read)
 rec 15: ob_wind
 rec 16: ob_solr
if vrsn > 2:
 rec 17: ob_bias(n_read)

 rec 18: ob_dw(n_read)

This is the basic format but it is not followed completely by all of the other data types.
Differences will be discussed.

Meteorological Operational Satellite (metop): The file contents are the same but version is
always read and there are no dependencies.

Geostationary Operational Environmental Satellite (goes): For the GOES data, the procedure in
sub RD_GOES is the same as MCSST through rec 16 (vrsn always present) unless vrsn > 1, in
which case ob_bias and ob_dw are also read.

NOAA AVHRR Local Area Coverage (lac): The algorithm in RD_LAC is the same as
RD_GOES.

Meteorological Operational Satellite Local Area Coverage (metop_lac): Sub
RD_METOP_LAC reads 18 records

Metosat second generation (msg): The file contents are the same through rec 11, then differ:

rec 12: ob_dtg(n_read)
rec 13: ob_err(n_read)
rec 14: ob_bias(n_read)
rec 15: ob_dw(n_read)

16

rec 16: b_wind
rec 17: ob_solr
rec 18: ob_aod

Advanced Microwave Scanning Radiometer (amsr): After rec 1 the following sequence is
expected:

rec 2: ob_age(n_read)
rec 3: ob_bias(n_read)
rec 4: ob_clim
rec 5: ob_dw(n_read)
rec 6: ob_err(n_read)
rec 7: ob_glbl
rec 8: ob_lat(n_read)
rec 9: ob_lon(n_read)
rec 10: ob_qc(n_read)
rec 11: ob_regn
rec 12: ob_solr
rec 13: ob_sst(n_read)
rec 14: ob_typ(n_read)
rec 15: ob_wind
rec 16: ob_cls(n_read)
rec 17: ob_dtg(n_read)

Along-Track Scanning Radiometer (atsr): After rec 1 the following sequence is read:

rec 2: ob_age(n_read)
rec 3: ob_aod
rec 4: ob_bias(n_read)
rec 5: ob_clim
rec 6: ob_dw(n_read)
rec 7: ob_err(n_read)
rec 8: ob_glbl
rec 9: ob_lat(n_read)
rec 10: ob_lon(n_read)
rec 11: ob_qc(n_read)
rec 12: ob_regn
rec 13: ob_solr
rec 14: ob_sst(n_read)
rec 15: ob_typ(n_read)
rec 16: ob_wind
rec 16: ob_cls(n_read)
rec 17: ob_dtg(n_read)

On-board ship SST (ship): The format for the input file reads vrsn from rec 1 only if file_dtg >
'2002100100' (as with MCSST). The following are then read.

rec 2: ob_cls(n_read)
rec 3: ob_glbl

17

rec 4: ob_lat(n_read)
rec 5: ob_lon(n_read)
rec 6: ob_age(n_read)
rec 7: ob_clim
rec 8: ob_qc(n_read)
rec 9: ob_regn
rec 10: ob_sst(n_read)
rec 11: ob_typ(n_read)
rec 12: ob_dtg(n_read)
rec 13: ob_rcp
rec 14: ob_scr(n_read)
rec 15: ob_sgn(n_read)

Expendable bathythermographs (profile): The algorithm is similar to the other data bases but
some different variables are introduced:

rec 1: n_read, mx_lvl, version
rec 2: ob_btm(n_read)
rec 3: ob_lat(n_read)
rec 4: ob_lon(n_read)
rec 5: ob_ls
rec 6: ob_lt(n_read)
rec 7: ob_ssh(n_read)
rec 8: ob_sst(n_read)
rec 9: ob_sal_typ(n_read)
rec 10: ob_sqc(n_read)
rec 11: ob_tmp_typ(n_read)
rec 12: ob_tqc(n_read)
Read for each record (n_read)

 rec 13: ob_lvl(ob_lt(n_read), n_read) (first)
 rec 14: ob_sal(ob_lt(n_read), n_read)
 rec 15: ob_sal_err(ob_lt(n_read), n_read)
 rec 16: ob_sprob(ob_lt(n_read), n_read)
 rec 17: ob_tmp(ob_lt(n_read), n_read)
 rec 18: ob_tmp_err(ob_lt(n_read), n_read)
 rec 19 (12 + 7×n_read): ob_tprob(ob_lt(n_read), n_read) (last)

rec (12 + 7×n_read + 1): ob_dtg(n_read)
rec (12 + 7×n_read + 2): ob_rct(n_read)
rec (12 + 7×n_read + 3): ob_scr(n_read)
rec (12 + 7×n_read + 4): ob_sgn(n_read)
Read for each record (n_read)

 rec (16 + 7×n_read +1): ob_clm_sal(ob_lt(n_read), n_read) (first)
 rec (16 + 7×n_read +2): ob_clm_tmp
 rec (16 + 7×n_read +3): ob_cssd(ob_lt(n_read), n_read)
 rec (16 + 7×n_read +4): ob_ctsd(ob_lt(n_read), n_read)
 rec (16 + 7×n_read +5): ob_glb_sal
 rec (16 + 7×n_read +6): ob_glb_tmp

18

 rec (16 + 7×n_read +7): ob_gssd
 rec (16 + 7×n_read +8): ob_gtsd
 rec (16 + 7×n_read +9): ob_mds_sal
 rec (16 + 7×n_read +10): ob_mds_tmp
 rec (16 + 7×n_read +11): ob_rgn_sal
 rec (16 + 7×n_read +12): ob_rgn_tmp
 rec (16 + 7×n_read +13): ob_rssd
 rec (16 + 7×n_read +14*n_read): ob_rtsd (last)
If vrsn > 1:
 Read for each record (n_read)
 rec (16 + 7×n_read + 14×n_read +1): sal_xval (first)
 rec (16 + 7×n_read + 14×n_read +2): sal_xstd
 rec (16 + 7×n_read + 14×n_read +3): tmp_xval
 rec (16 + 7×n_read + 14×n_read +4×n_read): tmp_xstd (last)
if vrsn > 2:
 Read for each record (n_read)

 rec (16 + 7×n_read + 14×n_read +1/n_read): ob_id(n_read)

Autonomous gliders (glider): The data file must already exist. There is only one file structure,
which is as follows:

rec 1: n_read, mx_lvl, vrsn
rec 2: ob_lt(n_read)
rec 3: ob_mode(n_read)
rec 4: ob_ssh(n_read)
rec 5: ob_sst(n_read)
rec 6: ob_sal_typ(n_read)
rec 7: ob_sqc(n_read)
rec 8: ob_tmp_typ(n_read)
rec 9: ob_tqc(n_read)
rec 10: ob_rct(n_read)
rec 11: ob_scr(n_read)
rec 12: ob_sgn(n_read)
rec 13: ob_id(n_read)
Loop over all n_read observations:

 rec (13 + 1): ob_btm(ob_lt(n_read)) first
 rec (13 + 2): ob_dtg(ob_lt(n_read))
 rec (13 + 3): ob_lat(ob_lt(n_read))
 rec (13 + 4): ob_lon(ob_lt(n_read))
 rec (13 + 5): ob_lvl(ob_lt(n_read))
 rec (13 + 6): ob_sal(ob_lt(n_read))
 rec (13 + 7): ob_sal_err(ob_lt(n_read))
 rec (13 + 8): ob_sprob(ob_lt(n_read))
 rec (13 + 9): ob_tmp(ob_lt(n_read))
 rec (13 + 10): ob_tmp_err(ob_lt(n_read))
 rec (13 + 11): ob_tprob(ob_lt(n_read))
 rec (13 + 12): ob_clm_sal(ob_lt(n_read))

19

 rec (13 + 13): ob_clm_tmp
 rec (13 + 14): ob_cssd(ob_lt(n_read))
 rec (13 + 15): ob_ctsd(ob_lt(n_read))
 rec (13 + 16): ob_glb_sal
 rec (13 + 17): ob_glb_tmp
 rec (13 + 18): ob_gssd
 rec (13 + 19): ob_gtsd
 rec (13 + 20): ob_rgn_sal
 rec (13 + 21): ob_rgn_tmp
 rec (13 + 22): ob_rssd
 rec (13 + 23): ob_rtsd
 rec (13 + 24): sal_xval
 rec (13 + 25): tmp_xval
 rec (13 + 26): sal_xstd
 rec (13 + 27*n_read): tmp_xstd last

Subroutine CR_ICE_FILE reads the sea ice file as follows.

Special Sensor Microwave Imager (ssmi): The unformatted input files are of the form are read
as follows:

rec 1: n_read, n_lvl, vrsn
rec 2: ob_glbl
rec 3: ob_ice(n_read)
rec 4: ob_lat(n_read)
rec 5: ob_lon(n_read)
rec 6: ob_qc(n_read)
rec 7: ob_age(n_read)
rec 8: ob_regn
rec 9: ob_sat(n_read)
rec 10: ob_clim
rec 11: ob_dmy
rec 12: ob_dtg(n_read)

Subroutine CR_SSH_FILE reads the altimetry observation file.
altim:

rec 1: n_read, n_lvl, vrsn (note that this file uses the vrsn_dtg date)
rec 1: n_read, n_lvl
rec 2: ob_age(n_read)
rec 3: ob_clim
rec 4: ob_cycle
rec 5: ob_glbl
rec 6: ob_lat(n_read)
rec 7: ob_lon(n_read)
rec 8: ob_qc(n_read)
rec 9: ob_regn
rec 10: ob_smpl

20

rec 11: ob_sat(n_read)
rec 12: ob_std
rec 13: ob_ssh(n_read)
rec 14: ob_track
rec 15: ob_dtg(n_read)
if vrsn > 1:
 rec 16: ob_rcpt(n_read)
else:
 rec (15 + 1,...n_read): ob_dtg(n_read)

Subroutine CR_SWH_FILE reads the significant wave height observations.

swh:

rec 1: n_read, n_lvl, vrsn
rec 2: ob_glbl
rec 3: ob_lat(n_read)
rec 4: ob_lon(n_read)
rec 5: ob_age(n_read)
rec 6: ob_clim
rec 7: ob_qc(n_read)
rec 8: ob_typ(n_read)
rec 9: ob_regn
rec 10: ob_swh(n_read)
rec 11: ob_wind
rec 12: ob_xval
rec 13: ob_dtg(n_read)
rec 14: ob_rcpt(n_read)

3.5 Work files

The NCODA system uses a series of work files to communicate between components. These
files are sequential and unformatted. They are written to the wrk_dir directory. The work files
are also called "prep" files and they all begin with "coda". They contain parameters associated
with the preparation of the analysis (e.g., observations, covariances). The names are constructed
as follows:

coda. par_content.nestnn.dtg

where par = ICE, PRF, SSH, SWH, SST, VEL, HDR, MVOI, SFC, SYN, VELOC, and MASS;
content = obs, 2D, 3D, cvr, and vol; nn = 00 - 09; and dtg = YYYYMMDDHH. Not all of the
possible combinations are used. Table 3.5 lists the files that are used and the subroutines in
which they are accessed. The table also indicates whether the subroutine opens (O), closes (C),
reads (R), or writes (W) to the file.

The analysis results are written to the restart files discussed in section 3.6.

21

These files contain different numbers of records. In addition, there are four files that are
hardwired for nest 00 because they contain the original observations after quality control has
been completed. These files are written during the first nest loop.

 The PRF file contains the temperature and salinity observations from xbt’s and gliders (xbt’s
first), and the SSH file contains the ssh observations from the xbt’s.
coda.PRF_obs.nest00.dtg: Records = n_xbt; age; lat; lon; lvl; ndx; sal; sal_err; sal_typ; tmp;

tmp_err; tmp_typ; scr
coda.SSH_obs.nest00.dtg: Records = n_alt; age; lat; lon; lvl; cls; res; dmy; idm; ssh; err; typ;

cls
where there are n_xbt /n_alt entries for each variable.
The ICE and SST files for nest 00 contain surface ice concentration data (ssmi) and sst after
quality control.
coda.ICE_obs.nest00.dtg: Records = num, age, lat, lon, lvl, cls, res, dmy, cls, ice, err, typ, cls
coda.SST_obs.nest00.dtg: Records = num; age, lat, lon, lvl, cls, res, dmy, idm, sst, err, typ,

idm
The SST file is cumulative, so that the records include the sst sources in the following order:
mcsst; metop; goes; lac; metop_lac; msg; amsr; atsr; ship. Each of these observation sets
includes the records listed above.

coda.SFC_obs.nestnn.dtg: Records = n_sst_obs; age; lat; lon; lvl; cls; dmy; dmy; wrk; val; err;

typ; scr
coda.(ICE, SSH, MVOI, SST, SWH)_vol.nestnn.dtg: Records = n_vol; nodes/vol; obs/vol; vx1;

vx2; vy1; vy2
coda. (ICE, SSH, MVOI, SST, SWH)_obs.nestnn.dtg: Records = n_total; age; lat; lon; lvl;

msv; ndx; sal; sal_err; sal_typ; tmp; tmp_err; tmp_typ; xi; yj; zk
coda. (ICE, SSH, MVOI, SST, SWH)_cvr.nestnn.dtg: Records = lon, lat, lvl; hcr; vcr; msk

The final file is the SYN file, which contains synthetic observations from altimeters (direct = T)
or MODAS (modas = T). There is only an obs file for these data.

coda.SYN_obs.nn.dtg: Records = n_total; lat; lon; lvl; surface index; profile index; salinity;

salinity error; salinity data type; temp; temp error; temp data type; x coord; y coord; z
coord; security class.

A UML sequence diagram (Figure 3.5-1) shows the interaction between NCODA_PREP
(OCEAN_QC) and the file server in writing and reading these files. The vertical lines to the
left of the OCEAN_QC timeline indicate the value of the swh parameter (T or F). Most of the
operations are writing except for MVOI_PREP, which reads the observations for each nest.

22

A special kind of work (prep) file is the header file (par = HDR and content = 2D or 3D),
which contains data on the number of observations and analysis:

coda.HDR_opt.nestnn.dtg contains 1 record: n_data, n_ice, n_ssh, n_sst, n_swh, n_prf_lvl,

n_prf_obs, n_ssh_obs, n_vel_obs, n_vol, file_dtg, n_anl, f3d, fcst, restart

These files are used for communication between and within components of the NCODA system
as shown in a UML sequence diagram (Figure 3.5-2). As seen in the diagram, CODA_PREP
writes to these files after both 2D and 3D analyses and the other components read them. This
assures continuity in the analysis when mulitiple (independent) program units are used. This
will be discussed more in section 6 (Operation).

3.6 Restart Files
The results of the analysis are written to direct access files that are called CODA restart (CR)
files. These files contain only one record and all of the necessary parameters for reading them
are contained in the file name. The CODA restart file name is built from the variables listed in
Table 3.6.

A typical file name looks like this:

out_dir/datahd_sfc_000000_000000_1w0545x0536_2005030100_00240000_infofld

These files typically contain one field with the dimensions given in the file name. Figure 3.6-1
shows interaction between the ocean QC component (NCODA_PREP) and the file system for
the 2D option. The sequence for the 3D option is shown in Figure 3.6-2. These files will be
used by external applications like data assimilation as well as subsequent analyses. They are
also used for system debugging and diagnostics. An exception is the "infofld" file as described
in section 3.2.

3.7 NOGAPS boundary files
Surface values of sea ice and surface temperature can be read from one of the following
NOGAPS files.

 seaice_sfc_0000.0_0000.0_glob720x360_YYYYMMDDHH_00000000_fcstfld
 seaice_sfc_0000.0_0000.0_glob360x181_YYYYMMDDHH_00000000_fcstfld
 seaice_sfc_000000_000000_1a720x360_YYYYMMDDHH_00000000_fcstfld
 seaice_sfc_000000_000000_1a360x181_YYYYMMDDHH_00000000_fcstfld
 iceca1YYYYMMDDHH00000000000000000sfl

Similar files are used for seatmp (tsea). The "icecal" file also comes with either resolution
fields, which are checked in a loop in subroutine NGPS_BNDY.

3.8 Summary of file IO within CODA

This section has described the different kinds of files used by the NCODA system. The most
complex file system access occurs within the NCODA_PREP program because it must read in
data from a number of different sources. However, because the prep component does this, file
access within the other components is relatively straightforward. There is an exception to this

23

general simplicity; the entire NCODA system must be executed twice (see section 6), first in
2D mode and then in 3D mode. The 2D analysis is restricted to surface fields but it also
computes all of the horizontal analysis parameters. A subsequent 3D analysis thus can read
these parameters from files and does not need to recalculate them.

A UML sequence diagram (Figure 3.8-1) demonstrates the interaction of the CODA program
with the file system. The ocean data record (CR file = datao) is read before the nests are
analyzed individually. The prep results comprise the header file, depths, ssh, observations,
analysis volumes and covariances required for the objective interpolation (OI). The first ocean
variable processed is sea ice, for which analysis increments, time increments, and analysis
errors are written to restart files. This sequence of input and output is then repeated for
significant wave height, if selected (swh = T). If swh = T, no other 2D analyses are completed
for the current nest and the statistice file (CR file = chisqr) is written. If swh = F, however, this
sequence of input and output is repeated for sst (CR file = seatmp) and sea surface height (CR
file = seahgt) (opt = 3D).

On the next execution of the NCODA system, the 3D option must be selected and the CODA
program has more interaction with the file system (Figure 3.8-2). The above sequence of input
and output is repeated for the analysis increment of 3d temperature (seatmp_pre), salinity (CR
file = salint_pre), geopotential anomaly (CR file = geoptl_pre), currents (CR files = uucurr_pre
and vvcurr_pre), and the time increment for the observation age (CR file = grdage_pre).

