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Analytical Solutions for Open Channel Temperature Response to

Unsteady Thermal Discharge and Boundary Heating

H. S. Tang1 and T. R. Keen2

Abstract: Analytical solutions are derived for a one-dimensional model of the bulk 

temperature response of open channel flow with unsteady and nonuniform heating at an 

upstream boundary, the water surface, and the riverbed. The model describes the 

temperature variation as kinematic waves, and the solutions are explicit formulas that are 

comprised of transient terms, which play dominant roles at the upstream end, and 

equilibrium terms, which determine the temperature far downstream. It is shown that the 

time-dependence of the solutions includes solution envelopes that can be both complex as 

well as interesting because of the interplay between the upstream and lateral boundary 

conditions. The applicability of the solutions to practical problems is demonstrated for 

two cases: (1) a stream bounded at its upstream end by a dam and with a mid-reach 

inflow that is also subject to diurnal heating; and (2) Boulder Creek, Colorado, which is 

impacted by effluent released from a wastewater treatment plant. The model prediction is 

in reasonable agreement with gauged data. 

CE Database subject headings:  Analytical techniques; Water temperature; Open 

channel flow; Wave propagation. 
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Introduction

Although accurate and computationally affordable numerical simulations are becoming 

the dominant approach for predicting mass and heat transfer in various flows, analytical 

approaches continue to be used because of their irreplaceable roles in many studies (e.g., 

Taylor 1921, Fischer et al. 1979, Tang and Sotiropoulos 1999, van Dongeren and 

Svendsen 2000, Chan et al. 2006). This paper presents a model for the bulk temperature 

of water bodies such as rivers, lakes, and reservoirs that have time-dependent thermal 

forcing at their upstream ends and water surface, side bank, and bed (hereinafter referred 

to as boundaries ). The model is based on an earlier model described by Edinger et al.

(1974) and Jobson and Schoellhammer (1987) that, in addition to both variants and 

related techniques, has been applied in natural streams (e.g., Kim and Chapra 1997; Boyd 

and Kasper 2003; Westhoff et al. 2007), variable reservoir releases (e.g., Carron and 

Rajaram 2001), and river temperature control (e.g., Gu et al. 1999). A comprehensive 

description, including supporting parameters for phenomena such as air-water heat 

exchange, can be found in Edinger et al. (1974), Jobson and Schoellhammer (1987), and 

Martin and McCutcheon (1999). It should be noted, however, that the governing 

equations of the model are typically solved numerically. 

This study considers that the flow is fully mixed over its cross-section and that diffusion 

is negligible. The temperature response is physically simulated as a series of one-

dimensional kinematic waves subject to unsteady thermal boundary conditions. The 

boundary conditions at the upstream and lateral boundaries are either periodic or arbitrary 

functions of time and space. The resulting governing equation is a first-order linear 
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differential equation that can be analytically solved. It consists of an unsteady term, a 

convective term, and a source term. The solutions of the equation are direct extensions of 

the equilibrium solution of Edinger et al. (1974), which is valid far from an upstream  

boundary. It should be noted that analytical solutions for similar equations have been 

derived in other studies (e.g., Chatwin 1973; van Genuchten and Alves 1982; Shukla 

2002; Weigand 2004), which consider longitudinal diffusion and dispersion of a flow 

with an initial condition and unsteady upstream boundary condition. However, these 

studies did not consider time-dependent heating and cooling along the channel. Despite 

the simplified governing equations, the solutions presented in this paper can provide 

estimates for practical environmental problems such as the construction of a dam. 

Conceptual Model and Governing Equations

The model is depicted in Fig. 1, which illustrates a one-dimensional flow in a channel 

with variable-temperature water entering its upstream end and heat input along its 

length. Assuming that the flow is well mixed over its cross-section and ignoring diffusion, 

the governing equation for the bulk temperature can be represented using the principles 

of thermal balance as follows (e.g., Edinger et al. 1974; Jobson and Schoellhammer 1987)

                                                                                                                                   (1)
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where: t  is the time; s is the distance downstream; T(t, s) is the temperature, Tup (t) is the 

temperature at the upstream boundary, Tbd (t, s) is the lateral boundary temperature, and 

u(s) is the flow velocity; both temperature and velocity are cross-section averages. The 

bulk coefficient of heat transfer, K(defined later), is dependent on wind speed, flow depth, 

and heat capacity of the water body (Edinger et al. 1974; Jobson and Schoellhammer 

1987). In this investigation, K is a constant. The time-dependent temperature at the 

upstream end is given by Eq. (2), and the unsteady thermal input at lateral boundaries is 

given by the right hand side (RHS) of Eq. (1). 

