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a b s t r a c t

This paper presents a framework for synchronously coupling wave, current, sediment
transport, and seabed morphology for the accurate simulation of multi-physics coastal
ocean processes. The governing equations, which represent models that are commonly
adopted in practical simulations, are discretized using finite-difference methods. The
resulting system is validated against analytical solutions. In order to test the performance
of the proposed framework and the numerical methods, dam-break flow over a mobile-bed
and evolution of a wave-driven sand dune are simulated. The interactions among waves,
currents, and seabed morphology are illustrated.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Nearshore hydrodynamics has a direct impact on societal issues such as coastal engineering, environmental protection,
recreation, and military operations (e.g., [1,2]). Wave, current, sediment transport, and morphology are important processes
within coastal and estuarine settings, and consequently a number of models have been developed to simulate and predict
their behaviors in the past few decades. For example, models have been designed to forecast global currents, salinity, sea
level, temperature, and turbulence distributions (e.g., [3,4]) and nearshore wave-driven currents (e.g., [5]). In addition, a
number of models have been designed to simulate surface wave propagation (e.g., [6,7]). Models have also been proposed
to predict sediment transport and seabed morphology (e.g., [8,9]).

Since actual coastal ocean flows are multi-physical processes with complex interactions among hydrodynamic, sediment
transport, and morphological phenomena, the consideration of feedback between these individual physical phenomena is
necessary to accurately simulate the flows. Model coupling has been implemented for the prediction of many actual prob-
lems; for instance, a wave model has been incorporated into a primitive-equation model to study wave-current interaction
[10]. This study demonstrated that decoupling currents and waves leads to inaccurate water elevation prediction. Wave and
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morphology models have been added into the Delft Hydraulics model (DELFT3D) (e.g., [9]). Efforts have also been made to
couple the Simulating WAves Nearshore (SWAN) model with a current model to simulate sediment transport (e.g., [11]).
Nevertheless, strictly speaking, until now the coupling between currents, waves, sediment transport, and morphology has
been non-synchronic or merely partially implemented. For example, the wave computation is not simultaneously carried
out with that for currents and morphology in simulations described in [9]; also, in coupling of SWAN with the Advanced Cir-
culation (ADCIRC) model [12], the wave component is updated only once in solving the current and sediment transport
equations.

In order to understand complex phenomena within coastal ocean flows, it is necessary to fully couple waves, current, and
sediment transport/seabed morphology. To this end, a number of investigations have been made on numerical methods for
such coupling. Rogers et al. [13] designed a Godunov-type method, together with an adaptive grid scheme, to simultaneously
simulate ray-type wave–current interaction. Murillo et al. [14] combined inviscid shallow water and solute equations into a
single system and proposed a finite volume method based on the Roe average. Hudson and Sweby [15,16] made a system-
atical study of different formulations to couple currents and morphology. Rosatti and Fraccarollo [17] constructed a Godunov
scheme for currents over a mobile-bed. An important issue is discretization of the source terms in the coupling systems (e.g.,
[18]). A so-called C-property is proposed to enforce balance between numerical fluxes and non-homogeneous source terms
in cases of steady flows (e.g., [19]). Nevertheless, in previous investigations, the coupling has been usually between two or,
occasionally, three components among wave, current, sediment transport, and morphological processes.

In order to accurately take their interactions into account, this paper presents a framework to synchronously couple wave,
current, sediment transport, and morphological processes. This coupled system consists of governing equations that repro-
duce typical models used for both research and engineering problems. The wave action equation is used for wave propaga-
tion. The shallow water equations are employed to describe currents and storm surge. Sediment transport is described by a
convection–diffusion equation. Morphology evolution is depicted by the Exner equation. In this paper, all of these equations
are discretized using common schemes, which advance in time synchronously, or with same time steps. The resulting system
is validated using analytical solutions. In order to demonstrate the performance of the framework, simulations are presented
of dam-break flow over a mobile-bed and wave-driven flow over a sand dune.