24

Table 3.5

File Subroutines*

coda.ICE_obs.nest00.DTG OCN_OBS (O, C), RD_SSMI (W), RD_DATA_FILE (R)

coda.PRF_obs.nest00.DTG OCN_OBS (O, C), PROF_COLLECT (W),

RD_DATA_FILE (R)

coda.SSH_obs.nest00.DTG OCN_OBS (O, C), PROF_COLLECT (W),

RD_DATA_FILE (R)

coda.SWH_obs.nest00.DTG OCN_OBS (O, C), RD_SWH (W), RD_DATA_FILE (R)

coda.SST_obs.nest00.DTG OCN_OBS (O, C), RD_MCSST (W), RD_METOP (W),
RD_GOES (W), RD_METOP_LAC (W), RD_MSG (W),
RD_AMSR (W), RD_ATSR (W), RD_SHIP (W),
RD_DATA_FILE (R)

coda.VEL_obs.nest00.DTG Not used at this time.

coda.HDR_2D.nestNN.DTG RW_PREP_HDR (R, W)

coda.HDR_3D.nestNN.DTG RW_PREP_HDR (R, W)

coda.ICE_cvr.nestNN.DTG RW_COVR (R, W)

coda.ICE_obs.nestNN.DTG RW_PREP (R, W), RD_MVOI_OBS (R),
RD_DATA_FILE (R), WR_MASS_OBS (W)

coda.ICE_vol.nestNN.DTG SET_VOLUME (W), RD_VOL_DEF (R)

coda.MVOI_cvr.nestNN.DTG RW_COVR (R, W)

coda.MVOI_obs.nestNN.DTG RW_PREP (R, W), RD_MVOI_OBS (R),
RD_DATA_FILE (R), WR_MASS_OBS (W)

coda.MVOI_vol.nestNN.DTG SET_VOLUME (W) , RD_VOL_DEF (R)

coda.SFC_obs.nestNN.DTG SST_PREP (W)

coda.SSH_cvr.nestNN.DTG RW_COVR (R, W)

coda.SSH_obs.nestNN.DTG RW_PREP (R, W), RD_MVOI_OBS (R),
RD_DATA_FILE (R), WR_MASS_OBS (W)

coda.SSH_vol.nestNN.DTG SET_VOLUME (W) , RD_VOL_DEF (R)

25

coda.SST_cvr.nestNN.DTG RW_COVR (R, W)

coda.SST_obs.nestNN.DTG RW_PREP (R, W), RD_MVOI_OBS (R),
RD_DATA_FILE (R), WR_MASS_OBS (R)

coda.SST_vol.nestNN.DTG SET_VOLUME (W) , RD_VOL_DEF (R)

coda.SWH_obs.nestNN.DTG RW_PREP (R, W), RD_MVOI_OBS (R)

coda.SWH_cvr.nestNN.DTG RW_COVR (R, W)

coda.SWH_vol.nestNN.DTG SET_VOLUME (W) , RD_VOL_DEF (R)

coda.SYN_obs.nestNN.DTG WR_MASS_OBS (W), RD_MVOI_OBS (R)

coda.VELOC_obs.nestNN.DTG Not used at this time

coda.MASS_obs.nestNN.DTG WR_MASS_OBS (W), RD_MVOI_OBS (R)

*O = open, C = close, W = write, R = read

26

Table 3.6

Variable Value(s) FORTRAN Format
fld_name datahd, seaice, seatmp,

seahgt, salint, geoptl,
uucurr, vvcurr, sigwht,
cvstat, grdage, lyrprs,
chisqr, grdlvl, codaoi,
depths, grdlat, grdlon,
icec, tsea, movehd,
mixlyr, grdscl

A6

lvl_typ sfc, pre A3
Lev1 NA I6.6
Lev2 NA I6.6
Nest 1-9 I1
Fluid o, w A1
m NA i4.4
n NA i4.4
file_dtg YYYYMMDDHH a10
tau_hr e.g. 0-24 i2.2
tau_mn 0 i2.2
tau_sc 0 i2.2
file_typ infofld, analinc,

timeinc, obsdata,
datafld, obsfcst, fcstfld,
analerr, climfld,
climerr, analfld,
voldata, dataerr,
timefld, fcsterr,
modlerr, corrfld,
meanfld

a7

27

Figure 3.4-1a. UML Sequence diagram of communication between NCODA_PREP and
the file system for reading in the observations and writing work files. Note that the
leftmost column is labelled NCODA_PROGRAM, which in this case refers to
NCODA_PREP.

28

Figure 3.4-1b. UML Sequence diagram of communication between NCODA and the file
system for reading in the observations from work files. Note that the leftmost column
represents the NCODA program, which reads in the work files written out in Figure 3.4-
1a. The subroutines are listed on the activity line with "←" indicating a calling routine to
the right.

29

Figure 3.5-1. UML Sequence diagram of work file IO within the ncoda_prep program.
NN = nest number (00 - 09) and DTG is current analysis date (YYYYMMDDHH).

30

Figure 3.5-2. UML Sequence diagram of communication between NCODA system
components and the file system for writing and reading the coda HDR files. NN = nest
number and DTG = date in YYYYMMDDHH format. Note: NCODA PROGRAM in the
figure refers to the entire NCODA system.

31

Figure 3.8-1. UML sequence diagram of messaging between CODA and the File Server
for the 2D option.

32

Figure 3.8-2. UML sequence diagram of messaging between CODA and the File Server
for the 3D option.

33

4 Bathymetry and grids

4.1 Specifying a grid.
The desired grid is specified in the "gridnl" file. It consists of a reference point, number of cells
along the x and y axes, and cell size. This section will explain how to add a new database file to
the bathymetry data and how to use the available input options to specify multiple nests.
However, details of the available coordinate systems (e.g., global, mercator, irregular) will not
be discussed. This section will focus on the spherical coordinate system only.

4.2 Bathymetry databases and the dictionary
The bathymetry of the grid is found from a set of databases that is listed in a dictionary file,
“DBV.dictionary”. This file name is hard-coded in subroutine DBVDBV. It contains info
about the available bathymetry databases, which must be located in clim_dir.

DBVDBV calls a sequence of subroutines to find depth values for the requested grid using the
databases listed in this file. Up to 124 databases are allowed (nrmax in DBVLOD) for up to 20
ocean basins (maxbasn in DBVLOD). The databases listed in subroutine DBVDBV are:

 C DBVHRBALTIC Baltic Sea (1-min) Y
 C DBVMREATL E Atlantic (1-min) N
 C DBVMRMED Med (5-min) Y
 C DBVHRMED Med (1-min) Y
 C DBVHRSCHINA S China Sea (1-min) Y
 C DBVHRSEUSA SE US Coast (.5-min) Y
 C DBVHRWEST W US Coast (1-min) Y
 C DBVMRNATL N Atlantic Ocean Y
 C DBVMRSATL S Atlantic Ocean Y
 C DBVMRNPAC N Pacific Ocean Y
 C DBVMRSPAC S Pacific Ocean Y
 C DBVMRIND Indian Ocean Y
 C DBVMRARCTIC Arctic Y
 C DBVMRANTARC Antarctic Y
 C SASHRIND Indian (2-min) Y
 C SASHRMED Med (2-min) Y
 C SASHRNATL N Atlantic Ocean (2-min) Y
 C SASHRNPAC N Pacific Ocean (2-min) Y
 C SASHRSATL S Atlantic Ocean (2-min) Y
 C SASHRSPAC S Pacific (2-min) Y

Comparisons were made between these files (above) to the "DBV.dictionary" file in
/net/dynamic/export/data/Rowley/datasets/ncoda/clim to check for consistency. There were
three differences: (1) the order is different; (2) DBVHREATL is listed in the dictionary file but
not in subroutine DBVDBV; and (3) DBVMREATL is listed in DBVDBV but not in the
dictionary file. Point (1) is significant; if the databases overlap, it is necessary to list the

34

preferred one first in the file. Also, if new databases are added, something has to be removed.
However, databases can have multiple gridded areas, which can also have different resolution.
The databases must reside in the same directory as the dictionary file.

The user has some control of which databases are used. The oanl parameter dbv_opt is used to
set dtype to either 1 (Navy only) or 0 (all). These values are set in DBVDBV and are included
in the database files. However, there is a discrepancy; the "oanl" file comments suggest values
of “DOD”, “SAS” (i.e. Smith and Sandwell), or “all” as input for dbv_opt (source in
DBVDBV) but there are only two values in the databases (1 or 0). DBVDBV checks for the
value of source in the following string “DoDDODdod”. If it is present (e.g., dbv_opt =
“DOD”), dtype is set to 1; otherwise 0. If dtype = 0, all temporary variables for data type are set
to 0 to insure that navy ones are also used. Thus, there is no way to select the “SAS” data only
and the medium resolution data will be used unless put at the end of the dictionary list. Another
user-selected parameter is the minimum resolution (minutes) permitted (dbv_res in oanl).

Subroutine DBVSCH identifies the first database that includes each point within the selected
grid. Each point on the grid is assigned a basin index from those available or an error flag if
none. The lat and lon for a point are converted to minutes and rounded to the nearest minute
(~1.85 km). The first data point within a distance of factor (= 0.01 minutes) of each cell is
selected in subroutine DBVPTR. Subroutine DBVUPK is then called to unpack the requested
cell depth. Note that the word size, number of bits per depth field, and number of depth values
per word are all dependent on the given database file format. No interpolation of depth to the
grid is completed.

4.3 Adding a bathymetry set to the database

It is useful to occasionally add a new or regional database of bathymetry to the dictionary. This
must be done with care to assure that it is properly inserted and accessed. The database should
be listed at the top of the "DBV.dictionary" file to assure that it is used; at a minimum it must
be listed before any other databases that include the selected analysis grid domain:

 1 779581 2 1 DBVHRMED

 2 388800 1 0 SASHRMED
 3 62208 1 1 DBVMRMED…

The first column should be its index in the list. The second col is record length (words) for the
file. Col 3 is the number of records, col 4 is source (0=navy, 1=civilian), and col 5 is the name
of the file. Details about the databases are stored in the dictionary file as a table specifying the
geographic coverage as a series of rectangles on a latitude/longitude grid. The grid resolution,
gridded data file index and parameter group index are given for each rectangle. One line is
given for each rectangle (F3.0,4F8.1,F5.0,3X,F5.0):

 COLS 1-3 TYPE Data parameter group index.
 COLS 4-11 XLATN Northernmost latitude, in minutes.
 COLS 12-19 XLATS Southernmost latitude, in minutes.
 COLS 20-27 XLONW Westernmost longitude, in minutes.
 COLS 28-35 XLONE Easternmost longitude, in minutes.

35

 COLS 36-40 RES Data base resolution, in minutes.
 COLS 44-49 XPFN Gridded data base file index.

The data are stored in direct access files with the names given in column 5 of the dictionary file.
The first record in the file should be a real array of length 1009800. This is a header array with
the following contents:

Columns Content
1-4 4-character label
5-8 2 blanks and a 2-character label
9-12 4-character label for basin
13-16 spaces
17-20 1 space and a version number as f3.1
21-28 Date written as D/DDDD/D (I don't know what the values are)
29-36 Time written as T:TTTT:T (ditto)

These entries are written as characters. They are followed by 36 spaces (also a character string).
The following entries are all of type real*4. They are written in sequence immediately after the
blanks: (1) the latitude (in minutes) from the north (south) pole (i.e., 64 N = 1560 in the file);
(2) number of N-S cells; (3) the N-S resolution (minutes); (4) the longitude (in minutes)
eastward from prime meridian; (5) number of E-W cells; (6) E-W resolution (minutes); (7)
number of 2-value words in array (i.e., product of E-W cells and N-S cells divided by 2); (8)
number of N-S blocks (i.e., N-S cells); (9) number of N-S cells per block (i.e., 1); (10) number
of E-W blocks (i.e., E-W cells); (11) number of E-W cells per block (i.e., 1). This concludes the
header record.

The second record in the database file is the record map, which consists of real*4 variables.
These are (1) the number of records for the data set; (3) the record number for the data for the
current block; (4) the starting index (i) for the current block; and (5) the ending x index for the
current block. If item (1) is one, (3) should be 3 and the others don't appear to have any effect.
Note that item (2) is unused.

The depth data are stored in subsequent records up to the number given in col 3 of the first
section of the dictionary file (above). The depth data should be integers of length = 4 (i.e.,
integer*2). They are read directly by subroutine DBVDBV as follows. The depth values are
read as a buffer of fixed length (maxwds). Each value in the buffer holds two depths. These are
unpacked using the F90 function IBITS. They can be written, however, as integers with length
2. No fractional depths are used. When transforming the 2D depths to a 1D array for writing to
the direct access file, you must make the outer loop for the second index like this:

 nn = 1
 do i=1,imax
 do j=jmax,1,-1
 int(nn) = int(h1(i,j)
 nn = nn+1
 enddo

36

 enddo

This has been tested on an idealized bathymetry file and compared to the grid calculated from
the NPAC database in the original clim directory. For example, using gridnl variables of m =
20, n = 30, rlat = 20.0, rlon = 240.0, delx = 0.5, and dely = 0.5, the resultant grid looks like
this:

 0
 5 219 147 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 7711423 336 335 364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 757 6141758 744 801 584 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 982 983 68910171548 871 0 0 0 0 0 0 0 0 0 0 0 0 0 0
321716291040102116231576 477 0 0 0 0 0 0 0 0 0 0 0 0 0
37683247 975234016061031 964 0 0 0 0 37 0 0 0 0 0 0 0 0
3627361035461640164818271986 225 0 0 0 43 102 30 0 0 0 0 0 0
39833543356829992560200318091704 0 0 0 46 196 100 0 0 0 0 0 0
39423552359235883036202020172742 545 0 0 28 347 160 114 0 0 0 0 0
379435762973317635563011218610781945 97 0 0 0 0 194 39 0 0 0 0
359936153495234833483609378430211791 999 74 0 0 194 308 90 0 0 0 0
379837903849400030243577360839082975 290 26 32 0 0 69 487 148 0 0 0
390836803808382435943688378441804486 196 29 49 0 0 0 786 833 432 0 0
4012393339363650359037883594350636313985 533 0 0 0 0 0101017851383 0
400339943980432339554028367833073574347339451031 0 0 0 0 5117781784 743
398339934014403736123904368636033613359533923573 999 61 25 0 0 015181394
4089403640294020401839993876383837003609350734032962 629 124 77 0 0 4081545
41983800395137973994399639053901398838073605206039951048 205 116 0 0 1021332
403739283727390437883852380539533065364838523596318039411020 198 0 0 0 287
405640633993396838193827351936483766398338043537359436083015 505 12 0 0 185
4039404439313815382537933820378237193802368337293811340133462603 206 252 43 0
40004019395839253925387240094001381037563794377437823775340132002912 512 529 199
39954001400139844029398342004004376738503811379937413578359032572217295721031217
39943939399439833935375439854193399839233575360738163791358933993410334231973001
39903950362540003982399239954196399637813607379237983820342433993395312131803197
38963804399039993819398938114017379934623413393636803633342735843395313833333198
39343959394437783927395039613783392937583382379537943652359129143396328131783229
39944097381439383790335135953973385632763732377837983784341228813365328633693181
42584068418939973964388138893789379137983612379537943634341135863205313032402955

That is Baja California to the east. This was written (after being read in DBVDBV) using:

do k=30,1,-1
 write (*,'(20i4)') (int(depth(i)), i=(k-1)*20+1,(k-1)*20+20)
enddo

The test grid produced from inserted bathymetry using: m = 20, n = 30, rlat = 40, rlon = 180,
delx = 0.25, and dely = 0.25, looks like this:

 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130

37

 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130
 33
 33
 33
 33

Note the values of 33 along the souther margin. These were added to row 2 of the original
bathymetry as tags to make certain that the N/S orientation was correct.

This was cut from a bathymetry file with a resolution of 30 minutes that deepend eastward to
1000 m and shallowed westward to 10 m. Note the repeated depths, because the algorithm does
not interpolate but uses the first depth within the lat/lon cell. The insertion algorithm has only
been tested with databases consisting of 1 record and 1 block, which is common to most of the
files in the climatology repository. The program used to generate the test file is included in
Appendix 3. It must be modified for other datasets.

The dictionary file must be modified to reflect the new database by inserting the appropriate
data into the first section as described above. The record length will be the number of cells
multiplied by two (the length of the integer). The data included in the header must match the
size of the data base, location, and the variable type.

Also note that the character data held in the header are reversed when a little endian system
uses -fendian=big (e.g., compiler = G95) because they are read as reals, which are reversed.
This occurs with the original database files and is reproducible. It does not happen when the
endianess is unchanged. It should be noted that this nonstandard treatment of character data
requires -fsloppy-char (g95) as a compiler option. For example:

[keen@typhoon test]$ a.out
 Data base file header PAR TSET10 basin CAPN version 0.1
 Date/time 2/0180/0 3:2100:0
 Latitude grid 55 deg 0 min NORTH res 30.0 min cells 30
 Longitude grid 179 deg 0 min EAST res 30.0 min cells 20
 Block structure words 300 LAT 30 1 LON 20 1
Record map 1 entries

should be:

[keen@typhoon test]$ a.out
 Data base file header PAR TEST01 basin NPAC version 1.0
 Date/time 10/20/08 12:30:00

38

 Latitude grid 55 deg 0 min NORTH res 30.0 min cells 30
 Longitude grid 179 deg 0 min EAST res 30.0 min cells 20
 Block structure words 300 LAT 30 1 LON 20 1
Record map 1 entries

The grid processing algorithm limits the resolution to 1 minute, which is ~1.85 km. This will
need to be modified if higher resolution processing is required.

4.4 Multiple nests
The subnests will always have a cell size ratio of 3:1 to their parent, despite input in the gridnl
namelist. It is unnecessary to provide any of the following parameters for subnests: (a) iref or
jref; (b) delx or dely. The subnests will be calculated using the input values of ii and jj. These
are the offsets from (1, 1) on the parent grid. Iref and jref are computed using this offset and a
fixed grid ratio of 3 in sub COAMOA. Delx and dely are similarly found with a ratio of 3. The
size of the subnests is then found from the input values of m(nest) and n(nest). The bathymetry
is extracted for each grid nest in the nest loop found in subroutine COAMOA from all available
databases.

This step was completed as a test and produced the following results for two nests. Note the
blockiness of the inner nest because of the limitations of the algorithm.

Another nest was generated using sufficiently large values of m and n that the resulting domain
exceeded the domain of nest 1. The result (Figure 4.4-2) shows that these are not really nests
but simply multiple analysis grids. This is possible because all analysis grids are calculated
from the full set of databases. However, this capability may not be useful for most problems
because of the increased resolution of the subnests. For more advanced grid generation, see
section 5.2.

4.5 Moving nests

It doesn’t appear that moving nests are implemented. The parameter lnmove in namelist gridnl
(nst_move in COAMOA and MOVE_DATAO) is not passed any further during prep, analysis,
or post processing.

39

Figure 4.4-1. MATLAB® figures of bathymetry made from the ncoda clim databases for
two nests. Note how blocky the smaller nest looks because of no interpolation. The
ncoda_prep does not notify the user of which database was used. The inner nest is shown
in a white outline on the coarse grid. Note that the contour interval is different for the
inner nest because of the limited range of values.

40

Figure 4.4-2. MATLAB® figures of bathymetry made from the idealized database
described in section 4.3. The second nest exceeds the domain of the first because of the
large values of m and n, even though it has a cell ratio of 3:1.

41

5 System input variables and parameters

The input variables for the NCODA system are available in namelists, which are generally
discussed in the user manual. However, because they are placed in namelists, it is highly
probable that they will not be listed in any given application of the sytem. This is likely to occur
because it is common practice to acquire input files from a previous user. The purpose of this
section, therefore, is to discuss the input variables that are more likely to be modified for littoral
applications.