Eq. (1) is a linear partial differential equation that describes the propagation of 

temperature waves. In order to complete the general problem stated by Eqs. (1) and (2), 

an initial condition for temperature is needed. This study considers only equilibrium 

solutions, which are independent of the initial temperature condition, , and thus no initial 

condition is used. We will present three solutions of Eqs. (1) and (2), each corresponding 

to a different set of thermal boundary conditions and flow velocity. 

Case 1: Constant velocity flow with sinusoidal time-dependent thermal 

discharge and boundary heating

Case 1 has the following flow and temperature conditions

                                                 Usu )(                                                                    (3)        

                                                 )sin()( 000   tTTtTup                                        (4)                                                 

                                                 tTTstTbd 111 sin),(                                               (5)   
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where: U is a constant velocity; 0T , 0T , 0 , and  are the average, amplitude, frequency, 

and phase of the upstream temperature fluctuation, respectively; and 1T , 1T , and 1 are  

the average, amplitude, and frequency of temperature at the lateral boundaries, 

respectively. 0T , 0T , 0,  , 1T , 1T ,  and 1  are constants. Conditions (4) and (5) are 

frequently used as approximations of measurements (e.g., Velz 1970; Edinger et al. 1974). 

For example, Eq. (4) corresponds to the temperature modulation of water released from 

detention ponds and reservoirs, whereas Eq. (5) represents diurnal heating at the water 

surface. Case 1 is a direct extension of the problem discussed by Edinger et al. (1974), 

who used Eqs. (1), (3), and (5) to describe the thermal response of natural water bodies. 

Case 2: Flow with spatially and time-dependent boundary heating

Case 2 is an extension of Case 1 but with a spatially variable lateral thermal boundary 

condition. The flow velocity and upstream temperature are represented by Eqs. (3) and 

(4), but a spatial and time-dependent temperature is used at lateral boundaries

                                               tsTTsTTstTbd 1
'

11
'

11 sin)(),(                           (6) 

where: '
1T and '

1T are the downstream gradients of average temperature and amplitude, 

respectively. Condition (6) can represent temporal and spatial changes of atmospheric 

temperature, riverbed temperature, groundwater discharge, and snowmelt at higher 

elevations (e.g., Hanrahan 2007, Westhoff 2007). 
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Case 3: Flow with spatially variable velocity and time-dependent upstream 

temperature and boundary heating

As another extension of Case 1, Case 3 incorporates a spatially variable flow velocity and 

time-dependent temperature at upstream and lateral boundaries

                                                  )()( sVsu                                                                   (7)

                                                  )()( tHtTup                                                                (8)

                                                  )sin(),(
1

1 i
i

iibd tTTstT   


                                 (9)   

The right hand side of Eq. (9) defines an arbitrary function of time if the Fourier 

trigonometric series converges. Therefore, the flow velocity, inflow temperature at an 

upstream boundary, and lateral boundary temperature are arbitrary functions of distance 

or time. 

Solutions and Discussion

Case 1 

In view of Lagrangian coordinates, ),( stT may be considered as the temperature of a 

control cross-section by letting )(tSs  , )(tS being the traveling distance of the cross-

section. The problem represented by Eqs. (1) - (5) can then be transformed to

                                                                                                                                  (10)  ttStKTtStKT
dt

tStdT
bd 0))(,())(,(

))(,(
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                             )())(,( tTtStT up                                       0tt                   (11) 

where: t0 is a reference time, and UdttdS /)( , or, UtStt /)(0  . Eqs. (10) and (11) 

comprise an initial value problem for a linear, first-order, non-homogeneous ordinary 

differential equation. The solution can be obtained as follows (see Polyanin and Zaitsev 

1995)

                                                                                                                                     

                                                                                                                                          (12)

where )/(tan 1
1

1 K  . Condition (4) has been used to eliminate t0 in obtaining Eq.  

(12). Eq. (12) is the solution for Case 1 and will be referred to as the base solution 

hereinafter. 