The paper is organized as follows. Section 2 presents the coupled system with governing equations for waves, currents,
sediment transport, and morphology, together with a discussion on their coupling. Section 3 deals with discretization of the
system. Section 4 discusses validation of the system and two example simulations. Section 5 concludes the paper.

2. Governing equations

The governing equation for wave action is given in a conservation form as (e.g., [20])

oN
ot
þ oCgxN

ox
þ oCgyN

oy
þ oCrN

or
þ oChN

oh
¼ S

r
; ð1Þ

where t is the time, x and y are the Cartesian coordinates, r is the frequency, and h is the angle of the wave propagation direc-
tion. N is the wave action, Cgx and Cgy are respectively the wave speed in x- and y-direction in the physical space (x, y), Cr and
Ch are respectively wave speed in r- and h-direction in the spectrum space (r, h). S is a source term that represents the com-
bined effects of wind and other processes. Using linear wave theory, it has been shown for short waves that (e.g., [20])

Cgx ¼
g

2r cos hþ U; ð2aÞ

Cgy ¼
g

2r
sin hþ V ; ð2bÞ

Cr ¼ �
r
2

oU
ox

cos2 hþ oU
oy
þ oV

ox

� �
sin h cos hþ oV

oy
sin2 h

� �
; ð2cÞ

Ch ¼ �
oU
oy

cos2 hþ oU
ox
� oV

oy

� �
sin h cos hþ oV

ox
sin2 h; ð2dÞ

and for long waves that

Cgx ¼
ffiffiffiffiffiffi
gH

p
cos hþ U; ð3aÞ

Cgy ¼
ffiffiffiffiffiffi
gH

p
sin hþ V ; ð3bÞ

Cr ¼ �
r
2

oU
ox
þ oV

oy

� �
� r oU

ox
cos2 hþ oU

oy
þ oV

ox

� �
sin h cos hþ oV

oy
sin2 h

� �
; ð3cÞ

Ch ¼
r

2H
oH
ox

sin h� oH
oy

cos h

� �
� oU

oy
cos2 hþ oU

ox
� oV

oy

� �
sin h cos hþ oV

ox
sin2 h: ð3dÞ

In the above, U and V are the current velocities in x- and y-directions, respectively, H is the water depth, and g is the grav-
ity constant. For convenience in computation, only short and long wave situations are considered here. Short waves are de-
fined as those with kH > p, and long waves as those with kH < p/10. Here k is the wave number. For further details, readers
are referred to [20,21].

2936 H.S. Tang et al. / Commun Nonlinear Sci Numer Simulat 14 (2009) 2935–2947



Author's personal copy

The shallow water equations consist of the equation of mass conservation (e.g., [20])
oH
ot
þ oHU

ox
þ oHV

oy
¼ 0; ð4aÞ

and the equations of momentum conservation

oHU
ot
þ oHU2

ox
þ oHUV

oy
¼ �gH

og
ox
þ o

ox
2mtH

oU
ox

� �
þ o

oy
mtH

oU
oy
þ oV

ox

� �� �
þ ss

x � sb
x

q
� 1

q
oSxx

ox
þ oSxy

oy

� �
; ð4bÞ

oHV
ot
þ oHUV

ox
þ oHV2

oy
¼ �gH

og
oy
þ o

ox
mtH

oU
oy
þ oV

ox

� �� �
þ o

oy
2mtH

oV
oy

� �
þ

ss
y � sb

y

q
� 1

q
oSyx

ox
þ oSyy

oy

� �
; ð4cÞ

where mt is the turbulence eddy viscosity, and q is the density. g is the water surface elevation, ss
x and ss

y are the surface fric-
tion stresses in x- and y-directions, respectively, and sb

x and sb
y are the bottom friction stresses in x- and y-directions, respec-

tively. Sxx, Sxy, and Syy are the radiation stresses resulting from waves. It is readily seen that, for the case of a flat bottom, Hog/
ox = o(H2/2)/ox and Hog/oy = o(H2/2)/oy, and the shallow water equations will be in conservation forms with the friction
stresses as source terms.