5.1 Grid namelist

The grid namelist is read from a file given on the command line, but it contains a namelist
called "gridnl." It includes several variables that apply to specific projections. This section will
focus on the spherical projection only. The dimensions of all nests are given by m (x axis) and n
(y axis). As noted in section 4.4, the user must be cautious in defining multiple nests because
they can easily exceed their host's domain. This potential problem cannot occur in the vertical
dimension, however, because all analysis nests will have the same number of levels (kko). The
ocean model used for generating forecasts can have a different number (kkom) of levels, which
is used in COAMOA and INIT_DATAO to process forecast model results. It is placed in array
datao.

The geographic point given by rlat/rlon can be anywhere within nest 1 but it must be
referenced to the grid cell described by iref/jref. It is a good idea to select the lower left (SW)
corner so that iref/jref = 1/1. However, only one reference point is used; thus, other nests must
be referenced to this point using their indices. These child nests are always three times their
host (parent) nest. If the SW corner of a child nest is located at point (10,10) on the parent nest
and rlat/rlon are located at the SW corner of the parent, the values of iref/jref for the child nest
are offset (10-1)×3-1 = 26 cells to the west/south; i.e., iref/jref for the child nest are -26/-26.
The parent indices for the SW corner (10,10) must also be input as ii/jj in the namelist. For nest
1, ii/jj = 0/0. This pattern continues with all child nests referenced to their parent nest. The
values of iref/jref are recalculated in COAMOA using the parent grid index (npgrid) from the
gridnl namelist. This is not done for nest 1, however, which must have matching iref/jref and
rlon/rlat values as input.

The grid cell dimensions (delx/dely) are also recalculated in COAMOA using a 3:1 ratio
between each parent/child nest pair. This approach allows the flexibility of having several child
nests within nest 1 (which makes sense), or allowing some of these to have a higher resolution
simply by setting their parent to one of the intervening child nests. This would result in a cell
size of 1:9 against nest 1, as demonstrated in Figure 5.1-1. Thus, the apparent discrepancy
discussed in section 4.4 is actually useful for selecting grids in different locations and varying
resolution. Thus, the child nests are not restricted to be subregions of their parents; this is
simply a naming convention drawn from more rigid nesting approaches.

42

5.2 Ocean analysis namelist
The thresholds, tolerances, covariances, etc. for the data as well as forecast model input is read
from the Ocean Analysis NameList (oanl), which must be contained within a file called "oanl".
These parameters have many complex applications in all three programs within the NCODA
system. For this reason, they will not be discussed in detail in this report; instead, Table 5.2-1
lists the parameters and the subroutines in which they are used. The program developer can then
go directly to the source code to examine their implementation and potential for modification.

5.3 Directory namelist

The directory namelist must be in a file called "odsetnl." It contains the locations of directories
used for general climatology, gdem climatology, MODAS climatology, data, analysis, and
output. There are some other directories for classified (etc) output. These directories are
discussed in section 3.1.

43

Table 5.2-1: OANL NAMELIST VARIABLES FINAL USE LOCATIONS

Name (default) Description Use Subroutine (dummy name)

amsr_bias (true) perform bias correction of amsr
microwave SST

RD_AMSR (bias)

amsr_dw

 (true) remove diurnal warming signal
and return foundation SST

RD_AMSR (dw)

argo_bias (true) perform bias correction (drift
adjustment) of argo salinities

PROF_COLLECT

atsr_bias (true) perform bias correction of atsr
SST

RD_ATSR (bias)

atsr_dw (true) remove diurnal warming signal
and return foundation SST

RD_ATSR (dw)

blist black listed call signs CODA_PREP, RD_GLDR,
RD_PROF, RD_SHIP

bv_chk brunt-vaisala frequency threshold DRCT_OBS (cph)

clm_scl climate decorr. time scale (hrs): (1) ice;
(2) sst; (3) ssh; (4) multivariate; (5)
swh

SET_ERR (mx_age)

cold_start (true) force cold start on nest 1 CHK_DATAO

debug (true) generate diagnostics about: (1)
argo salt bias correction, pooling of
profile moorings and profile rejections
(fort.32); (2) profile inflexion point,
standard level data, vertical extension
results using background fields
(fort.33), (3) geopotential profile
observations (fort.34); (4) observation
and prediction errors (fort.35); (5)
listing of MVOI observations (fort.36);
(6) synthetics (direct and MODAS), for
MODAS this includes rejections
and editing results (fort.37); (7) layer
pressure observations (fort.38)

DRCT_OBS, GLDR_SLCT,
GLDR_COLLECT,
MODAS_CHKSAL,
MODAS_CHKTMP, MODAS_SYN,
MVOI_OBS, MVOI_ANL,
OBS_GEOPTL, PROF_OBS,
SET_ERR, OBS_LYRP,
PROF_ARGO, PROF_COLLECT,
PROF_POOL, SWH_PREP,
PROF_XTND, PROF_SLCT,
SSH_PREP, RD_MVOI_OBS

44

dbv_opt source bathymetry database DBVDBV (source)

dbv_res minimum resolution of bathymetry to
retrieve from variable resolution
database (minutes)

DBVSCH (res)

del_ssh minimum change in SSHA to force
generation of a synthetic profile

SYN_SMPL

del_sst minimum change in SST to force
sampling of analyzed SST field

SST_ANL

den_ds change in density def. for MLD SET_VCORR

deny data types to deny in analysis (see
"coda_types.h" for type codes)

CODA_PREP, CR_SUPPL_SSH,
CR_SUPPL_SST,
PROF_COLLECT, RD_AMSR,
RD_ATSR, RD_GLDR, RD_GOES,
RD_LAC, RD_MCSST,
RD_METOP, RD_METOP_LAC,
RD_MSG, RD_PROF, RD_SHIP,
RD_SSH,RD_SSMI, RD_SWH

dh_scl flow dependent correlation scale -
smaller number means more flow
dependence. units depend on 2D (deg
C) vs 3D run (dyn m). Azero or
negative value will disable.

GRD_CONFLICT, OBS_COVAR,
GRID_COVAR, OCN_SFC_HT,
ICE_PREP, CODA, SSH_PREP,
MODAS_GRID, MV_PREP

direct (true) perform direct assim of SSHA CHK_FCST, CODA_PREP,
SSH_PREP

diurnal (true) assimilate SST retrievals from
diurnal warming events

RD_MCSST, RD_METOP,
RD_GOES, RD_LAC,
RD_METOP_LAC, RD_MSG,
RD_AMSR, RD_ATSR

dv_dz vertical gradient length scale (units are
dependent upon vc_mdl selection)

SET_VCORR

ebkg background error tuning factors: (1)
ice; (2) sst; (3) ssh; (4) temperature; (5)
salinity; (6) geopotential; (7) u
velocity; (8) v velocity; (9) swh; (10)
layer pressure

CODA_PREP (err_bkg), SET_ERR
(fct_bkg)

emdl background error option: 'simple' =
homogeneous errors; 'complx' = non- SET_ERR (err_mdl)

45

homogeneous errors: (1) ice; (2) sst; (3)
ssh; (4) temperature; (5) salinity; (6)
geopotential; (7) velocity; (8) swh; (9)
layer pressure

eobs obs error tuning factors (see
"coda_types.h" for type codes)

SET_ERR (fct_obs)

err_scl error growth time scale (hrs): (1) ice;
(2) sst; (3) ssh; (4) multivariate; (5)
swh

POST_2D, POST_3D

fcst_off number of hours to offset the anal. dtg
for the start of the forecast - used in
HYCOM to correct for the 6-hr IAU
that is used

VRFY_FCST (off)

fgat first guess appropriate time update
interval (hrs): (1) ice; (2) sst; (3) ssh;
(4) multivariate; (5) significant wave
height

OBS_DETREND

gc_btm geostrophic coupling e-fold. bottom
depth. Velocity increments at depths
shallower than this are scaled to zero

GRID_COVAR, OBS_COVAR

gc_lat geostr. coupling e-folding latitude.
Velocity increments at latitudes less
than this are scaled to zero

GRID_COVAR, OBS_COVAR

gldr_slct glider selection criteria options: (1)
acceptable level probability gross error;

(2) minimum number of sampling
levels; (3) minimum ratio of last
sampling depth and bottom depth; (4)
minimum sampling depth (if glider has
not sampled water column); (5)
maximum acceptable distance between
adjacent levels; (6) maximum
acceptable temperature difference
between adjacent levels; (7) maximum
acceptable depth difference at level of
maximum temperature difference; (8)
maximum acceptable temperature
difference at level of maximum level
difference; (9) maximum depth first
sample

RD_GLDR (lvl_prb), GLDR_SLCT
(prf_slct)

46

global (true) global cyclic grid CODA_PREP, CR_MEAN_SSH,
RD_CONFLICT, ICE_PREP,
MV_PREP, RD_AMSR, RD_ATSR,
RD_GLDR, RD_GOES,
RD_LAC,RD_MCSST,
RD_METOP, RD_METOP_LAC,
RD_MSG, RD_PROF, RD_SHIP,
RD_SSH, RD_SSMI, RD_SWH,
SET_HGRD, SMTH, SSH_PREP,
SST_PREP, SWH_MDL,
SWH_PREP, VELC_OBS,
WR_MASS_OBS

goes_bias (true) perform bias correction of GOES
SST data

RD_GOES (bias)

goes_dw (true) remove diurnal warming sig. and
return foundation SST

RD_GOES (dw)

hc_mdl horizontal correlation model options:
'rsby' = rossby radius deformation;
'homo' = homogeneous scales; 'locl' =
user defined scales--(1) ice,(2) sst, (3)
ssh, (4) multivariate, (5) significant
wave height

GET_HSCL, GRD_CONFLICT,
SET_HCORR (opt)

himem (true) execute analysis using I/O of
analysis volumes rather than
mpi_reduce

OI_3D

hst_wt geom.. series param. for computing
background error variances: (1) ice; (2)
sst; (3) ssh; (4) multivariate; (5)
significant wave height

RW_DATA_ERR

ice_time ice observation processing option: obst
= select obs based on obs time; synt =
select obs that are synoptic for analysis
update interval

CR_ICE_FILE, RD_SSMI

lac_bias (true) perform bias correction of
AVHRR LAC SST data

RD_LAC (bias)

lac_dw (true) remove diurnal warming sig. and
return foundation SST

RD_LAC (dw)

47

linck (true) perform innovation error check:
(1) ice; (2) sst; (3) ssh; (4) temperature;
(5) salinity; (6) geopotential; (7)
velocity; (8) direct method synthetics;
(9) swh; (10) layer pressure

CODA_PREP (do_invc), SET_ERR
(inv_chk)

lndz minimum bottom depth (m) used to
define and points in analysis grid

SET_MASK

locn3d do 3D analysis on this grid nest COAMOA, CODA, CODA_POST

mask_opt Grid mask option: 1D = all water; 2D =
land points elliminated; 3D deep points
eliminated

SET_MASK (opt)

mcsst_bias perform bias correction of AVHRR
GAC SST data

RD_MCSST (bias)

mcsst_dw remove diurnal warming signal and
return foundation SST

RD_MCSST (dw)

mds_edit edit MODAS synthetics CODA_PREP, MODAS_GRID,
MODAS_TEMP

mds_grd generate MODAS synthetic profile
initial conditions on a cold start

CODA, CODA_PREP

mds_mld apply modas mld model MODAS_GRID, MODAS_TEMP

mds_xtnd extend MODAS synthetics with
Levitus climatology

CODA_PREP, MODAS_GRID,
MODAS_TEMP

metop_bias perform bias correction of METOP
AVHRR GAC and LAC SST data

RD_METOP (bias)

metop_dw remove diurnal warming signal and
return foundation SST

RD_METOP (dw)

modas perform MODAS assim. SSHA CODA_PREP

model forecast model (SWAFS, NCOM,
HYCOM) or wavewatch model region
name

CODA, CODA_POST,
CODA_PREP, MODAS_GRID,
OBS_LYRP

msg_bias perform bias correction of MSG SST
data

RD_MSG (bias)

48

msg_dw remove diurnal warming signal and
return foundation SST

RD_MSG (dw)

mx_lyr_prs maximum acceptable layer pressure
innovation (a negative value disables
the test)

CODA_PREP, OBS_LYRP

n_hst number days nto the past to use in
forming prediction errors from
analyzed increments: (1) ice; (2) sst;
(3) ssh; (4) multivariate; (5) significant
wave height

RW_DATA_ERR

n_pass number 3x3 smoother passes on full
valued analysis output fields

ANL_ERR, CODA_MLD,
MASS_OBS, CR_MEAN_SSH,
DRCT_FLD, MODAS_GRID,
RW_2D_ANL, SMTH, SET_MASK

offset (i,j) offsets from grid boundary to
restrict data selection for the
assimilation (only for nest 1): (1) from
the north (grid top); (2) from the south
(grid bottom); (3) from the east (grid
right); (4) from the west (grid left)

CODA_PREP, CR_SUPPL_SSH,
ICE_PREP, MODAS_CHKSAL,
MODAS_CHKTMP, PROF_OBS,
SET_ERR, SSH_PREP, SST_ANL,
SST_PRP, SYN_SMPL, VELC_OBS

oi_err compute interpolation errors: (1) ice;
(2) sst; (3) ssh; (4) multivariate; (5)
significant wave height

CODA_ANL, POST_2D, POST_3D,
VOLUME_ANL,
VOLUME_REDUCE,
VOLUME_SAVE

pool pool satellite systems: (1) DMSP
F11,F13,F14,F15,F16; (2) NOAA
14,15,16,17, 18 GAC SSTs; (3)
TOPEX, ERS, GFO, JASON,
ENVISAT; (4) GOES 8,10,11,12 SSTs;
(5) NOAA 16,17,18 LAC SSTs; (6)
Altimeter / Buoy SWH; (7) AMSRE,
AMSR, TRMM;(8) ATSR, AATSR;
(9) MSG day/night SSTs; (10) METOP
A,B,C GAC SSTs; (11) METOP A,B,C
LAC SSTs

CODA_PREP, RD_AMSR,
RD_ATSR, RD_GOES, RD_LAC,
RD_MCSST, RD_METOP,
RD_METOP_LAC, RD_MSG,
RD_SSH, RD_SSMI, RD_SWH

prf_hrs number hours of profile obs RD_PROF

prf_opt profile processing option: obsz =
assimilation of profiles on observed
levels; anlz = assimilation of profiles

CODA_PREP, GLDR_COLLECT,
GLDR_SLCT, MODAS_OBS,

49

after interpolation to analysis levels PROF_COLLECT, PROF_SLCT

prf_slct profile selection criteria options: (1)
acceptable level probability gross error;
(2) minimum number of sampling
levels; (3) minimum ratio of last
sampling depth and bottom depth; (4)
minimum sampling depth (if profile has
not sampled water column); (5)
maximum acceptable distance between
adjacent levels; (6) maximum
acceptable temperature difference
between adjacent levels; (7) maximum
acceptable depth difference at level of
maximum temperature difference; (8)
maximum acceptable temperature
difference at level of maximum level
difference; (9) maximum depth first
sample

GLDR_SLCT, PROF_SLCT

prf_time profile time sampling option: cycl =
select obs based on number prf_hrs
specified; obst = select profiles based
on time profile was observed; rcpt =
select profiles based on time profile
was received at center; synt = select
obs that are synoptic for analysis
update interval

CR_TMP_FILE, RD_GLDR,
RD_PROF

prf_xtnd extend inflexion point profiles to
bottom using first guess fields

PROF_OBS (xtnd)

pt_anl potential temperature analysis BV_FREQ, CLIM_PREP,
CODA_MLD, CODA_PREP,
GLDR_COLLECT,
MODAS_CHKSAL,
MODAS_GRID, MODAS_OBS,
OBS_LYRP, PROF_COLLECT,
SALT_CORR, SET_VCORR,
TS_STATIC

qc_err max acceptable probability gross error:
(1) DMSP sea ice; (2) AVHRR satellite
sst; (3) GOES satellite sst; (4) in situ
sst; (5) profile temperatures (integrated
over levels); (6) profile salinities
(integrated over levels); (7) altimeter

CODA_PREP (qc_prb), RD_MCSST
(qc_prob), RD_AMSR (qc_prob),
RD_ATSR (qc_prob),
RD_GOES(qc_prob), RD_LAC
(qc_prob), RD_MCSST (qc_prob),
RD_METOP (qc_prob),

50

SSHA; (8) altimeter/buoy SWH; (9)
LAC satellite sst; (10) AMSR satellite
sst; (11) ATSR satellite sst; (12) MSG
satellite sst; (13) METOP GAC satellite
sst; (14) METOP LAC satellite sst

RD_METOP_LAC (qc_prob),
RD_MSG (qc_prob), RD_SSMI
(qc_prob)

rscl rossby radius scaling factor: (1) ice; (2)
sst; (3) ssh; (4) multivariate; (5) swh

CR_SUPPL_SSH, SET_HCORR
(pfct), SYN_SMPL

run_class classification level of run: 'U' -
unclassified; 'R' - restricted; 'C' -
confidential; 'S' - secret; 'T' - top secret

CODA_POST, CODA_PREP

sal_adj adjust SSS derived from SST obs for
density inversions

SSS_OBS

sal_std max number std dev to scale modas
salinity from climatology

MODAS_SALT (clm_std)

smpl synthetic sampling interval SYN_SMPL (f)

spval missing value (must be <= -999) ANL_ERR, BILNR, CODA_BNDY,
CODA, CODA_FILL, CODA_MLD,
CR_MAN_SSH, DRCT_ADJ,
DRCT_OBS, GDEM_MOD,
GEO_PTL, GLDR_COLLECT,
GRD_CLIM, GRDNT_ERR,
ICE_PREP, MODAS_CHKSAL,
MODAS_CHKTMP,
MODAS_CLIM, MODAS_COEF,
MODAS_DATA, MODAS_GRID,
MODAS_MLD, MODAS_OBS,
MODAS_SALT, MODAS_TEMP,
MODAS_TRP, MODAS_TYPE,
MV_PREP, NGPS_BNDY,
OBS_DETREND, OBS_GEOPTL,
OBS_LYRP, POST_2D, POST_3D,
PROF_COLLECT, PROF_ERR,
PROF_OBS, PROF_POOL,
PROF_THIN, PROF_XTND,
RD_MODAS_DATA,
RD_SSH_ANL, RD_SWH_ANL,
RD_SWH_CLIM,
RW_DATA_ERR,SMTH,
SSH_PREP, SSS_OBS, SST_PREP,
SWH_ADJ, TS_STATIC,
VRFY_DIAGN, VRFY_FCST,