The base solution consists of two parts: (1) the first two terms on the RHS of Eq. (12), 

which reflect the influence of the lateral boundary condition, are the equilibrium solution 

far downstream as discussed by Edinger et al. (1974); and (2) the transient solution 

represented by the exponential term on the RHS, which results from both the upstream 

and lateral boundary conditions. The two parts and their interplay determines the 

behavior of the solution. Only the first part dominates the solution far downstream 

because the second part is damped. 
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The Case 1 temperature solution given by Eq. (12) (Fig. 2) oscillates with decreasing 

amplitude until the equilibrium region is reached far downstream. The solution exhibits a 

transient stage with a spatial scale that is about the same whether the upstream 

temperature is higher or lower than the equilibrium . Consequently, a characteristic 

transient length LT  can be defined

                                                
K

U
LT                                                                  (13)      

LT describes the effects of the upstream temperature; the transient component will reduce 

to 5% ( 3e ) in strength at a distance downstream of 3LT, which is located at sK/U=3 in 

Fig. 2. 

The solution envelope for Case 1 (see Fig. 2) is also damped downstream, but the 

damping is not monotonic. The cause of this behavior can be explained as follows. If the 

frequency of the upstream temperature oscillation is the same as that of the lateral 

boundary temperature ( 10   ) the base solution, Eq. (12), becomes

                                                                                                                        (14)                  
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where A is the amplitude of the solution envelope. This term oscillates downstream 

because of the cosine term in Eq. (15), but it is slowly damped because of the exponential 

term. If we define a characteristic envelope length as

                                    
1

U
LE                                                                      (19)
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it can be seen from Eq. (15) that the envelope wavelength is EL2 , which is determined 

by the velocity and temperature frequency. The envelope in Fig. 2 has a spatial 

wavelength of UKLE /2 =0.84.

An interesting situation occurs in applications such as river temperature control when the 

fluctuating component of the upstream temperature, as given in Eq. (4), is equal to the 

equilibrium temperature far downstream; 2
1

2
10 /  KKTT , 10   , and 1  . 

For example, using the parameters of Fig. 2a and setting the upstream temperature 

fluctuation in this way, the resulting solution reveals that the envelope appears as parallel 

rather than wavy lines (Fig. 3). In fact, the base solution, Eq. (12), now becomes

                                                                                                                       (20)

The amplitude of the temporal term (second term on the RHS) is a constant and thus the 

extremes of the solution will not oscillate, and the temperature envelope is defined by 

parallel lines.

Upstream and downstream time histories (Fig. 4) of the Case 1 solution in Fig. 2a 

demonstrate the superimposed effects of the upstream and lateral boundary conditions. 

The resulting upstream temperature oscillation consists of multiple frequencies whereas 

the downstream solution is dominated by the periodic heating and has a single frequency. 
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Case 2

After a tedious calculation similar to that for Eq. (12), the solution of Case 2 becomes
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where )/(2(tan' 2
1

2
1

1
1    KK ). This solution will reduce to the base solution of Eq. 

(12) under conditions (3), (4), and (5). The solution of Eq. (21) with the flow velocity and 

upstream boundary condition for temperature given in Fig. 2a, but with temporally and 

spatially variable lateral boundary heating, is plotted in Fig. 5. Physically, this boundary 

condition produces an increased downstream temperature compared to Fig. 2a. 

Case 3

In this situation, ))((/)( tSVdttdS  , or, 
)(

00 ))(/1(
tS

drrVtt . By a straightforward 

derivation similar to that for the base solution, the solution is obtained as
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                                                                                                                                    (22)

where )/(tan 1 Kii   . The behavior of Eq. (22) is illustrated with three examples that 

use the parameters given in Fig. 2a, but with different flow velocity, upstream 

temperature, and lateral boundary condition. The first example (Fig. 6a) demonstrates the 

effect of a spatially variable flow velocity. The second example (Fig. 6b) illustrates a 

different upstream temperature oscillation and Fig. 6c employs a more complex lateral 

boundary condition. 