The turbulence eddy viscosity is calculated as follows (e.g., [22,23]):

mt ¼ atgn2H2=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

q
; ð5Þ

where at is a constant ranging from 0.3 to 1, n is the Manning friction coefficient. It is proposed to treat wave effects on bot-
tom friction as follows (e.g., [24]):

sb
x ¼ qgn2H�1=3U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

q
þ 1

2
qfwU2

w; sb
y ¼ qgn2H�1=3V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

q
1
2
qfwU2

w; ð6Þ

where Uw = Ar/Sin h(kH), the near-bed wave orbit velocity, and fw is the wave friction factor. Here, A is the wave amplitude.
In the case of short waves, kH� 1 and r ¼

ffiffiffiffiffi
gk

p
, thus Uw � 0, and

sb
x ¼ qgn2H�1=3U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

q
; sb

y ¼ qgn2H�1=3V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

q
: ð7aÞ

In the case of long waves, kH� 1 and r ¼ k
ffiffiffiffiffiffi
gH

p
, thus Uw � A

ffiffiffiffiffiffiffiffiffi
g=H

p
. Since E = qg A2/2 (E is the wave density and it equals

N/r), Uw �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N=qrH

p
. As a result, one has

sb
x ¼ qgn2H�1=3U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

q
þ fwN

rH
; sb

y ¼ qgn2H�1=3V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

q
þ fwN

rH
: ð7bÞ

For the surface stress, a widely used formula is (e.g., [25,26])

ss
x ¼ CDqairWxW; ss

y ¼ CDqairWyW; ð8aÞ

where Wx and Wy are wind speed in x- and y-directions, respectively, W is the total wind speed, W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

x þW2
y

q
, qair is the

air density, and the drag coefficient is given as

CD ¼
1:2875� 10�3; W 6 7:5 m=s;

ð0:8þ 0:065WÞ � 10�3; W > 7:5 m=s:

(
ð8bÞ

Assuming linear wave theory, the radiation stresses for short waves are given as (e.g., [20])

Sxx ¼
g
2

ZZ
N cos2 h drdh; ð9aÞ

Sxy ¼ Syx ¼
g
2

ZZ
N sin h cos h drdh; ð9bÞ

Syy ¼
g
2

ZZ
N sin2 h drdh; ð9cÞ

and for long waves,

Sxx ¼ g
ZZ

Nðcos2 hþ 0:5Þ drdh; ð10aÞ

Sxy ¼ Syx ¼ g
ZZ

N sin h cos h drdh; ð10bÞ

Syy ¼ g
ZZ

Nðsin2 hþ 0:5Þ drdh: ð10cÞ

The sediment transport equation is a convection–diffusion equation with a source term, for which the conservation form
is (e.g., [22])

oHC
ot
þ oHUC

ox
þ oHVC

oy
¼ Dc

o2HC
ox2 þ

o2HC
oy2

 !
� axðC � C�Þ; ð11Þ
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where C is the concentration for sediment, C* is the sediment concentration under equilibrium conditions, Dc is the diffusivity
coefficient, a is the coefficient of suspended load, and x is the settling velocity. The seabed morphology is controlled by the
Exner equation (e.g., [27,28]):

oHb

ot
þ oBUðU2 þ V2Þq

ox
þ oBVðU2 þ V2Þq

oy
¼ 0: ð12Þ

Here Hb is the elevation of the seabed, and B and q are constants. Typically, B depends on flow velocity, water depth, sediment
grain sizes, and other factors, and q is usually in the range of 0.5 6 q 6 1.5, g = H + Hb. In this paper, q = 1 is used.