51

VRFY_STATS, WR_MASS_OBS

ssh_hrs number of hours of altimeter ssh obs CR_SSH_FILE, OCN_OBS

ssh_mean ssh mean field options: 'modl' - model
mean field; 'clim' - climate mean field

CR_MEAN_SSH,
GET_SSH_MEAN, CODA_XTND
(fld)

ssh_time altimeter ssh processing option: cntr =
select obs in data window centered
around analysis time; cycl = select obs
based on full Topex repeat cycle (10
days); obst = select obs based on time
SSHA was observed; rcpt = select obs
based on time SSHA was received at
center; synt = select obs that are
synoptic for analysis update interval

CR_SSH_FILE, RD_SSH

ssh_std max no. std dev to scale altimeter ssh
from climatology

MODAS_TYPE, SSH_PREP

sst_time sst observation processing option: obst
= select obs based on time; synt =
select obs that are synoptic for analysis
update interval

CR_TMP_FILE, RD_AMSR,
RD_ATSR, RD_GOES, RD_LAC,
RD_MCSST, RD_METOP,
RD_METOP_LAC, RD_MSG,
RD_SHIP

st_asm assimilate SSTs in 3D analysis SST_PREP

st_chn generate "thermistor chain"
observations to the base of the mixed
layer from SST (see also st_grd)

SSS_OBS (st_chain), SST_ANL
(st_chain), SST_ANL (st_chain),
SST_OBS(st_chain)

st_grd generate SST observations for 3D
MVOI from analyzed SST grid

CODA_PREP (st_grid),
MASS_FLD(st_grid), MASS_OBS
(st_grid), SSS_OBS (st_grid),
SST_PREP (st_grid)

st_ntrvl SST "thermistor chain" vertical
sampling interval

SSS_OBS, SST_ANL, SST_OBS

st_smpl analyzed SST observation sampling
interval

SST_ANL (fscl)

swh perform SWH analysis CHK_FCST, COAMOA, CODA,
CODA_POST, CODA_PREP,
OCN_OBS

52

swh_da swh assimilation option: bmrc = bmrc
method; ncep = ncep method

SWH_ADJ (opt)

swh_time swh observation processing option:
obst = select obs based on time swh
observed; rcpt = select obs based on
time swh received at center; synt =
select obs that are synoptic for analysis
update interval

CR_SWH_FILE, RD_SWH

tmp_std max number std dev to scale modas
temperature from climatology

MODAS_CHKTMP (max_std)

tol_fctr innovation error check tolerance factor:
(1) ice; (2) sst; (3) ssh; (4) temperature;
(5) salinity; (6) geopotential; (7)
velocity; (8) swh; (9) layer pressure

DRCT_OBS, SET_ERR (tol)

topo_mn minimum depth for ssh obs. (m) DRCT_OBS, MODAS_TEMP,
SSH_PREP

topo_mx maximum depth for unscaled ssh
observations (m). ssh data are scaled
from full value at topo_mx to zeroat
topo_mn depending on the bottom
topography value.

MODAS_TEMP, SSH_PREP

topo_src source of topography for scaling ssh:
'modas' - modas smoothed topo.;
'model' - forecast model topo.; 'ncoda'
- turns off scaling of SSHA

SSH_PREP

upd_cyc analysis update cycle (hours) CR_ICE_FILE, CR_TMP_FILE,
INIT_DATAO, OBS_DETREND,
OCN_OBS, RD_ATSR, RD_GOES,
RD_LAC, RD_MCSST,
RD_METOP, RD_METOP_LAC,
RD_MSG, RW_OCN_CNTRL,
VRFY_FCST

vc_bkg vertical correlation background: 'clim'
= climatology; 'fcst' = model forecast

SET_VCORR

vc_mdl vertical correlation model options:
'mixl' = mixed layer only; 'dens' =
density stratification; 'temp' =
temperature stratification; 'mono' =

SET_VCORR

53

monotonic; 'cons' = constant; 'none' =
no vertical correlation

vol_scl minimum number of correlationlength
scales in an analysis volume: (1) ice;
(2) sst; (3) ssh; (4) mvoi; (5) swh

SET_VOLUME (vscl)

warm_ice set sea ice retrievals flagged as too
warm ssts to zero ice and use in the
analysis

RD_SSMI (warm)

wlist white listed call signs CODA_PREP, RD_GLDR,
RD_PROF, RD_SHIP

z_lvl analysis vertical grid (meters) COAMOA, GRD_CONFLCT,
SET_VGRD

54

Figure 5.1-1. Plots of bathymetry for nest 1 (left) and nest3 (right), where nest 3 is a child
of nest 2 (see Figure 4.4-2 rhs). The black rectangle on the left panel outlines nest 2 and
the white is for nest 3. Note that nest 3 does not overlap with nest 2 and that nest 2 exceeds
the domain of nest 1. In this example, however, nest 3 has nine times the resolution of nest
1.

55

6 Operation

The overall operation of the system is conveniently broken into two use cases, the 2D analysis
and the 3D analysis. We will treat the analysis of significant wave height as a special case of
the 2D analysis use case and discuss differences where they occur. The system operation as
described in this section using UML diagrams supplemented with detailed explanations of
important operations. An excellent summary of many of the algorithms is also given in
Cummings (2005).

6.1 Overview

Execution within the NCODA system is partly determined by user action. This type of
operation can be demonstrated using the UML use case diagram. The use case diagram for the
NCODA system (Figure 6.1-1) shows the dependence of the analysis on user and file system
input. Each of the lines between the user and a system component represents starting a separate
program or editing a file. There are thus seven user operations required to complete a full 3d
analysis. There are even more operations with the file server, as seen in section 3. Furthermore,
if analyses are to be completed on a recurring basis, the dates must be changed before each
sequence.

This overview will focus on the preparation procedure because it is where most of the user and
program developer effort will be concentrated. There are three possible command line
arguments to NCODA_PREP: (1) process option, (2) grid namelist file, and (3) analysis date-
time group. Options (1) and (2) are required.

Program NCODA_PREP includes header files "coda_parms.h" and "gridnl.h" whereas
subroutine COAMOA includes "coda_parms.h", "odsetnl.h" (directory namelist), and "oanl.h"
(ocean analysis namelist). Subroutine CODA_PREP includes only "coda_types.h".

The sequence of computations in the NCODA_PREP program depends on the availability of
previous analysis files (i.e., the "datao" CR file). If such files are present for the requested
analysis date, the system restarts (Figure 6.1-2) and uses these analyses files instead of
climatology files. Figure 6.1-2 is a UML Sate Diagram, which shows the states that objects of a
class may assume and the transitions the objects may make between states. Thus, all of the
objects (classes shown in Figure 2.2-1) may be in a restart or a nonrestart state as shown in
Figure 6.1-2. We will refer to this state diagram as the Level 1 state. The circles that are
partially filled at the bottom of the diagram indicate expansions of the diagram.

The restart state is expanded in Figure 6.1-3, which shows the circumstances that determine if a
forecast analysis is possible or not, as well as the conditions for reading the observation data
files. This sequence of states occurs in subroutine COAMOA, which is not listed in the class
diagram of Figure 2.2-1. However, these two states are fundamental to the subsequent
operations within the entire NCODA system and thus are critical in understanding the analysis
cycle. The actual flow of control through subroutine COMOA can be shown using a classic
Nassi-Shneiderman flow chart (Figure 6.1-4) (Nassi and Schneiderman, 1973). There are two

56

points to be made concerning subroutine COAMOA. First, it contains the loop for the nests and
second, it calls subroutine CODA_PREP for each requested nest. Another point that can be
seen by comparing Figures 6.1-3 and 6.1-4 is that the restart state is omitted from the flow
chart. This state primarily affects operations at a fine scale that does not lend itself well to the
flow chart, which is better applied to coarser states like the 2d or 3d analysis. This results in
many logical blocks using fcst as a variable.

We can expand the CODA_PREP block in Figure 6.1-4 into a more refined flow chart (Figure
6.1-5) that shows the preparation common to both 2D and 3D analyses. The header file,
"coda_types.h", that is included in CODA_PREP lists 125 indexes for kinds of observations.
These data are described as follows:

 data_lbl data type labels
 inst_err obs instrumentation error
 rerr_scl obs representative scale (km)

These data are not input from a namelist but are instead given in data statements within file
"coda_types.h". Note that many of the variables change name within the argument list from
COAMOA to CODA_PREP (see Appendix 2).

The grid decorrelation length array, grd_scl, is read from a restart file with a field of "grdscl"
and a file type of "datafld". If this file does not exist, RD_ROSSBY is called to read the global
1 degree Rossby radius field from a file called "ROSSBY.baroc.radii", which must be located
in the climatology directory (clim_dir). This field is not calculated in the program. It is
interpolated to the analysis grid by FLD2_TRP. The only other option locl, is commented out.
At this point, further computations depend explicitly on the value of opt (2d or 3d).

Before continuing to discuss the 2d and 3d options, it is useful to analyze the evolution of the
analysis object between some of the other states defined within the system. For example, Figure
6.1-3 shows separate states for either a forecast (fcst = T) or not (fcst = F). This condition is
common for the beginning of a series of analyses and forecasts. The UML State Diagram
(Figure 6.1-6) clearly shows the different states that occur based on the mode (2d or 3d)
specified in the "oanl" namelist or on the command line. If both are 2d it is a fully 2d analysis
(e.g., swh) but if the namelist value is 3d, a different set of states are entered. If a 3d analysis is
selected on the command line, the series of steps is straightforward: (1) generate synthetic xbt's;
(2) prepare the intial guess from climatology; (3) process the 3d observations; (4) generate a
synthetic sea surface height field; and (5) process all of the variables for the MVOI analysis.
This diagram shows the difficulty of understanding the behavior of a sequential program that
has a large number of states determined by guards (logical flags).

6.2 Two-dimensional analysis

The first step in completing a full 3D analysis (ocn3d = T) is to run all three components with
opt = 2d on the command line. When this option is selected, execution does not actually split
into different pathways. As suggested in the flow chart (Figure 6.1-5), the value of opt is used
repeatedly to determine specific actions. Call OCN_OBS to read in the data for either a
restarted or initial analysis. This section is summarized as well in sections 4a-c from Cummings

57

(2005). The date/time groups for all obs are checked against analysis time. Open output files for
the observations. The sequence of reading and writing these observations is described in section
3.4. If swh = F, subroutine SST_PREP is called (Figure 6.2-1) to prepare the sst observations; it
then calls CR_TMP_FILE to read the observations. These are read in the sequence indicated in
Figure 3.4-1.

There is another block, however, that determines action based on the value of swh (T or F) as
depicted in Figure 6.2-1. The flow chart shows that analyses for wave height or sea surface
temperature are mutually exclusive but that sea ice is completed whether desired or not.

6.2.1 Processing Observations

The activity sequence for the ocn3d = T box in Figure 6.2-1 can be examined in more detail
using a UML Sequence Diagram for SST preparation (Figure 6.2-2) that represents the various
components of the system as objects from the classes given in Figure 2.2-1. The advantage of
the sequence diagram is that it shows the interaction of objects as well as what tasks are being
completed.

SST: All of the MCSST observations are read from the file system whereas the diurnal sst bias
correction and pooling of observations are completed by subroutines from the transformation
class. Valid sst observations are saved in an array named mcsst_parameter. NOAA and
METOP data are pooled, but pooling is applied to day and night observations only for MSG
and ATSR (microwave); AMSR, AMSR-E, and TRMM data are pooled. Ship data are not
pooled but are checked for the black list.

PROFILES: Subroutine PROF_COLLECT is called to gather profile data. The first set of data
comes from general profiles, which are read by sub RD_PROF: (1) Check white list; (2) Check
black list and set error probability (1000 hardwired); (3) Check data denial and set ep = 1000;
(4) Check space and time window; (5) Find relative age; (6) Go over all input levels (n_lvl) and
use errors to save a valid profile; (7) Go over this profile in sub PROF_ERR and calculate the
temperature error for all levels where tmp > -99. This error consists of instrument error (input),
climatological variability (.01×T), and vertical gradient (0.5×T). Salinity uses a flag (sal_typ =
33) to use input value. Otherwise, calculate like tmp except use the input error where sal_flg =
12, 14, 22, 24, 36, 46, 48, or 50; (8) Finally, check that all errors are > 0. Back in sub
RD_PROF, assign the profiles to permanent variables, prf_age,...etc. This procedure is repeated
for 1 day earlier data files as with satellite data. Analyze all profiles for argo type codes
(prf_sgn(2:2) = 9 and prf_sal_typ = 37). If argo_bias = T in sub PROF_ARGO, find levels
below 800m, and add the difference between climatology and the value at that depth. In sub
PROF_THIN, interpolate the levels to a fixed grid (zlvl with 67 levels) if there are more than
140 levels. Pool profiles in sub PROF_POOL. There are a number of mooring names listed in
data statements that are used to locate duplicates. A time-based weight is found. However, if
prf_sal_flg = 12, 14, 22, or 24, do not average. It looks like these are the only moorings that
will be averaged.

PROF_COLLECT then calls sub PROF_SLCT to apply the selection criteria. Find the max
separation between observed adjacent levels and (independently) between observed tmp at
adjacent levels. Reject a profile that meets any of the following criteria: n_lvl < a predetermined
minimum number of levels; no samples above a specified depth; deepest level too shallow and
less than a pre-defined fraction of total water depth; max spacing between adjacent levels more

58

than a predefined value and max temp change greater than preset value; this same is tested
using both max temp and level values. The min/max values used in this selection procedure are
held in prf_slct arrays for each profile. These values are held in array prf_slct, which is input
from namelist "oanl.h." Sample values are in square brackets. The values in prf_slct are: (1)
level gross error [0.99]; (2) number of sampling levels [5]; (3) ratio of sample/bottom depth
[.5]; (4) min sampling depth [300]; (5) distance between levels [300]; (6) temp between levels
[5]; (7) depth difference at max delt [100]; (8) temp diff at max delz [2.5]; and (9) depth of first
sample [50]. There is a debug variable that can be used to look closely at this process.

Duplicate profiles are removed in sub PROF_DUPCHK. The duplicate profiles need to be
within 0.5e-6 of the mean grid spacing to be dropped. The one with most samples is retained.
Sub PROF_COLLECT then assigns profiles to temporary arrays and writes them to a file (unit
32) if debug = T. Place profile data into 1d arrays with all the parameters (e.g., wrk_age,
wrk_lat) assigned to individual data points (unrolled) for writing to the COAMPS input files.
Check for bad ssh data flag (deny = 30). Assign a subset of the profile properties (e.g., prf_age,
inst_err) to work arrays for ssh (e.g., ssh_cls) where the depth > 150 m. Write the
wrk_property and ssh_property arrays to binary files (unit_xbt, unit_ssh).

GLIDERS: Glider data are processed by calling a set of analogous subroutines (to those for
profiles) from sub CR_TMP_FILE. There are a series of checks for prf_time to set the date for
the input glider data ('rcpt', 'obst', 'cycl', 'synt'). Count the number of glider observations in sub
OBS_COUNT. Then call sub GLDR_COLLECT, which first calls RD_GLDR to input the
observations by looking in the same data directories. It starts with the first file date and goes
back 1 day on subsequent passes.

After the n_read observation sets are read in, loop over them and do the following: (1) Check
white list; (2) Check black list and set error probability (qcs, qct = 1.e3); (3) Check data denial;
if ob_tmp_typ/ob_sal_typ = any deny code, qct/qcs = 1.e3; (4) Check space and time window.
This is dependent on prf_time = 'obst', 'cycl', 'synt', or 'rcpt'. Each glider can have different
levels (ob_lt). The arrays ob_tprob/ob_sprob contain QC flags. If ob_tprob/ob_sprob > 1.1
the probabilities are adjusted; (5) Check white list again for any adjusted flags; (6) Check the
adjusted probability error against the limits (lvl_prb = prf_slct(1) from namelist "oanl"). Only
use those with smaller salt and temp errors; (7) Go over this profile in sub PROF_ERR (also
used for profiles) and calculate the temperature error for all levels where tmp > -99. This error
consists of instrument error (input), climatological variability (.01×T), and vertical gradient
(0.5×T).

Salinity uses a flag (sal_typ = 33) to use an input value. Otherwise, calculate like tmp except
use the input error where sal_flg = 12, 14, 22, 24, 36, 46, 48, or 50. Finally, check that all errors
are > 0. After returning to sub RD_GLDR, save the variables in work arrays, gldr_variable. Do
this procedure for each day (decrease dtg by 24 hrs) and specified directory. Make sure that the
glider obs do not exceed max_lvl (140) in sub PROF_THIN as with the profiles (described
above). The selection criteria for gliders are applied in sub GLDR_SLCT, which is analogous
to PROF_SLCT (above). The exact same criteria are used as with profiles (prf_slct(7), (5), (8),
(6) except it is not modified by a factor of 1.8, (2), (3), (4), and (9)). The main difference
between PROF_SLCT and GLDR_SLCT is that arrays age, btm, lat, and lon are 2d for gliders.
The index for profiles is n_obs, but for gliders (n_depth, n_obs) are used. Finally check for
duplicates with sub GLDR_DUPCHK (analogous to PROF_DUPCHK). Save obs to work
arrays, unroll, and write to unit_xbt. The format is the same as for profile data.

59

At this point, control leaves CR_TMP_FILE and returns to OCN_OBS. The second option to
calling CR_TMP_FILE is when swh = T. In this case dtg variables are updated from old values
and nothing else is done before continuing on to ice. After processing sea ice, sub
CR_SWH_FILE is called to collect and count the swh observations. OCN_OBS lastly saves the
dtg cuts before returning to CODA_PREP.

SSH: If a 3d analysis is being completed (f3d = T), evaluate ssh_time as with other variables
(e.g., 'rcpt', 'obst'). A typical value is 'obst'. Loop over the directories and times (backwards by
24 hours from current dtg) and go through the obs to check the time and space window.
Compare the obs probability (ob_qc) to the value qc = qc_prb (in CR_SSH_FILE) =
qc_prob(7) (in OCN_OBS) = qc_err(7) (in namelist "oanl") ~ 1 to determine if checking is
necessary. Check for data denial and save the variables to arrays ssh_variable. Pool satellites
by setting ssh_typ = 81, instead of individual codes (e.g., 12, 13, 14, 53, and 55).

After each kind of observation has been processed within subroutines SST_PREP,
SWH_PREP, ICE_PREP, and SSH_PREP, any existing analyses are read by subroutines
RD_SST_ANL, RD_SWH_ANL, RD_ICE_ANL, and RD_SSH_ANL, respectively. These
subroutines actually call RD_OCN_ANL.