Applications 

Open channel flow with time-dependent discharge and surface heating

The solution of Eq. (21) is now applied to a stream or river section that is bounded at its 

upstream end by a dam with continuous discharge but variable water temperature. The 

stream also has diurnal heating. The river’s mean cross-sectional temperature can be 

approximated by a lateral boundary condition that is not only a sinusoidal function of 

time, but also a spatial variable because of a change in air temperature along its length. 

The temperature at the dam is specified as having the same frequency as that of the 
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surface heating but with a phase delay. The frequency is 1/24 hr-1= 7.2710-5 s-1. The 

river just downstream from the dam has a mean flow velocity of 1 m s-1, a water depth of 

5 m, a mean temperature of 15 oC, and a daily fluctuation of 3 oC. The air has an average 

temperature of 20 oC at the dam and 25 oC at 500km downstream with a linear increase, 

an amplitude of 15oC and a phase lag of  –1.5 rad. 

This problem requires calculation of the heat transfer coefficient, K, which

Edinger et al. (1974) derived as

                                                         
hC

K
K

p
                                                    (23)

where:  is water density (1000 kg m-3); K is the air-water exchange coefficient related 

to factors including wind speed (100 W m-2 C-1); Cp is the heat capacity of water (4186 J 

kg-1 oC-1);  and h is the water depth (5 m). Based on these parameters, K equals 4.810-6

s-1. The analytical solution is plotted in Fig. 7, with the upstream and lateral boundary 

conditions given in the figure caption. As estimated by Eq. (19), the envelope wavelength 

2 LE is 86 km. The transient length 3LT is obtained from Eq. (13) as 625 km, suggesting 

that a river with these characteristics would not approximate the equilibrium within the 

distance shown in the figure. 

Consider a multiple branch flow; suppose the channel has a mid-reach inflow at s = 200 

km that raises the temperature by 5 oC and reduces the average flow speed to 0.5 m s-1. 

The solution for the section starting from the location of the mid-reach discharge to its 

downstream terminus becomes (s  200)
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where H(t) equals T(t, 200), which is given by Eq. (21).  Eq. (24) is obtained from Eq. 

(21) by replacing its upstream temperature terms with [H(t)+5]. The solution of Eq. (24) 

is also shown in Fig. 7, from which it is seen that the solution is significantly changed 

downstream from the mid-reach discharge because of the additional inflow. 

  Creek flow with effluent from a wastewater treatment plant

The analytical solution of Eq. (22) is applied to Boulder Creek, Colorado, which is 

impacted by effluent discharge from a wastewater treatment plant. The flow is shallow, 

highly transient, and well mixed. A complete description of the flow and a 

comprehensive 24-hour survey can be found in Windell et al. (1988). The creek is 13.7 

km long and 0.2 to 0.6 m deep, the velocity ranges from 0.12 to 0.4 m s-1, and the creek 

temperature varies with time. The air temperature, wind speed, solar radiation, and other 

conditions change diurnally. The measurements of creek temperature were made at four 

stations located at 0.6 km, 5.0 km, 9.0 km, and 13.7 km downstream from the plant.

Using the measured flow rates and creek cross-sectional areas (Windell et al., 1988), it is 

obtained that u = 0.27, 3.10, 0.13, and 0.13 m s-1 at station 0.6, 5.0, 9.0, and 13.7 km, 

respectively. From the survey, it is also determined that 15bdT )1027.7sin(10 5 t oC  
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(t is in seconds), K =35 W m-2 C-1, and h = 0.4 m. Here bdT is obtained by 

approximating the effects of air temperature and solar radiation. Linear distributions of 

velocity are assumed between adjacent stations and Eq. (23) is used for the heat transfer 

coefficient. Letting station 0.6 km to be the upstream end and approximating the 

observed temperature with 17upT )5.11027.7sin(3 5   t oC (Fig. 8a), the solution of 

Eq. (22) for the mean temperature at the other stations is given in Figs. 8b, 8c, and 8d. It 

is seen that the analytical solution is a reasonable estimate of the temperature fluctuations 

measured at the rest of stations; the analytical solution predicts ranges and phases for the 

creek temperature similar to the observations. The largest difference between the 

prediction and the measurement occurs at furthest downstream station (Fig. 8d). 