6.2.2 Detrending the Observations

Sub OBS_DETREND is called by the preparation subroutines (ICE, SSH, SST, SWH, and
finally MV) to compute the observation innovations from the first guess fields (obs_val =
obs_val and variable_age = guess in OBS_DETREND) on the analysis grid. The appropriate
analysis fields are found as described in section 7.3. The analysis ages (swh_age = guess in
OBS_DETREND) are the first guess. If the current analysis is a restart, or if fgat (first-guess
appropriate time; see section 7.3) < 0, sub FLD2_TRP (interpolation) is passed the analysis swh
age (guess = fld in FLD2_TRP). This field is located at integer values of the analysis grid
indices, whereas the obs are located at real values on this grid. FLD2_TRP will interpolate the
analysis field to the observation grid and return it to sub OBS_DETREND as the array
value(n_obs). These interpolated (real-indexed) first-guess fields are then subtracted from the
real-indexed observations to produce a first guess of the error, which is called an innovation
(see Cummings, 2005). The resulting array is obs_anm(n_obs). For other cases (i.e., fgat > 0 or
not a restart), the initialization uses available swh age observations as described below.

A temporary dtg is calculated by subtracting the number of hours in the current window from
the analysis dtg. Sub RD_OCN_ANL is called to look for an appropriate restart file (e.g.,
file_typ = 'fcstfld', field = 'sigwht'). If no suitable field is found, the analysis (held in guess) is
used. Interpolate the swh age (analysis) to the real-valued indices of the obs on the analysis grid
using FLD2_TRP. Save the interpolated forecast using the index contained in ndx, which points
to the full observation array. Note that the observations were rolled up in the data file and thus
all times and locations are included in obs_val. This index scheme, coupled with the loop over
available forecast fields, assures that each data point (time and space) now has a unique forecast
data point (or a special value) assigned to it.

To recap, compute the first guess innovation using the available analyses by subtracting the
unique forecast point from the observation on the real-valued indexed analysis grid. This
completes the detrending of the swh age observations.

60

6.2.3 Form Super-Observations for Water Types

An overview of this procedure is given in section 4b of Cummings (2005). Observations are
removed that are outside the analysis grid boundary or which failed in the interpolation using
sub OBS_REMOVE. Subroutine SUPER_OB is called to form super observations from
redundant observations. Super obs are formed within water mass classifications and observation
data types at the analysis grid mesh interval. Up to 20 water mass codes are allowed. The
parameter n_spr = 20 in SWH_PREP. Observation bins and time weights are based on simple
grid parameters and age relative to the decorrelation time scale (tscl = 48 hrs), which is
hardwired in sub SWH_PREP. Count the number of data types (obs_type from data file) and
water mass classification codes (obs_cls from data file). Loop over water masses and super obs
data types and do the following: bin super obs data types using grid mesh; sum within water
mass and data type; mark obs as used; compute super obs as time-weighted local averages.
Clean up by set number super obs, removing super obs data types from data arrays, transfer
super obs to data arrays, reset the obs counter. The result is that the data arrays, age, anm, cls,
etc, contain point data in the first indexes and super obs in the later indexes. Now call
OBS_INDEX to calculate the obs (now including super obs) in real-indexed points on the
analysis grid using sub OBS_INDEX. Correct round off errors for obs locations < 1 or > m, n.

Call sub SET_ERR to compute normalized observation error and perform innovation error
check (if requested).

6.2.4 Set the Observation Error Field

This method is described in section 3e of Cummings (2005). Instrumentation errors are
increased using the age of the observation from the analysis dtg. Observation ages are depth
dependent so that older, deeper observations have similar errors as younger, shallower
observations. A simple formula is used to approximate an error of representativeness that takes
into account grid mesh and background correlation scales. Error of representativeness is
defined as the uncertainty of a single ob within a particular space-time interval in representing
the mean over that interval, given the expected space-time variability. The error of
representativeness is added to the instrumentation errors and the final observation error
estimates are normalized by the background prediction errors. For super-obs, observation error
is reduced by the number of obs (n) used to form the super-ob by 1/sqrt(n).

Each obs has a default error and offset initialized in the beginning of subroutine SET_ERR
(e.g., SWH default=1.; offset= 0.1). The specific error estimation method depends on the
variable err_mdl (emdl in namelist "oanl"), which is often 'complx'. If err_mdl = 'simple', the
prediction error is found from the background error (bkg_err, or ebkg in "oanl"), which uses
default values unless changed in the namelist. It includes an interpolation factor between obs
levels and grid levels. If err_mdl = 'complx', the grid error (grd_err) is interpolated to the real-
valued indices (on analysis grid) of the obs using FLD2_TRP or FLD3_TRP. There is some
uncertainty in the execution of this operation, as described in section 7.4.

6.2.5 Forecast/Analysis Fields

The current discusion will focus on swh but the processing is the same for the other analysis
variables. The analysis fields are read from restart files (see section 3.6) written by previous
analysis cycles. If fcst = T (NOTE: sub CHK_FCST already set fcst = F if appropriate analysis

61

files are absent), RD_OCN_ANL checks for a forecast file (file_typ = 'fcstfld'); otherwise, an
analysis file is sought. If the requested file (CR file = 'fcstfld'/'fcsterr' or 'analfld') is present,
RD_SWH_ANL sets mask and clm =0 for points where swh = a special value. A forecast also
requires a forecast error, file_typ = 'fcsterr', which is also read by RD_OCN_ANL. If this file is
not read, RD_SWH_ANL will exit unless the run is a restart, in which case restart files with
file_typ='fcsterr' and 'modlerr' are written.

Subroutine RD_SWH_ANL then repeats this procedure (reading either forecast or analysis
files) for file_typ = 'timefld'. It then goes on to look for forecast or analysis files with
field='seaice', file_typ='analfld', and fluid='o'. However, if these are not present, an ice
climatology file can be read by sub RD_ICE_CLIM, which must be read or sub
RD_ICE_CLIM exits. These fields are passed back to sub SWH_PREP as swh_*, which is a
little confusing because these names were used as work arrays when writing the observations
to the restart files in sub CR_SWH_FILE. The lat/lons of this field are contained in arrays
grd_lat / grd_lon, which are only used for interpolating to the analysis grid for irregular grids
(igrid < 0).

If the climatology and forecast/analysis fields have been read successfully, the swh_age array is
increased by the update cycle (upd=upd_cyc) (see section 7.1). The next step is to call sub
RD_DATA_FILE to read a work file (e.g., "SWH" and "obs") that was written by sub
OCN_OBS (actually by CR_SWH_FILE using a call to RD_SWH) as described above.

There is an apparent discrepancy here that needs to be examined more closely. The swh
observations are read in sub RD_SWH as it loops over directories to look and reads
unformatted files (see section 3.4). The output file for these data after combination is a work
file in sub OCN_OBS (see section 3.5). Note that the nest number is hard-wired to 00. This file
is rewound after opening. In sub RD_DATA_FILE, the nest number is a variable and could
well be greater than 0. This is a potential problem.

6.2.6 Calculate Horizontal Correlation Parameters

The processing of error covariances is discussed in section 3 of Cummings (2005). Correlation
parameters are computed by sub SET_HCORR. They are defined horizontally as a second-
order autoregressive (SOAR) function. Horizontal correlation scales are non-homogeneous with
location and can be scaled by a factor that is both analysis-variable and grid-mesh dependent.
Homogeneous statistics can be specified by setting the opt argument to 'homo' and user-defined
length scales can be used if the argument is 'locl'. If opt = 'rsby', a scale factor is found using
delx and dely, and the input grd_scl (previously read from a file or calculated from the Rossby
radius in GET_HSCL). Grid cells with water depth > 5 m are used. The input Rossby radius
scaling factor, sfct (rscl in "oanl") is used along with the mean Rossby radius for the grid to
calculate a new hcorr that is only dependent on grid dimensions and the previously
read/computed hcorr (in GET_HSCL). If opt = 'homo', the result is similar except that the locl
grid dx and dy are not used to find hcorr. If opt = 'locl', the grd_scl array is used directly. This
is how to get information about the structure of the fields into the algorithm.

62

6.2.7 Compute Analysis Volumes

This is described in section 2 of Cummings (2005). Subroutine SET_VOLUME is called to
coordinate calculating the analysis volumes. First, it calls sub VOLUME_INIT, which divides
the analysis region into quarters unless n_obs <= 1, in which case only 1 volume is used.
Consequently, n_vol is either 4 or 1. Then sub CR_VOLUMES is called to create the volumes.
It computes the average volume size in mesh units. Each obs location is then compared to each
volume's limits and assigned. This double loop uses OpenMP (OMP) parallelization. Find the
max number of obs in a volume and the mean volume size (vol_siz), which must be smaller
than the average volume multiplied by the maximum number of correlation length scales in an
analysis volume (vol_scl in "oanl"). If any are not, they are all halved, resulting in four times
the number of original volumes. The parameter mx_vol must exceed n_vol × 8+n_vol, which is
n_vol × 9; this test is probably written this way because the value 8 is intended to be adjusted
by a program developer and thus be adjustable. The intent is that mx_vol needs to be at least
one greater than the expected number of volumes. A test case for one loop was run and n_vol
became 16; thus, mx_vol > 144 for one time through. This number is a parameter (mx_volumes
= 4096 × 8+4096 = 36864) in sub SET_VOLUME. SET_VOLUME next calls sub
CR_OVRLP_VOL, which creates volumes that overlap the dynamically created analysis
volumes. Overlap volumes with identical centers are considered duplicate volumes and are
removed. Analysis volumes that have no observations or grid points are also removed. The
saved volumes are saved to a work file (e.g., "wrkdir/coda.SWH_vol.nest01.dtg"). These
definitions are also saved to a CR file (e.g., "voldata"; see Table 3.6-1).

6.3 Three-dimensional analysis

The control flow within the NCODA_PREP component is straightforward: (1) check the
command line arguments; (2) open the grid definition file and read the namelist; and (3) call
subroutine COAMOA to process the individual nests, as shown in Figure 6.1-4. This option
continues in subroutine CODA_PREP. The sequence of operations for a 3D analysis are shown
in Figure 6.3-1.

6.3.6 Generate Synthetic Fields

Sections 4c and d of Cummings (2005) give an excellent overview of this procedure. If the
analysis is a restart and modas is used (mds_grd = T), subroutine MODAS_GRID computes
modas synthetic temperature and salinity profiles on the analysis grid from modas 2.1 data
bases. An optional pathway through CODA MVOI analysis is available for use as initial
conditions in a cold start (Block [DIRECT ? OR MODAS ?] in Figure 6.3-1). Existing analysis
('analfld') and forecast error ('fcsterr') 2D fields are read from CR files: 'seaice'; 'seatmp'; and
'seahgt'. Synthetic temperature and salinity fields are calculated with sub MODAS_SYN. The
MODAS databases are interpolated to the analysis grid and time and temperature, mixed layers,
and errors are extracted; the salinity is found from the temperature. If a criterion (obs_ice <
ice_cvr) is met, ice-covered sea values are returned. The calculation of potential temperature
depends on temp and salt not failing in the generation of synthetics but there are no
contingencies (else...).

63

GDEM 3.0 climate temperature and salinity fields are read by GRD_CLIM (called by
MODAS_GRID) and expanded to the analysis grid. Calculate forecast errors (array anm) from
the anomaly of GDEM climate fields, wrk(k,3)and wrk(k,4), relative to MODAS synthetic
fields, wrk(k,1)and wrk(k,2). Use these anomalies to find horizontally averaged forecast errors.
The difference between the GDEM climatology and MODAS synthetics (using climatology
fields) is being called a forecast error for a restarted analysis. The biases are calculated from
these values. The resulting temperature ('seatmp') and salinity ('salint') are saved as 'analfld'
fields. The RMS errors, wrk(k,5) and wrk(k,6) are saved as 'fcsterr' fields. The differences
between MODAS and GDEM fields are saved as 'analinc' files. Call GRD_CLIM to retrieve
GDEM climate fields. This subroutine reads from the database. The actual reading is done in
GDEM_GRD, which is contained within file "gdem_mod.f". This subroutine is passed the
GDEM variable name (e.g., tmp in CODA = tstd in GDEM) to read. If the option passed to
GRD_CLIM is 'fld', other GDEM variables are read ('temp' and 'salt'). These 'std' GDEM
variables are extrapolated to the analysis grid and written to 'climerr' files by WR_OCN_ANL.

The geopotential fields associated with the MODAS temp/salt, wrk(k,1) and wrk(k,2), and
GDEM temp/salt, wrk(k,3) and wrk(k,4), are calculated and placed in arrays wrk(k,5) and
wrk(k,6), respectively. The MODAS geopotential is then written to a 'analfld' file and the
GDEM geopotential is written to a 'climfld' file. The difference between these geopotentials is
the climate error; it is used to find the horizontally averaged bias and rms error, gpt_bias(k) and
gpt_rms(k), respectively. These are later saved to the stats array and written to the 3D restart
'datafld' file for field 'cvstat'. The RMS error between the analysis (MODAS) and climatology
(GDEM) is written to a 'fcsterr' file. The difference (named increment) is written to an 'analinc'
file.

Sub GEO_VEL is called to calculate the geostrophic velocities from the geopotential associated
with the analysis (MODAS) and climatology (GDEM). These components are then written to
'analfld' files for 'uucurr' and 'vvcurr' (MODAS) and 'climfld' files, 'uucurr' and 'vvcurr'
(GDEM). The horizontally averaged bias (uuu_bias(k) and vvv_bias(k)) and rms error
(uuu_rms(k) and vvv_rms(k)) are then calculated. As with the other variables, the 3D rms
errors (wrk(k,5) and wrk(k,6) for u and v, respectively) are calculated and written to 'fcsterr'
files 'uucurr' and 'vvcurr', respectively. The bias (increment) is then computed and written to
'analinc' files 'uucurr' and 'vvcurr'. If model = 'HYCOM' or 'hycom', a dummy layer pressure
field is saved to a 'fcsterr' file for 'lyrprs'.

Dummy observation age 'timeinc' and 'timefld' files for 'grdage' are written, and the stats array
is filled with the layer-averaged biases and rms errors: tmp_bias, sal_bias, gpt_bias,
uuu_bias, vvv_bias, and lyp_bias (similar for rms except that they are squared).

6.3.7 Direct Assimilation Of Modas Synthetics

If a MODAS assimilation is requested (modas = T in "oanl"), sub SYN_SMPL is called to
generate synthetic BT sampling locations. This subroutine is intended to introduce a subset of
the MODAS field as if it were measured. Thus, the locations of the BT's are altered on
successive update cycles.

64

The average Rossby radius is found and an 'analinc' file of 'seahgt' is read for the ssh anomalies.
The sampling interval to select BT's from the SSH anomaly field uses the Rossby radius and a
user-input factor, f (smpl in CODA_PREP and elsewhere, from "oanl"), to calculate ms, which
is the index skip interval. The data type (sample) is assigned syn_typ (set to 15 in
CODA_PREP) for later data processing. The tolerance to include a grid point (ssh_del) as a
synthetic profile is input from "oanl" as del_ssh, but only for cold start analyses or forecasts.

6.3.8 Prepare Climatology Data for MVOI

Sub CLIM_PREP (see Figure 6.3-1) is called to prepare climatology fields for MVOI. First, it
tries to read a CODA climatology file using sub OCN_CLIM. This file has file_typ = 'climfld'
and fld_name is either 'salint' or 'seatmp'. If it doesn't exist, sub GRD_CLIM is called as in the
GDEM climatology algorithm. Restart files are written for these two variables. Potential
temperature is then calculated before moving on to geopotential, 'geoptl'. The potential
temperature and salinity fields are used to calculate the geopotential fields only if there were no
pre-existing files (from a previous analysis). If temp and salt files do exist (clm_fail = F), an
ocean analysis file is read for geopotential; if this is inexplicably missing, the program exits.
This field (whether read or calculated) is then written to a new file with a different dtg value.
This procedure is repeated for geostrophic currents using sub GEO_VEL if clm_fail = T, or
read from an analysis file otherwise.

The final step in prepping the climatology fields is to collect the error fields. Sub OCN_CLIM
is now called for opt = 'std' and prm = 'sal' and 'tmp'. New climate files are written for file_typ =
'climerr' and fld_name = 'salint' and 'seatmp' by sub WR_OCN_ANL. Note that this procedure
is much simpler than for the previous case, in which fcsterr fields were created as well.

6.3.9 Prepare Gridded Obs. (MASS_OBS and VELC_OBS)

The 'seatmp' fields (file_typ = 'analfld', 'analinc', 'anlerr', and 'fcsterr') must be present or the
program will exit. Sub RD_OCN_ANL is used to read the restart files. Only 'anlerr' will not
stop execution. The sst analysis error reduction (err_red) is limited to values between 1.0 and
0.2 for good points, and 0.5 for bad points.

3D fields are read if available for either file_typ = 'fcstfld' or 'analfld' and fld_name = 'seatmp'
but for multiple levels. For restart = T, a 'climfld' file, which uses GDEM climates, is sought if
the file doesn't exist. This procedure is repeated for fld_name = 'salint'. For cold starts,
execution stops.

The temperature error field, 'fcsterr', is sought next. If it fails, a file_typ of 'modlerr' is attempted
to be read for restart = T; if that fails, a file of type 'climerr' is read; if that fails, execution
stops. Execution stops for restart = F.

Sub RD_OCN_ANL attempts to read a restart file for file_typ = 'fcstfld', fld_name = 'mixlyr',
and lvl_typ = 'sfc'. There are no contingencies. After returning to MASS_OBS, the MLD is
calculated by sub CODA_MLD if there was no 'fcstfld' file. This algorithm calculates a
potential density from whatever was read by sub MASS_FLD. If these were forecast fields, it
will be forecast mld; otherwise, it could even be a climate value. The MLD is based on a
density gradient, den_ds, which is input from "oanl."

65

There is a control array, st_grid (st_grd in "oanl" and COAMOA), that indicates a preference
to generate SST observations from analyzed SST grid. If this is on (default), sub SST_ANL is
called to generate SST obs by sampling analyzed SST anomalies. The SST grid is sub-sampled
as described above but no scaling factor is used (i.e., ms = 2). If st_chain (from "oanl") = T, the
SST are extended to the base of the mixed layer. The other choice is to call sub SST_OBS to
read sst super obs, set synthetic BT predictor variables, and remove SSTs outside the grid
domain. Sub RD_DATA_FILE is called to read 'SFC' data and real-valued indices for the obs
are found on the analysis grid. The observed SST is extended to the base of the mixed layer.

The SSS are calculated from a table for st_grid = T (analysis) or found from observations. If
sal_adj = T (from "oanl"), level 2 is also used to adjust the salt balance. The profile of salinity
is found iteratively from SST observations until the density gradient between layers 1 and 2 is 0
(neutral buoyancy). The salinity is extended to the base of the mixed layer and the obs arrays
(e.g., obs_age (l,k))are set.

If n_prf > 0, sub PROF_OBS is called to: read observed profiles at inflexion levels; set
synthetic BT predictor variables; depending upon the value of opt, it will interpolate inflexion
levels to analysis levels or leave profiles at observed levels; and remove profiles outside grid
domain. This algorithm processes the entire profile simultaneously, rather than treating each
depth value as an independent observation; i.e., the arrays are dimensioned as prf_age (depth,
profile). The data are read from a data file by RD_DATA_FILE, which is passed ‘PRF’ as an
option Note that nest is hard-wired to zero (see section 3.5). The name of these data files is:

“wrkdir/coda.PRF_obs.nestnest.dtg”

This file can be written by sub PROF_COLLECT as described in section 3.2.2.7 above. The
data are returned to PROF_OBS as 1D work arrays. The horizontal grid indices are computed
by subs LL2IJ or IRREG_LL2IJ and the input profile data points are rolled into a set of 2D
arrays; e.g., prf_lat (depth, profile). Note that the 1D arrays used to store the profile
observations here are the same as in sub PROF_COLLECT.

PROF_OBS next computes the vertical grid indices for the obs on the grid, interpolates the
depth to profile obs locations, extends profiles to bottom, removes obs off grid and failed
interpolations, appends to obs arrays, and updates counters. The profile variables are saved on
analysis levels if opt = ‘anlz’. The salinity type is set to 51 and temperature is set to 50. Control
then returns to MASS_OBS, which removes synthetic profiles near profile obs locations by
setting sample() to zero. A file of mass obs is written by MASS_OBS before it returns to
CODA_PREP: “wrk_dir/coda.MASS_obs.nestnest.dtg”

Subroutine VELC_OBS reads velocity obs, removes observations outside grid domain, rotates
to grid orientation, and saves on input file for ocean MVOI. This is very similar to what
MASS_OBS does. The steps are: (1) read velocity obs file; (2) compute COAMPS horizontal
grid indices; (3) compute vertical indices; (4) interpolate x and y grid positions to obs locations;
(5) remove obs off grid and failed interpolations; (6) rotate spherical u,v obs to grid orientation;
(7) save obs on MVOI input file. However, (7) is done within sub VELC_OBS instead of using
a subroutine.

66

6.3.10 Generate Direct Assimilation SSH Synthetic Obs

This approach is also discussed in section 4c of Cummings (2005). This block in CODA_PREP
executes if direct = T and n_simpl > 0. Subroutine DRCT_OBS computes temperature and
salinity at selected grid locations using direct assimilation of changes in observed sea surface
height from model forecast height as measured by satellite altimeters. The modified
temperature and salinity profiles are then used as supplemental observations in the MVOI.
Forecast model errors at the update cycle are used as observation errors, taking into account
convergence of the density corrections and prediction errors in the analyzed SSH.

Sub DRCT_FLD tries to read the analyzed SST from a restart file with file_typ = ‘analfld’ and
fld_name = ‘seatmp’; execution fails if the file is missing. It also tries to read the ‘seaice’
analysis field. There is no dependency on the value of restart. The SSH innovation file, ‘seahgt’
of type ‘analinc’, must also be present in addition to the forecast error ‘fcsterr’ file. The analysis
error ‘analerr’ file can be absent. The value of err_red (n*m) from the analysis error is set to
0.5 for a missing file, and limited to 0.2 to 1 if it exists.

The forecast (fcst = T) or analysis salt/temp fields are then read; execution stops if either is
absent. The forecast error (‘fcsterr’) fields are next read, even if fcst = F. If unavailable, model
error and climate error are read, respectively. If none are available, a constant of 2 is used for
temp and 0.5 for salt. The last required field is the MLD ‘mixlyr’. It is calculated if absent.

DRCT_OBS next calls MODAS_TOPOG to get the smoothed MODAS bathymetry. The
synthetic profiles are generated from the input fields for the entire grid, except where obs are
available (sample() = 0 in section 6.3.9). Temperature inversions are corrected in sub
TS_STATIC, where the potential temperature (from sub THETA) replaces tmp and a new
density is found. The comment in sub DRCT_OBS says that TS_STATIC will correct forecast
model for temperature inversions. TS_STATIC will use the input tmp if pt_anl = T (set in
"oanl") or the potential temperature otherwise. The default is T. This means that the specific
volume (found in function SVAN) uses the forecast temperature. TS_STATIC rechecks the
density gradient and sets stat_lvl(k) = F. Salinity is then adjusted in sub SALT_CORR to
achieve static stability.

The direct assimilation has a fixed number of model levels (nd = 41 in sub DRCT_OBS). The
sal and tmp variables are interpolated to this vertical grid. Sub SSH_DRCT is called to
iteratively solve for temperature and salinity increments from the forecast model state that
balance the observed pressure difference at the surface. Computation of the increments is
between the depth of the mixed layer at the surface and the level of no motion at depth, which is
hard-wired to 2000 m. The forecast model profiles are corrected using the pressure,
temperature, and salinity increments (interpolated to the analysis grid) in DRCT_OBS.

Sub DRCT_ADJ is called to adjust the synthetic profiles for temperature inversions that are not
present in the forecast and corrects salinity to ensure static stability. This subroutine repeats the
previous MLD and inversion analysis from TS_STATIC after removing the inversions. This is
slightly different than for the forecast, which made no adjustments before calling TS_STATIC.
Note that this function finds the obs_sal_err/obs_tmp_err by comparing the adjusted tmp/sal to

67

a Cooper-Haines profile (Cooper and Haines, 1996). Thus, it is important to know how far a
region is expected to vary from this profile.

If do_invc = T, check the innovation error, which was found from the forecast error (serr) and
the observation error (obs_sal_err). The tolerance (tol = tol_fctr in "oanl") is used to reject an
observation. Observations can also be rejected if the residual pressure (ps_in – ps_out) exceeds
a tolerance. The units are m2/s2 and xp_mx is hardwired in sub DRCT_OBS. This pressure
anomaly comes from ssh_anm = ps_in (from CR file_typ = ‘analinc’ and fld_name = ‘seahgt’)
subtracted from ps_out, which is the pressure anomaly after adjusting the temp/salt to balance
the observed pressure change at the surface (i.e., ssh_anm). The value of xp_mx = 100 m2/s2.
An observation can also be rejected for a lack of stratification.

6.3.11 MODAS Assimilation of SSHA Synthetic Obs
This block is located on line 998 of sub CODA_PREP. It executes if modas = T (see Figure
6.3-1). Sub MODAS_OBS is called to compute temperature and salinity at selected grid
locations from modas 2.1 climatological data bases for use as supplemental obs in CODA
analysis. The modas obs are appended to the in-situ observations. The MODAS levels are
predefined.

The ice concentration for an ice-covered sea is predefined to be 55%. This affects the MODAS
assimilation. The parameter n_regns = 36 × 18, is used to dimension modas arrays. The
following fields must be present or execution stops: ‘seaice’ and ‘analfld’; ‘seatmp’ and
‘analfld’; ‘seatmp’ and ‘fcsterr’; ‘seahgt’ and ‘analfld’; ‘seahgt’ and ‘fcsterr’.

Synthetic BT’s are generated where obs are not available (sample > 0). Profiles are either
assimilated on the observed levels (prf_opt = ‘obsz’) or after interpolation to the analysis levels
(prf_opt = ‘anlz’) using the following code from line 427 in sub MODAS_OBS:

m = 0
 if (prf_opt .eq. 'anlz') then This indicates that interpolation

should occur
 do n = 1, n_lvl
 if (grd_lvl(n) .le. depth(k)) then
 m = m + 1
 obs_age(m,n_data) = 0.
 obs_lat(m,n_data) = grd_lat(k)
 obs_lon(m,n_data) = grd_lon(k)
 obs_lvl(m,n_data) = grd_lvl(n) Assign grd_lvl to obs_lvl
 obs_xi(m,n_data) = real (i)
 obs_yj(m,n_data) = real (j)
 obs_zk(m,n_data) = real (n) Assign the grid index to the obs

index
 endif
 enddo
 else if (prf_opt .eq. 'obsz') then This indicates that the observed

levels should be used
 do n = 1, 37 Interpolate over the modas levels
 if (modas_lvl(n) .le. depth(k)) then
 m = m + 1
 obs_age(m,n_data) = 0.
 obs_lat(m,n_data) = grd_lat(k)

68

 obs_lon(m,n_data) = grd_lon(k)
 obs_lvl(m,n_data) = modas_lvl(n) Assign the modas index to the obs
 obs_xi(m,n_data) = real (i)
 obs_yj(m,n_data) = real (j)
 do l = 2, n_lvl This is an interpolation loop
 from modas levels to grid levels
 if (modas_lvl(n) .ge. grd_lvl(l-1) .and.
* modas_lvl(n) .le. grd_lvl(l)) then
 obs_zk(m,n_data) = real(l-1) +
* (modas_lvl(n) - grd_lvl(l-1)) /
* (grd_lvl(l) - grd_lvl(l-1))
 endif
 enddo
 endif
 enddo
 endif

This looks like the input fields, which are on the analysis grid, will be interpolated to the
analysis grid. This may just be a question of confusing terminology for the different vertical
grids used by the analysis, MODAS, and observations. Note that the MODAS synthetics are
treated as observations. After completing this preparation for interpolation, we retrieve the
MODAS bathymetry again and assign the n_data obs to the predefined n_regns MODAS
regions in a DO LOOP:

Sub MODAS_OPN is called to open the MODAS database files. It tries (success not
mandatory) to open bracketing files:

“clim_dir/mlonhemlat_mon1.b” and
“clim_dir/mlonhemlat_mon2.b”

and returns. The next step is to select the obs that fall within this region and call MODAS_SYN
to generate synthetic temperature and salinity. This subroutine was also called by
MODAS_GRID as described in section 3.4.1, and a detailed description will not be repeated
here.

This completes the n_regns loop.

If an analysis of the potential temp is requested (pt_anl = T in "oanl"), the obs_tmp is replaced
with the potential temp. The MODAS obs are written to a file as described in section 3.4.2.2.4.

6.3.12 Prepare the Observations for MVOI (MV_PREP)

The ‘MASS’ observations (e.g., obs_age, obs_val) are read by RD_MVOI_OBS from file
“wrkdir/coda.MASS_obs.nestnest.dtg”. This file was written by MASS_OBS (Figure 3.5-1).
Next, the ‘SYN’ file is read by another call to RD_MVOI_OBS, which reads
“wrkdir/coda.SYN_obs.nestnest.dtg”; this file was written by DRCT_OBS. RD_MVOI_OBS,
which is called twice with different values of opt (‘MASS’ and ‘SYN’) but the arguments are
the same (e.g., obs_age, obs_err, etc). This is because the first n_data entries are the
observations and the entries from n_strt to the end of the array (n_mass_obs) are the synthetic
obs.

69

The analysis ages are read from a restart file by RD_MVOI_ANL (which actually calls sub
RD_OCN_ANL) with opt = ‘AGE’. For this option, RD_OCN_ANL is passed fld_name =
‘grdage’ and file_typ = ‘timefld’. The CR file is not necessary for a restart. The returned ages
are passed to OBS_DETREND and processed for fgat < 0 or restart = T (see section 7.3), in
which case a temporary variable is used to force this processing (fno = -1 in MV_PREP). This
is a little different than the application of this algorithm to other observations because obs_age
is passed to OBS_DETREND twice in the arg list. The analysis ages (obs_age) are passed as
the first guess field (guess) and interpolated to their locations in real indices. The first-guess
innovation (obs_val – value) should equal zero for obs_age because obs_age is already on the
analysis grid (obs_xi, obs_yj) and the interpolated value will be the original. The returned value
is upd, which is upd_tau read from the coda header file by sub RW_OCN_CNTRL. This is for
initialization of time only; the other variables pass upd instead of the temporary fno.

Temperature is processed next by calling RD_MVOI_ANL for ‘TMP’ and ‘TERR’, which will
open CR files with fld_name = ‘seatmp’, and file_typ = ‘analfld’ and ‘fcsterr’, respectively. The
returned fields are placed in wrk(i,4) and wrk(i,2), respectively, and OBS_DETREND is
called. The result is the analysis field for the appropriate update time interpolated to the
observation locations, and with the difference between the observations (obs_val) and these
data (value) being placed in the first-guess innovation (obs_anm) array. The value array is not
kept.

Sub SET_ERR is called for opt = ‘TMP’ next; the algorithm is described in section 6.2. The
array passed is wrk(i,2), which is the forecast error for temperature that was just read. Sub
SET_ERR interpolates the prediction error (prd_err) to the obs points. If err_mdl (emdl in
"oanl") = ‘simple’, the background error (ebkg in "oanl") is interpolated from the grid levels to
the obs levels. However, if emdl = ‘complex’, the forecast error, wrk(i,2), is interpolated to the
obs locations as prd_err.

The comments in sub SET_ERR state that the prediction error is interpolated from grid average
values, referring to wrk(i,2) as just described. The authors are not certain why these are grid-
averaged values, however, because they come from a restart file of file_typ = ‘fcsterr’. This file
can only be written by one of the CODA programs (coda_prep; coda; or coda_post); Searching
for ‘fcsterr’ indicated it showed up in several read subroutines: RD_ICE_ANL;
RD_MVOI_ANL; RD_SSH_ANL; and RD_SWH_ANL. It is also used in DRCT_FLD;
MASS_FLD; MODAS_GRID; and MODAS_OBS. Subroutines DRCT_FLD and MASS_FLD
read the restart file, but MODAS_GRID writes a restart file with file_typ = ‘fcsterr’; this file
contains forecast errors (rms of MODAS – GDEM fields) and calls WR_OCN_ANL to write
them. MODAS_OBS calls RD_OCN_ANL, so this file can only contain the rms difference
between MODAS synthetic fields and GDEM climatology. Searching for ‘fcsterr’ in the
additional files used by coda_post, resulted in two occurences: RW_2D_ANL; and
RW_3D_ANL. These subroutines are called by POST_2D and POST_3D, respectively, to write
the prediction error growth to a restart file of file_typ = ‘fcsterr’. Consequently, we assume for
now that a restart file with file_typ = ‘fcsterr’ actually contains errors that are interpolated to the
analysis grid rather than grid-averaged values.

A cold start uses the default settings, which are assigned in SET_ERR. For a cold start, the
observation error (obs_err) is found by interpolating to the obs levels, normalizing for
maximum obs age (mx_age), corrected for number of obs (e.g., superobs) and normalized by
the prediction error (prd_err). For restart runs, obs_err = 1. Finally, the innovation check is

70

performed if requested (inv_chk = T) for a cold start. This procedure, calling OBS_DETREND
and SET_ERR, is completed for salinity and geopotential; for geoptl, an analysis file (file_typ =
‘analfld’) is written (first guess) and a climate field (file_typ = ‘climfld’) is read, before writing
the rms difference to a climate error (file_typ = ‘climerr’) restart file.

Sub RD_MVOI_OBS is called to read obs_age, etc from a file
“wrk_dir/coda.VELOC_obs.nestnest.dtg”. The counter, n_vel_obs is reset to 0 immediately
after. If the current run is not a forecast (i.e., fcst = F), the geopotential velocity is calculated in
GEO_VEL and ‘analfld’ CR files are written for ‘uucurr’ and ‘vvcurr’. For a forecast, however,
RD_MVOI_ANL is called to fetch ‘UUU’ and ‘VVV’ CR ‘analfld’ files. For all cases, sub
RD_MVOI_ANL is called to read ‘UERR’ and ‘VERR’ fields.

The next block is perplexing. The standard sequence, OBS_DETREND and SET_ERR, will
only execute if n_vel_obs > 0, but this was hard-wired to be zero exactly, and it is surrounded
by ****, indicating that it is not supposed to be permanent. It was originally computed from
n_vel_obs = n_data – n_mass_obs before starting the velocity block. As it is, no observation
innovations and errors are calculated.

After the skipped block, the rms climate error is found by subtracting the climate (file_typ =
‘climfld’) velocities (fld_name = ‘uucurr’ and ‘vvcurr’) from the MVOI analysis fields, which
are zero for non-forecast runs; however, this restriction is not checked. These arrays are written
to CR files of ‘climerr’ type. If innovation error checking (linck in "oanl") is requested for
temp, salt, geoptl, or velocity, the anomalies (obs_anm) and values (obs_val) are written to
unit 25, which is a formatted ascii file.

For a cold start with dh_scl (in "oanl") > 0, OCN_SFC_HT is called to read model surface
elevation field (grd_gpt) or analysis dynamic height for use in flow dependent covariance
analysis. This field is interpolated to the obs locations and renamed obs_gpt.

Subs SET_HCORR and SET_VCORR are called again to recalculate the correlation scales as
described in section 3.3.1. The water depth, grid dimensions, and correlation scales are
interpolated to the obs locations. If the analysis and model grids differ (conflct = T), sub
GRD_CONFLCT is called to adjust everything to the analysis grid. If there is no conflict, the
horizontal and vertical covariances (grd_hcr and grd_vcr) are written to a file named
“wrk_dir/coda.MVOI_cvr.nestnest.dtg”. Finally, sub SET_VOLUME is called to create
analysis volumes as described in section 3.3.1. The analysis volume descriptions are written to
a file named “wrk_dir/coda.MVOI_vol.nestnest.dtg”.

71

Figure 6.1-1. UML Use Case Diagram for completion of a 3D analysis cycle.

72

Figure 6.1-2. UML State diagram of the ncoda prep process. The most fundamental states
are either for restarted (cold start) or analyses with available forecast and analysis input.
This algorithm is contained within subroutine COAMOA.

73

Figure 6.1-3. UML State diagram of the ncoda prep process for restarted analyses. This
block represents a loop over all requested nests. This algorithm (shown on the right side
of Figure 6.1-2) executes when there is no input data file for the requested time. The
observations are read during processing of the first nest.

74

Figure 6.1-4. Nassi-Shneiderman diagram showing the flow of the COAMOA
subroutine.

75

Figure 6.1-5. Nassi-Shneiderman diagram showing the structure of the CODA_PREP
subroutine expanded from Figure 6.1-4. The blocks for 2D analysis and (n_lvl > 1 AND
3D analysis) will be discussed in section 6.2 and 6.3, respectively.