Although the temperature predicted by the analytical solution is not as accurate as that 

from a numerical model by Kim and Chapra (1997), the errors of the two approaches are 

of the same magnitude in comparison with the measurement. The results are promising 

given that the flow and temperature are affected by many factors that the analytical 

solution excludes, such as the material comprising the creek bed, the thermal interaction 

between water and sediment, and the three-dimensional character of the flow. 

Concluding Remarks

This paper presents a one-dimensional temperature response model and its analytical 

solutions for flows with a time-dependent upstream boundary condition for temperature, 

and temporally and spatially variable heating along lateral boundaries. The solutions are 
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expected to be useful in providing insight into the physics of the flows, conducting 

parameter studies, and setting up benchmark solutions for testing simulation software. As 

illustrated in the previous section, the solutions produce reasonable estimates of the 

equilibrium temperature distribution for real streams. 

The analytical solutions are valid for single branches of rivers. However, as shown in the 

first example of the previous section, they can be applied to multiple branch rivers. In 

order to account for flow variability and boundary conditions, a channel can be divided 

into several sub-reaches with representative values for the temperature variation and 

heating; the solutions can then be applied to the individual sub-reaches. The analytical 

solutions could also be useful in estimating contaminant transport problems such as that 

in a stream receiving detention water (e.g., Wang et al. 2004). In addition to open channel 

flows, it is anticipated that the solutions are applicable to heat and mass transfer in other 

areas (e.g., Morro 1977; Maiani 2003), as long as they are one-dimensional kinematic 

wave phenomena. The analytical solutions are explicit formulas consisting of simple 

functions with a number of controlling parameters, but the calculations of the solutions 

can be tedious. We propose as future work to make an Internet accessible solution tool, 

such as a small computer code or Excel spread sheet, which allows users to easily set up 

inputs and obtain solutions.

It should be noted that the analytical solutions are designed for equilibrium when a 

balance is achieved between the time-dependent temperature of inflow at upstream ends 

and temporally and spatially variable heating along lateral boundaries. The solutions will 
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not be applicable when the effects of the initial temperature distributions are important. 

Moreover, they exclude diffusion effects, which are often important in practice. In this 

regard, it is expected that the solutions’ prediction could be problematic. For instance, 

they will tend to predict larger temperature extremes as diffusion increases in importance. 

Also, the solution accuracy is limited because factors such as evaporation and the three-

dimensionality of the problems are neglected. To include these factors, a numerical 

approach must be adopted (e.g., Jobson and Schoellhammer 1987; Kim and Chapra 1997; 

Tang et al. 2008). 

Acknowledgement

The first author was partially supported by Pacific Northwest National Laboratory and 

National Research Council Research Associateship Award. The second author was 

supported by the Office of Naval Research through program element 0601153N. 

Discussions with Drs. J. E. Edinger, P. Roberts, M. Malik, and Z. Yang are 

acknowledged. The authors are grateful to the editor and the anonymous reviewers for 

their valuable suggestions.  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

18

Notation

The following symbols are used in this paper:

A                      = amplitude in Eq. (14);

B                      = parameter in Eq. (15);

Cp                               = heat capacity;

h                       = water depth;   

H(t)                  =  time-dependent upstream boundary condition for temperature; 

LE                               = characteristic envelope wavelength;  

LT                                 = characteristic transient length;

i                       = integers, 1;

K                      = coefficient of heat transfer; 

K              = air/water exchange coefficient;  

s                       = distance downstream;

S(t)                  = traveling distance of cross-section; 

t                        = time;

0t                      = reference time;

0T                       = upstream temperature oscillation amplitude;   

0T                       = average upstream inflow temperature; 

1T                       = lateral boundary oscillation amplitude for temperature;