76

Figure 6.1-6. UML State diagram for the left state of the level 2 diagram (fcst = F and
restart = T) (Figure 6.1-3). The terms in [] are guards; if these expressions evaluate to
true, the next state is entered. If multiple guards are present, the next state is entered if
any of them is true. The names below the lines in the state blocks are the subroutines in
which the state occurs. In this program unit, no events are required to move between
states.

77

Figure 6.2-1. Nassi-Shneiderman diagram of the 2D analysis block from Figure 6.1-5.

78

Figure 6.2-2. UML Sequence Diagram of NCODA_PREP for SST analysis in 2D
command line mode. The objects are loosely based on the class diagram (Figure 2.2-1).
The arrows indicate messages being passed to other objects from the main task (leftmost
object). Time progresses from the top of the diagram. The note boxes show locations
where specific subroutines operate.

79

Figure 6.3-1. Nassi-Shneiderman diagram of the 3D analysis block from Figure 6.1-5.

80

7 Notes.

7.1 Update Cycle
The update cycle is critical in the detrending of the observations; therefore, it is useful to
examine its assignment in some detail in this report. The variable upd_cyc is entered by the user
in namelist oanl, which is included in the header file "oanl.h." A typical value is 24 hours. This
header file is read by COAMOA. Upd_cyc is then passed to sub RW_DATAO as upd. If it is
not 0, it is used as the increment to search for existing CR files for field = 'datahd' up to 14 days
in the past. If it is zero, an increment of 6 hours is used. The value is not changed by
RW_DATAO. It is passed to sub INIT_DATAO and written to array datao(20). INIT_DATAO
also passes upd_cyc to IRREG_GRID as upd (nproj < 0), where it is used to search for a time-
stamped latitude file. The value is not changed. It is then passed directly to IRREG_GRID from
COAMOA in a redundant search for a latitude file. Variable upd_cyc is then passed to sub
CODA_PREP as upd. A second update variable, upd_tau, is initialized in CODA_PREP as a
local variable passed to sub RW_OCN_CNTRL along with upd, where its name reverts to
upd_cyc. With opt = 'get', the value of upd_cyc is held in upd_tau and file_dtg is found by
subtracting upd_cyc from dtg for a restarted run. RW_OCN_CNTRL then returns to
CODA_PREP.

For a cold start, upd_cyc is used as a time increment to search for a CODA restart file for field
= 'codaoi'. If this file exists, upd_tau is assigned the hour for which it exists but upd_cyc is
unchanged. If the file is not found, upd_tau is assigned upd_cyc and file_dtg is found by
subtracting upd_tau from dtg. This file dtg is then inserted into the *_dtg variables for all data
sources (e.g., amsr, ship, xbt) and written to a CR file for field = 'codaoi', after which control
returns to CODA_PREP. Although upd_tau now has a useful value that could differ from upd
(upd_cyc), upd is passed to sub OCN_DEPTH to search for a CODA restart file for field =
'depths'; its value is unchanged.

It is interesting that upd_cyc has the value of an available CR file for field = 'codaoi' but this is
not used to look for a CR file for field = 'depth'. This is probably because upd_tau is the actual
update time whereas upd_cyc is the increment for updating.

The same procedure is used for the ocean mask (sub OCN_MASK; field = 'maskls'), correlation
length scales (sub GET_HSCL; field = 'grdscl'), and forecast fields (sub CHK_FCST; field =
'seatmp', 'salint', 'uucurr', 'vvcurr', 'seatmp', 'seahgt', 'seaice', and 'sigwht'). Upd (upd_cyc) is then
passed to OCN_OBS as upd_cyc, where a local variable named tmp_upd is introduced. The
behavior of upd_cyc in OCN_OBS is primarily determined by the value of restart. If restart =
T, upd_cyc is assigned to tmp_upd and used to construct old file_dtg from dtg, which is then
assigned to variables, old_* for the types of observations (e.g., ship). Tmp_upd either uses one-
half of upd_cyc (fcst = T) or no less than 24 hours otherwise. If restart = F, a new_dtg is found
by subtracting one-half of upd_cyc (temporarily held in tmp_upd) from dtg. The value of
upd_cyc is unchanged. Sub OCN_OBS passes upd_cyc to CR_TMP_FILE, where it is used to
read observations (e.g., atsr) from files. The dtg variables derived in OCN_OBS (above) are

81

changed only if sst_time = 'synt'. Upd_cyc is then passed to a series of subroutines (e.g.,
RD_MCSST) where it is used to set obs_typ for data sources. This last step is not required for
ship, profile, or glider data. The same procedure is applied in subs CR_ICE_FIL,
CR_SSH_FILE, and CR_SWH_FILE. The value of upd_cyc is unchanged.

Subroutine CODA_PREP passes upd (upd_cyc) to sub VRFY_STATS as upd where it is used
to search for a CR file with field = 'cvstat'. Upd (upd_cyc) is then passed to SWH_PREP as
upd. SWH_PREP then passes it to RD_SWH_ANL as upd_tau, where it is used to search for a
CR file with field = 'seaice' and type = 'analfld'. It is passed to sub RD_OCN_ANL as upd_tau,
which does the actual searching. Sub SWH_PREP then updates the age of swh_age by adding
upd. The next time upd is passed from sub SWH_PREP is to sub OBS_DETREND, which is
where the description continues below.

7.2 The first-guess appropriate time (FGAT)
Fgat < 0 indicates that there are no analyses to read, as on the first analysis of a region. If fgat >
0, there is a procedure that includes reading analysis files and interpolating them to the
observation real-valued indices. The minimum age of the observations is found; it must be
greater than one-half upd_cyc. Upd_str = -n_hrs and upd_end = upd_cyc/2. These are used as
the loop limits to find the first-guess time field, by adding (subtracting) these hours from dtg.
The increment variable, fgat, is the first-guess appropriate time update interval. Fgat is set in
namelist "oanl". It has values for ice, sst, ssh, multivariate, and swh fields. Typical values are
~1 hr.

The first step is to find an appropriate first guess time interval that has analyses available.
Otherwise there would be no point. This is done by finding the minimum age (hours) among all
of the observations. Ages can be either positive or negative because the analysis does not have
to be in real time; thus obs can be newer than the desired analysis. This condition must be
covered. Age_mn is assigned a value of -upd_cyc/2, which initializes the minimum age of the
obs. If an observed age is old, its age is negative. This bias is removed by taking its abs value.
If this point age is less than age_mn, it becomes the new field minimum. Limited testing with
this complicated algorithm indicated that it appears to find at least one time.

Loop over the entire first guess field time intervals (between upd_str and upd_end). Compile a
list of observations for each time window [time(dtg) +/- fgat/2]. The index of available obs is
saved to ndx(nobs) as well as its real-valued indexes on the analysis grid. The dtg is determined
and the forecast time, tau, is found.

7.3 Error calculation condition
The prediction error estimation in SET_ERR is computed in a block that executes only when
restart = F. Note that SET_ERR is called within the nest loop in COAMOA (see Figure 6.1-4).
The default settings are used for prd_err for restart = T. The comments before the else
statement indicate that the defaults are to be used for a 'cold start', which makes sense.
However, the code from SET_ERR,

 if (.not. restart) then
 set prediction error from observed average values...

82

 or...
 interpolate prediction error from grid-averaged values...
 else
 use default settings for cold start...
 endif

will apply the default settings for restart = T. Cold_start is a scalar logical variable that is input
from namelist "oanl." It is passed by COAMOA to CHK_DATAO, where it causes all entries in
the array restart(mx_grds) to be F if cold_start = F, whether a "datao" file exists or not. Thus, a
cold start run is equivalent to a restart, except that the second applies to individual grids as
necessary; i.e., individual grids may be added to an analysis and they will be set to restart = T.

 The prediction error is scaled by offset and a tuning factor (fct_bkg, ebkg in "oanl"), which is
often set to 1. Another restart/cold start block follows, again with a default value applied to the
obs error on the current grid (see section 6.2) for restart = T. If restart = F, however, the obs
error is found from the relative depth of the obs, its relative age (normalized to mx_age,
clm_scl in "oanl"; a typical value for swh = 72 hrs), and obs_rep (a dummy variable = 0 in sub
SWH_PREP), number of obs for a superob, and err_obs (eobs in "oanl"; swh = default
typically). Finally, the obs_err is normalized by the prd_err found above.

The innovation error is checked if inv_chk (linck in "oanl"; default = T). This is done by
normalizing to the prd_err, and again by the obs_err. If this error exceeds tol (clm_scl in
"oanl"; typically 72 hrs for swh), this obs is rejected. Note that this check is only completed for
restart = F, for which no detrending is performed on the obs. Control then returns to
SWH_PREP, which checks to see if any obs were rejected by the innovation error check.

7.4 Logical Flags for Initialization

The synthetic initial condition discussed in section 3.4.1 depends on mds_grd = T and restart =
T. Code checks found the following occurrences of mds_grd in the source files:

$ grep -in mds_grd *.f | more
coamoa.f:352: * mds_edit, mds_grd, mds_mld, mds_xtnd,
 clm_scl, sal_adj,
coda.f:178: if (mds_grd .and. restart) then
coda_prep.f:13: * ssh_hrs, ssh_time, mds_edit, mds_grd,
 mds_mld,
coda_prep.f:109: c mds_grd logical input (true) MODAS
 initial conditions
coda_prep.f:346: logical mds_grd
coda_prep.f:912: if (mds_grd .and. restart) then

Thus, the MODAS and GDEM initial condition will only occur on a restart (either cold_start or
new grid) when the user specifies it. The alternative case (no synthetic initial condition) covers
all cold starts and restarts unless over-ruled by user input in namelist "oanl."

83

A second set of flags controls using synthetic BT's. Sub SYN_SMPL will only be called if
direct = T or modas = T. Supposedly, direct indicates a desire for direct MODAS assimilation
and modas indicates a wish to perform a MODAS assimilation of altimeter ssh. Here is where
"direct " shows up in logical statements:

$ grep -n direct *.f| grep "if ("
(1) chk_fcst.f:104: if (direct .and. ssh_opt .eq. 'modl') then
(2) chk_fcst.f:111: if (direct) then
(3) coda_prep.f:568: if (direct .and. bv_chk .gt. 0.) then
(4) coda_prep.f:938: if (direct .or. modas) then
(5) coda_prep.f:996: if (direct .and. n_smpl .gt. 0) then
(6) rd_ssh_anl.f:104: if (direct) then
(7) ssh_prep.f:356: if (direct) then
(8) ssh_prep.f:429: if (direct) then
(9) ssh_prep.f:749: if (direct .and. ssh_opt .eq. 'modl'
 .and.(topo_src .eq. 'modas' .or.
 topo_src .eq. 'model')) then

Occurrences (1) and (2) are associated with checking that forecast variables to be retrieved from
CR files are availale. (1) is used if one analysis level is chosen (n_lvl = 1); it makes sure that
field = 'seahgt' is available if ssh_opt (ssh_mean in "oanl") is set to 'modl' rather than 'clim'. (2)
makes certain that 'seahgt' fields are available for n_lvl > 1. Occurrence (3) in CODA_PREP
prints the Brunt-Vaisala frequency threshold (bv_chk in "oanl") because it affects the direct
assimilation of MODAS synthetics and (4) calls SYN_SMPL to generate the synthetic BT
sampling locations if either direct or modas = T, but only if either mds_grd or restart = F. This
makes sense because, if mds_grd = T a full 3D grid of synthetics are available and if restart =
T, it is an initial analysis for the current grid.

Occurrence (5) calls DRCT_OBS to compute T and S profiles at the selected n_smpl locations
using model and altimeter ssh fields. These will be used as supplemental obs in the MVOI
analysis.

Occurrence (6) in RD_SSH_ANL causes a ssh analysis field to be read if ssh_opt (opt) =
'modl'; otherwise, either forecast model or analysis background T and S fields are read and the
surface geopotential field is saved. (7) in SSH_PREP retrieves or creates the mean ssh field and
(8) scales the altimeter by the in-situ ssh variability using sub RD_SSH_STD. (9) writes the ssh
background field to a CR file for all cases involving ssh.

84

8 References
Cummings, J. A. Operational multivariate ocean data assimilation. Q. J. R. Meteorol. Soc., 131,

3583-3604, 2005.

Goerss, J. S. and Phoebus, P. A. The Navy's operational atmospheric analysis. Weather and
Forecasting, 7, 232-249, 1992.

Horn, R. A. and Johnson, C. R. Matrix Analysis, Section 7.2. Cambridge University Press,
1985.

Lorenc, A. C. A global three-dimensional multivariate statistical interpolation scheme. Mon.
Weather Rev., 109, 701-721, 1981.

Nassi, I. and Schneiderman, B. Flowchart techniques for structured programming. Tech.
Contributions, SIGPLAN Notices No. 12, August 1973.

Page-Jones, M. Fundamentals of Object-Oriented Design in UML. Addison-Wesley, New
York, 458 pp., 2000.

85

APPENDIX 1. Abbreviated List of Subroutine Calls for NCODA Prep.

The numbers refer to the line number in calling routine file.

program ncoda_prep
 105: getarg (3)
 131: dtgops
 268: getenv
 421: gmtime (2)
 143: getarg
 218: coamoa
 166: nstlvls
 197: move_datao
 275: rw_datao
 277: init_datao
 158: ij2ll
 176: irreg_grid
 283: chk_datao
 306: coamps_grid
 315: ngps_grid
 321: irreg_grid
 340: coda_prep
 715: rw_ocn_cntrl
 742: ocn_depth
 748: set_hgrd
 750: set_vgrd
 764: ocn_mask
 770: get_hscl
 153: rd_rossby
 776: chk_fcst
 784: ocn_obs
 724: cr_tmp_file
 277: rd_mcsst
 300: rd_metop
 323: rd_goes
 346: rd_lac
 370: rd_metop_lac
 394: rd_msg

86

 417: rd_amsr
 439: rd_atsr
 462: rd_ship
 504: prof_collect
 286: rd_prof
 573: prof_err
 302: prof_argo
 313: prof_thin
 323: prof_pool
 331: prof_slct
 340: prof_dupchk
 553: gldr_collect
 258: rd_gldr
 276: prof_thin
 286: gldr_slct
 296: gldr_dupchk
 760: cr_ice_file
 109: rd_ssmi
 767: cr_ssh_file
 144: rd_ssh
 779: cr_swh_file
 121: rd_swh
 804: rw_prep_hdr
 818: vrfy_stats
 830: swh_prep
 300: rd_swh_clim
 303: rd_swh_anl
 183: rd_ice_clim
 317: rd_data_file
 326: swh_bias
 330: obs_index
 89: ll2ij
 104: srch_ij
 | 110: irreg_ll2ij
 117: srch_kz
 338: obs_detrend
 343: obs_detrend
 351: obs_remove
 360: super_ob
 369: obs_index
 89: ll2ij

87

 104: srch_ij
 110: irreg_ll2ij
 117: srch_kz
 388: set_err
 423: set_hcorr
 460: cr_ovrlp_obs
 473: rw_prep
 479: rw_covr
 484: set_volume
 139: volume_init
 142: cr_volumes
 146: cr_ovrlp_vol
 317: sort_vctr
 847: ice_prep
 326: rd_ice_clim
 328: rd_sst_clim
 333: rd_ice_anl
 346: coda_bndy
 355: ngps_bndy
 386: rd_data_file
 395: obs_index
 89: ll2ij
 104: srch_ij
 110: irreg_ll2ij
 117: srch_kz
 415: obs_detrend
 420: obs_detrend
 428: obs_remove
 437: super_ob
 446: obs_index
 89: ll2ij
 104: srch_ij
 | 110: irreg_ll2ij
 117: srch_kz
 464: grdnt_err
 471: set_err
 505: set_hcorr
 510: fld2_trp (4)
 554: cr_ovrlp_obs
 567: rw_prep
 576: rw_covr

88

 582: set_volume
 139: volume_init
 142: cr_volumes
 146: cr_ovrlp_vol
 317: sort_vctr
 866: sst_prep
 367: rd_sst_clim (2)
 371: rd_ice_anl
 376: rd_sst_anl
 386: coda_bndy
 395: ngps_bndy
 410: wr_ocn_anl
 426: rd_data_file
 434: obs_index
 89: ll2ij
 104: srch_ij
 110: irreg_ll2ij
 117: srch_kz
 454: obs_detrend
 459: obs_detrend
 467: obs_remove
 476: super_ob
 485: obs_index
 89: ll2ij
 104: srch_ij
 110: irreg_ll2ij
 117: srch_kz
 503: grdnt_err
 510: set_err
 544: set_hcorr
 573: cr_suppl_sst
 639: cr_ovrlp_obs
 651: rw_prep
 661: rw_covr
 667: set_volume
 139: volume_init
 142: cr_volumes
 146: cr_ovrlp_vol
 317: sort_vctr
 682: wr_ocn_anl (3)
 886: ssh_prep

89

 360: get_ssh_mean
 164: cr_mean_ssh
 157: gdem_grd (gdem_mod.f)
 197: gdem_grd (gdem_mod.f)
 238: coda_xtnd (2)
 243: geo_ptl
 173: coda_xtnd
 368: rd_ssh_err
 373: rd_ssh_anl
 388: rd_data_file
 411: obs_index
 89: ll2ij
 104: srch_ij
 110: irreg_ll2ij
 117: srch_kz
 422: rd_ssh_std
 458: modas_topog
 485: modas_topog
 524: obs_detrend
 529: obs_detrend
 538: obs_remove
 547: super_ob
 556: obs_index
 89: ll2ij
 104: srch_ij
 110: irreg_ll2ij
 117: srch_kz
 574: grdnt_err
 581: set_err
 616: ocn_sfc_ht
 628: set_hcorr
 645: cr_suppl_ssh
 677: cr_ovrlp_obs
 690: rw_prep
 700: rw_covr
 703: set_volume
 139: volume_init
 142: cr_volumes
 146: cr_ovrlp_vol
 317: sort_vctr
 906: rw_prep_hdr

90

 916: modas_grid
 300: modas_topog
 422: modas_opn
 442: modas_syn
 266: modas_data
 322: modas_poly
 332: modas_coef
 341: modas_temptrp (3)
 202: modas_edit
 211: modas_mld
 362: modas_salt
 378: modas_clim
 387: modas_clim
 560: grd_clim
 562: grd_clim
 725: grd_clim (2)
 747: geo_ptl (2)
 853: geo_vel (2)
 1131: vrfy_stats
 1140: rw_prep_hdr
 928: syn_smpl
 943: clim_prep
 147: ocn_clim
 171: grd_clim
 150: ocn_clim
 171: grd_clim
 188: geo_ptl
 209: geo_vel
 244: ocn_clim
 171: grd_clim
 247: ocn_clim
 171: grd_clim
 968: mass_obs
 241: mass_fld
 250: coda_mld
 258: sst_anl
 268: sst_obs
 173: rd_data_file
 188: ll2ij
 192: irreg_ll2ij
 284: sss_obs

91

 295: prof_obs
 61: rd_data_file
 290: ll2ij
 294: irreg_ll2ij
 368: prof_xtnd
 225: bathy_merge
 228: bathy_merge
 329: wr_mass_obs
 991: drct_obs
 327: drct_fld
 271: coda_mld
 336: modas_topog
 410: ts_static
 127: salt_corr
 458: ssh_drct
 131: spline (2)
 156: ts_adj
 497: drct_adj
 217: ts_static
 127: salt_corr
 643: wr_mass_obs
 1004: modas_obs
 478: modas_topog
 526: modas_opn
 546: modas_syn
 266: modas_data
 167: rd_modas_data (2)
 322: modas_poly
 327: modas_trifit
 332: modas_coef
 341: modas_temp
 174: modas_type (3)
 202: modas_edit
 211: modas_mld
 362: modas_salt
 378: modas_clim
 387: modas_clim
 604: wr_mass_obs
 1024: mv_prep
 333: rd_mvoi_obs (2)
 356: rd_mvoi_anl

92

 364: obs_detrend
 376: rd_mvoi_anl
 379: rd_mvoi_anl
 394: obs_detrend
 400: set_err
 415: rd_mvoi_anl
 418: rd_mvoi_anl
 433: obs_detrend
 439: set_err
 457: geo_ptl
 459: rd_mvoi_anl
 479: obs_geoptl
 190: bilnr
 486: obs_detrend
 492: set_err
 550: rd_mvoi_anl
 571: obs_lyrp
 330: ts_static
 127: salt_corr
 375: lyrp_err
 578: set_err
 613: obs_remove
 629: rd_mvoi_obs
 646: geo_vel
 658: rd_mvoi_anl
 661: rd_mvoi_anl
 666: rd_mvoi_anl
 681: rd_mvoi_anl
 708: obs_detrend
 714: obs_detrend
 720: set_err (2)
 744: obs_remove
 836: ocn_sfc_ht
 848: set_hcorr
 850: set_vcorr
 891: cr_ovrlp_obs
 902: rw_prep
 915: grd_conflct
 221: coamps_grid
 228: ocn_depth
 234: set_vgrd

93

 239: get_hscl
 153: rd_rossby
 247: ocn_sfc_ht
 251: ssh_conflct
 3: ll2ij
 270: ocn_mask
 276: set_hcorr
 286: rw_covr
 291: ll2ij
 322: cr_ovrlp_obs
 333: rw_prep
 343: set_volume
 139: volume_init
 142: cr_volumes
 146: cr_ovrlp_vol
 942: rw_covr
 944: set_volume
 139: volume_init
 142: cr_volumes
 146: cr_ovrlp_vol
 317: sort_vctr
 1046: rw_prep_hdr
 1072: rw_ocn_cntrl
 371: rw_datao

94

APPENDIX 2: Argument List Mapping for COAMOA calling CODA_PREP

VAR. SUBROUTINE CODA_PREP CALL CODA_PREP

1. opt, opt,
2. dtg, dtg,
3. upd, -----------------> upd_cyc,
4. out_dir, -------------> dsorff,
5. datu_dir, ------------> dsoudat,
6. datr_dir, ------------> dsordat,
7. datc_dir, ------------> dsocdat,
8. dats_dir, ------------> dsosdat,
9. clim_dir, ------------> dsoclim,
10. gdem_dir, ------------> dsogdem,
11. modas_dir, -----------> dsomdas,
12. ngps_dir, ------------> dsngff,
13. wrk_dir, -------------> dsowrk,
14. nest, ----------------> nn,
15. n_lon, ---------------> mo(nn),
16. n_lat, ---------------> no(nn),
17. n_pgrd, --------------> np_grid(nn),
18. n_lvl, ---------------> nl,
19. z_lvl, ---------------> lvl,
20. lvl_nmo, lvl_nmo,
21. f3d, f3d,
22. ocn3d, ---------------> locn3d(nn),
23. igrid, ---------------> nproj,
24. reflat, reflat,
25. reflon, reflon,
26. iref, ----------------> iref(nn),
27. jref, ----------------> jref(nn),
28. stdlt1, stdlt1,
29. stdlt2, stdlt2,
30. stdlon, stdlon,
31. delx, ----------------> delx(nn),
32. dely, ----------------> dely(nn),
33. conflct, conflct,
34. anl_grd, anl_grd,
35. deny, deny,
36. blist, blist,
37. wlist, wlist,
38. fgat, fgat,
39. pool, pool,
40. sal_std, sal_std,
41. ssh_std, ssh_std,
42. tmp_std, tmp_std,
43. datao, datao,
44. grd_lat, grd_lat,
45. grd_lon, grd_lon,
46. f, f,

95

47. grd_hx, grd_hx,
48. grd_hy, grd_hy,
49. xpos, xpos,
50. os, ypos,
51. v_opt, dbv_opt,
52. dbv_res, dbv_res,
53. den_ds, den_ds,
54. diurnal, diurnal,
55. err_bkg, -------------> ebkg,
56. err_mdl, -------------> emdl,
57. err_obs, -------------> eobs,
58. tol_fctr, tol_fctr,
59. qc_prb, --------------> qc_err,
60. do_invc, -------------> linck,
61. mask_opt, mask_opt,
62. lndz, lndz,
63. ice_time, ice_time,
64. gldr_slct, gldr_slct,
65. prf_hrs, prf_hrs,
66. prf_opt, prf_opt,
67. prf_slct, prf_slct,
68. prf_time, prf_time,
69. prf_xtnd, prf_xtnd,
70. pt_anl, pt_anl,
71. rscl, rscl,
72. del_ssh, del_ssh,
73. del_sst, del_sst,
74. direct, direct,
75. modas, modas,
76. ssh_hrs, ssh_hrs,
77. ssh_time, ssh_time,
78. mds_edit, mds_edit,
79. mds_grd, mds_grd,
80. mds_mld, mds_mld,
81. mds_xtnd, mds_xtnd,
82. clm_scl, clm_scl,
83. sal_adj, sal_adj,
84. smpl, smpl,
85. ssh_opt, -------------> ssh_mean,
86. sst_time, sst_time,
87. st_asm, st_asm,
88. st_chain, ------------> st_chn(nn),
89. st_grid, -------------> st_grd(nn),
90. st_ntrvl, st_ntrvl,
91. st_smpl, st_smpl,
92. swh, swh,
93. swh_da, swh_da,
94. swh_time, swh_time,
95. topo_mn, topo_mn,
96. topo_mx, topo_mx,
97. topo_src, topo_src,
98. hc_mdl, hc_mdl,
99. vc_mdl, vc_mdl,
100. vc_bkg, vc_bkg,

96

101. dv_dz, dv_dz,
102. vscl, ----------------> vol_scl,
103. warm,-----------------> warm_ice,
104. restart,--------------> restart(nn),
105. amsr_bias, amsr_bias,
106. amsr_dw, amsr_dw,
107. argo_bias, argo_bias,
108. atsr_bias, atsr_bias,
109. atsr_dw, atsr_dw,
110. goes_bias, goes_bias,
111. goes_dw, goes_dw,
112. lac_bias, lac_bias,
113. lac_dw, lac_dw,
114. mcsst_bias, mcsst_bias,
115. mcsst_dw, mcsst_dw,
116. metop_bias, metop_bias,
117. metop_dw, metop_dw,
118. msg_bias, msg_bias,
119. msg_dw, msg_dw,
120. model, model,
121. offset, offset,
122. bv_chk, bv_chk,
123. dh_scl, dh_scl,
124. mx_lyr_prs, mx_lyr_prs,
125. run_class, run_class,
126. global, global,
127. debug, debug,
129. spval, spval

97

APPENDIX 3. Sample FORTRAN program to generate a 1-record bathymetry file for the
topography database.

 program DBVDBV
C
C...................START PROLOGUE......................................
C
C SCCS IDENTIFICATION: %W% %G%
C %U% %P%
C
C DESCRIPTION: Extracts DBDBV fields for specified latitudes,
C longitudes from the data base files.
C
C PARAMETERS:
C Name Type Usage Description
C -------- ------- ------- ----------------------------------
C XLAT Real Input Latitude Array
C Degrees (+ North, - South)
C XLON Real Input Longitude Array
C Degrees (+ East, - West)
C or 0-360 positive East
C NP Integer Input Dimension of XLAT, XLON, DEPTH
C DEPTH Real Output Depth Array (meters)
C RES Real Input Minimum resolution (minutes)
C PATH Character Input Directory path of DBDBV files
C SOURCE Character Input Data desired (Navy/DOD only or any)
C SOURCE = 'DoD', use Navy files only
C SOURCE = 'Navy', use Navy files only
C SOURCE = ' ', use any dictionary file
C ERRO Integer Input Level of print diagnostics,
C Bits 0-4 set output switches,
C i.e., ERRO = B"01001" for 4 and 1.
C Output Error flag on return,
c 0 = OK.
C 1 = OK, points missing though.
C 2 = Fail, bad or missing files.
C FILES:
C Name Unit File Type Attribute Usage Description
C --------- ---- ----------- ----------- ------ -----------------
C DBV.dictionary 90 ASCII Read In Identifies appro-
C priate data base
C file by lat/lon.
C stdout 6 ASCII Write Out Diagnostic output
C
C DATA BASES:
C Name Table Usage Description
C --------- -------------- ----- ---------------------------------
C DBVHRBALTIC Bottom Depths In Bottom depths for Baltic Sea (1-min)
C DBVMREATL Bottom Depths In Bottom depths for E Atlantic (1-min)
C DBVMRMED Bottom Depths In Bottom depths for Med (5-min)

98

C DBVHRMED Bottom Depths In Bottom depths for Med (1-min)
C DBVHRSCHINA Bottom Depths In Bottom depths for S China Sea (1-min)
C DBVHRSEUSA Bottom Depths In Bottom depths for SE US Coast (.5-min)
C DBVHRWEST Bottom Depths In Bottom depths for W US Coast (1-min)
C DBVMRNATL Bottom Depths In Bottom depths for N Atlantic Ocean
C DBVMRSATL Bottom Depths In Bottom depths for S Atlantic Ocean
C DBVMRNPAC Bottom Depths In Bottom depths for N Pacific Ocean
C DBVMRSPAC Bottom Depths In Bottom depths for S Pacific Ocean
C DBVMRIND Bottom Depths In Bottom depths for Indian Ocean
C DBVMRARCTIC Bottom Depths In Bottom depths for Arctic
C DBVMRANTARC Bottom Depths In Bottom depths for Antarctic
C SASHRIND Bottom Depths In Smith-Sandwell for Indian (2-min)
C SASHRMED Bottom Depths In Smith-Sandwell for Med (2-min)
C SASHRNATL Bottom Depths In Smith-Sandwell for N Atlantic (2-min)
C SASHRNPAC Bottom Depths In Smith-Sandwell for N Pacific (2-min)
C SASHRSATL Bottom Depths In Smith-Sandwell for S Atlantic (2-min)
C SASHRSPAC Bottom Depths In Smith-Sandwell for S Pacific (2-min)
C
C ERROR CONDITIONS:
C Condition Action
C --------------------- --
C Database Access Error Parameter INFO (ERRO) returns = 2.
C Processing will continue for all
C requested points. Diagnostic messages
C are written to stdout for all errors.
C Database Access Error Parameter INFO (ERRO) returns = 1.
C
C ADDITIONAL COMMENTS: This routine manages the extraction of the
C bathymetry data base files.
C
C...................MAINTENANCE SECTION.................................
C
C MODULES CALLED:
C Name Description
C -------- --
C DBVINZ Attaches and loads Dictionary file. (Calls DBVLOD)
C DBVLOD Loads the Dictionary data into memory.
C DBVSCH Search Dictionary for coverage at a point.
C DBVOPN Opens data base file for the point. (Calls DBVPRT)
C DBVPRT Prints contents of a header array.
C DBVPTR Determines record & cell linear index for a point.
C DBVUPK Unpacks bottom depth from the specified cell.
C
C LOCAL VARIABLES AND
C STUCTURES:
C Name Type Description
C ------- --------- --
C IBUF Integer record buffer.
C KREC Integer record number to read.
C KCELL Integer word num in record to extract depth from.
C PATH Character Path for the dictionary and data base files.
C
C METHOD: Initialize the data access flags, the file names and unit
C numbers. Load the dictionary information into arrays. For each
C lat/lon point search the dictionary information arrays to see if

99

C there is coverage at the point. Looping on the number of points,
C access the data bases for requested parameter and retrieve the
C values. If errors occur during the opening, reading or retrieval
C of data base or dictionary information, the INFO output parameter
C error flag is set to 2. Errors less than or equal to 1 are
c non-fatal, such as points over land. Additionally, if any of the
c output diagnostic flags, QFLAG, are true, informative messages are
c written to output.
C
C RECORD OF CHANGES:
C
C...................END PROLOGUE..
C
c (XLAT, XLON, NP, DEPTH, RES, PATH, SOURCE, ERRO)
 implicit none
C
 integer ERRO, MAXBASN, MAXWDS, NP
 parameter (np=600)
 parameter (MAXBASN=20, MAXWDS=1009800)
C
 logical*1 btest, DONE(NP), QDBA, QFLAG(5), QBASN(MAXBASN)
C
 character*8 DPRTAB, PARAM
 character*20 DBPFNS(MAXBASN), PFNGRD
 character*256 DBVPATH, DICPFN, PFN
 character*256 PATH, SOURCE
C
 integer I, IBASN, IFO, IND(NP), INFO, IREC, IRM(3,180)
 integer IUDICT, IUGRD, IUNITS, IPTR, K, KCELL, KGDREC
 integer KLAT, KLON, KREC, Len_Trim, LRPFNS(MAXBASN)
 integer NL, NPTS, NREC, NRECT, NRM
 integer*4 IBUF(MAXWDS)
 integer lrec,nltcel,nltblk,nlncel,nlnblk
 integer IW, LBITS, NM, NSFT
C
 integer imin,ideg,nlt,nln
 character label1*40, label2*36,label3*4
 character*5 ns, ew

 real*4 HDR(30), xlt, ylt, xres
 real DEPTH(NP), RES, XLAT(NP), XLON(NP)
 real ALAT, ALON, DBD, DICT(9,124), DTYPE, clat
 real frec,fltcel,fltblk,flncel,flnblk

 integer im,jm
 parameter (im=20, jm=30)
 real h1(im,jm), buf(np/2)
 integer*2 ih1(np),ih2(np)
C
 equivalence (IBUF, BUF)
 data LBITS /16/
C
C *
C
C Check for type of data to extract, Navy sources only or all

100

C
 nl = 1
 do i=1,20
 do k=30,1,-1
 h1(i,k) = i*10
 if (k .eq. 2) h1(i,k) = 33.
 if (i.ge.15) h1(i,k) = 1000.
 ih1(nl) = int(h1(i,k))
 nl = nl+1
 enddo
 enddo
 res = 30.
 path = './'
 label1 = 'TEST 01NPAC 1.0 10/20/0812:30:00'
 label2 = ' '
 clat = 2100.
 xlt = 20.
 ylt = 30.
 alon = 10740.
 xres = 30.
 frec = 300.
 fltcel = ylt
 fltblk = 1
 flncel = xlt
 flnblk = 1
c
c open direct access file and write header
c
 open (101, file='TESTBASIN', access='direct',recl=1200)
 write (101, rec=1) label1,label2,clat,ylt,res,alon,xlt,xres,
 s frec,fltcel,fltblk,flncel,flnblk
c
c print to screen
c
 read (101,rec=1) hdr
 write (*, 900) (HDR(I), I = 1, 5)
 900 format (' Data base file header', 5X, 'PAR ', 2A4, ' basin '
 a , A4, A2, ' version ', A4)
 write (*, '(" Date/time ", 2A4, 1X, 2A4)') (HDR(I), I = 7, 10)
 CLAT = HDR(20)
 ALAT = 90.0 * 60.0 -CLAT
 IMIN = int(abs(ALAT) +0.5)
 IDEG = IMIN / 60
 IMIN = IMIN -60 * IDEG
 if (ALAT .ge. 0.0) then
 NS = 'NORTH'
 else
 NS = 'SOUTH'
 endif
 RES = HDR(22)
 NLT = int(HDR(21))
 write (*, 910) IDEG, IMIN, NS, RES, NLT
 910 format (5X, ' Latitude grid ', I3, ' deg ', I2, ' min ', A5,
 a ' res ', F6.1, ' min', ' cells ', I6)
C

101

 ALON = HDR(23)
 IMIN = int(abs(ALON) +0.5)
 IDEG = IMIN / 60
 IMIN = IMIN -60 * IDEG
 if (ALON .ge. 0.0) then
 EW = 'EAST'
 else
 EW = 'WEST'
 endif
 RES = HDR(25)
 NLN = int(HDR(24))
 write (*, 920) IDEG, IMIN, EW, RES, NLN
 920 format (5X, ' Longitude grid ', I3, ' deg ', I2, ' min ', A5,
 a ' res ', F6.1, ' min', ' cells ', I6)
 LREC = int(HDR(26))
 NLTCEL = int(HDR(27))
 NLTBLK = int(HDR(28))
 NLNCEL = int(HDR(29))
 NLNBLK = int(HDR(30))
 write (*, 930) LREC, NLTCEL, NLTBLK, NLNCEL, NLNBLK
 930 format (5X, ' Block structure', 4X, 'words ', I7, 5X, 'LAT ', I4,
 a I4, 5X, 'LON ', I4, I4)
c
c write record 2 (record map and first record number)
c
 buf(1) = 1.
 buf(3) = 3.
 buf(4) = 0.
 buf(5) = 19.
 buf(5) = 1.
 write (101,rec=2) buf
 read (101,rec=2) buf
 print'("Record map", 3X, I5, " entries")', int(buf(1))
c
c write record 3 (depth record)
c
 write (101,rec=3) ih1
 read (101,rec=3) ih2
 print'(20f5.0)',(real(ih2(k)), k=1,np)

c read (101, rec=2) (IBUF(K), K = 1, LRPFNS(IPTR))
c IW = (KCELL -1) / 2 +1
c NSFT = LBITS * (mod(KCELL -1, 2))
C
C Unload the cell
C
c NM = ibits (IBUF(IW), NSFT, LBITS)
c DEPTH = float(NM)

 close (101)
 stop
 end

102

The matching data for the DBV.dictionary file.

DICTIONARY 20 October 2008
 1 BOTTOM
 -1
 1 300 1 1 TESTBASIN
 -1
 1 3300.0 2400.0 10740.0 11340.0 30. 1.
 -1