'
1T                       = downstream gradient of the amplitude of the lateral boundary condition 

temperature;
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iT                       = amplitude of lateral boundary condition temperature due to component 

i;

1T                       = mean lateral boundary condition for temperature;

'
1T                      = downstream gradient of mean lateral boundary temperature;

T(t,s)                 = mean cross-sectional temperature; 

Tbd(t,s)              = lateral boundary condition for temperature;

Tup(t)                 = inflow temperature at an upstream boundary;  

u(s)                  = cross-sectional mean flow velocity;

U                       = a constant flow velocity;

V(s)                   = a variable flow velocity;

              = phase of temperature oscillation at an upstream boundary;

i                     = phase of lateral boundary condition oscillation for temperature due to 

component i;      

0                     = frequency of temperature oscillation at an upstream boundary;

1                      = frequency of temperature oscillation at a  lateral boundary;

i                      = frequency of lateral boundary temperature oscillation due to component 

i;

1                      = phase in Eq. (12);

i                      = phases in Eq. (22);

'1                     = phase in Eq. (21); 

 ,                  = phases in Eqs. (14) and (15);    

                       = water density.
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Figure Captions

Fig. 1. Schematic representation of the flow.

Fig. 2.  Base solution of Eq. (12). U= 0.1 m s-1, 1T =50 oC, and K = 0.04 s-1.

)3.0sin(4.01/ 1 tTTbd  . (a) )5.12sin(2.04.0/ 1  tTTup .  (b) 

)5.12sin(2.06.1/ 1  tTTup

Fig. 3. Base solution of Eq. (12) with the upstream boundary condition determined by the 

equilibrium temperature far downstream. U = 0.1 m s-1, 1T =50 oC, and K = 0.04 s-1. 

)438.13.0sin(0326.04.0/ 1  tTTup , )3.0sin(4.01/ 1 tTTbd 

Fig. 4. Time histories of the base solution of Eq. (12) at upstream and downstream 

locations. U= 0.1 m s-1, 1T =50 oC, and K = 0.04 s-1. )5.12sin(2.04.0/ 1  tTTup , 

)3.0sin(4.01/ 1 tTTbd 

Fig. 5. Solution of Eq. (21). U=0.1 m s-1, 1T =50 oC, and K = 0.04 s-1. 1/TTbd

s06.01 )3.0sin()06.04.0( ts , and  4.0/ 1TTup )5.12sin(2.0 t
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Fig. 6. Solution of Eq. (22). U=0.1 m/s, 1T =50 oC, and K = 0.04 s-1. (a) 

)5/3sin(3.01/)( sUsu  , )5.12sin(2.04.0/ 1  tTTup , and )3.0sin(4.01/ 1 tTTbd  . 

(b) 1/)( Usu , 2))2sin(1(04.04.0 tTup  , and )3.0sin(4.01 tTbd  . (c) 1/)( Usu , 

)5.12sin(2.04.0/ 1  tTTup , and )3.0sin(4.01/ 1 tTTbd  )11.0sin(2.0  t

Fig. 7. Temperature response of open-channel flow with a mid-reach inflow.  U = 1 m s-1, 

15upT )5.11027.7sin(3 5   t oC, )1027.7sin(151020 55 tsTbd
  oC, 

'1T = 510 oC m-1 and K = 4.810-6 s-1. t and s are in seconds and meters, respectively. An 

inflow is located at s=200 km, where it raises temperature of the flow by 5 oC and 

reduces the velocity to U = 0.5 m s-1 ( 200s km)

Fig. 8. Temperature response of a creek flow with effluent from a wastewater treatment 

plant. Define Error=
2/1

2

1

]/)[()/1( 











i
m

n

i

i
m

i TTTn , where n is total number of 

measurements during the 24 hrs, and i
mT and iT are respectively the ith measurement 

data and the corresponding predicted temperature. (a) Station located at 0.6 km, 

Error=0.047. This location is set up as the upstream end, and the solid line in the figure is 

actually the upstream condition of the analytical model. (b) Station located at 5.0 km, 

Error=0.098. (c) Station located at 9.0 km, Error=0.056. (d) Station located at 13 km, 

Error=0.13
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