Eqs. (1), (4), (11) and (12) comprise a coupled non-homogeneous system of conservation laws, which reproduces the
framework of well-known models. Eqs. (1) and (4) can be viewed as a result of flow decomposition in the Navier–Stokes
equations (e.g., [20]). The wave action Eq. (1) is employed in models such as in SWAN [6]. The shallow water Eqs. (4) are
used for models such as SHORECIRC [5]. The sediment transport Eq. (11) and morphology evolution Eq. (12) are also widely
employed in engineering (e.g., [22,29]).

The interactions among wave, current, sediment transport, and morphology can be seen in the system equations; in Eqs.
(2) the wave field is coupled with the current through the velocity, U and V. As indicated in Eqs. (4) the current is affected by
the wave field through the radiation and bottom stresses, Sxy, Syy and sb

x ; sb
y , respectively, and by sediment transport and

morphology evolution through turbulence eddy viscosity mt and bottom elevation Hb. Both sediment transport and morphol-
ogy are directly related to the current through the velocity field as shown in Eqs. (11) and (12). It should be noted that, as
seen in Eqs. (2) because wave action occurs in spectral space as well as physical space, each term on the right hand side of Eq.
(1) is coupled with the current through the velocity field. Furthermore, sediment concentration and morphology are directly
related to each other (e.g., [22]). In this paper, however, in view that their governing Eqs. (11) and (12) have different un-
knowns, which are sediment concentration and bed elevation, sediment transport and morphology are indirectly coupled
through the velocity field.

3. Numerical methods

The coupled system of waves, currents, sediment transport, and morphology are discretized as follows. For wave action
Eq. (1), the following first-order accurate extension of the one-dimensional Lax–Friedrich scheme [30] is used:

Nnþ1
i ¼ 1

8

X
i0 ;j0 ;k0 ;l0¼�1;1

Nn
iþi0 ;jþj0 ;kþk0 ;lþl0 �

Dt
2

DiðCgxNÞni;j;k;l �
Dt
2

DjðCgyNÞni;j;k;l �
Dt
2

DkðCrNÞni;j;k;l �
Dt
2

DlðChNÞni;j;k;l

þ Dt
S
r

� �n

i;j;k;l
; ð13Þ

where Dt is the time step, Dm is the central difference operator with respect to the m-direction (m = i,j,k,l). For instance,
Di()i,j,k,l = (()i+1,j,k,l-()i�1,j,k,l)/(2Dx), Dx being the grid spacing in the x-direction. The shallow water Eqs. (4) and the sediment
transport Eq. (11) are solved using the following MacCormack scheme [31]:

H�i;j ¼ Hn
i;j � DtDi�ðHUÞni;j � DtDj�ðHVÞni;j; ð14aÞ

ðHUÞ�i;j ¼ ðHUÞni;j � DtDi�ðHU2Þni;j � DtDj�ðHUVÞni;j � gDtHn
i�1=2;jDi�ðH þ HbÞni;j þ 2DtDiþððmtHÞni�1=2;jDi�Un

i;jÞ

þ DtDjþððmtHÞni;j�1=2Dj�Un
i;jÞ þ DtDjððmtHÞni;jDiV

n
i;jÞ þ

Dtðssn

xi;j
� sbn

xi;j
Þ

q
� Dt

q
Di�Sn

xxi;j
� Dt

q
Dj�Sn

xyi;j
; ð14bÞ

ðHVÞ�i;j ¼ ðHVÞni;j � DtDi�ðHUVÞni;j � DtDj�ðHV2Þni;j � gDtHn
i;j�1=2Dj�ðH þ HbÞni;j þ DtDiððmtHÞni;jDjU

n
i;jÞ

þ DtDiþððmtHÞni;j�1=2Di�Vn
i;jÞ þ 2DtDjþððmtHÞni;j�1=2Dn

j�Vn
i;jÞ þ

Dtðssn

yi;j
� sbn

yi;j
Þ

q
� Dt

q
Dn

i�Sn
xyi;j
� Dt

q
Dn

j�Sn
yyi;j
; ð14cÞ

and

Hnþ1
i;j ¼

1
2
ðHn

i;j þ H�i;jÞ �
Dt
2

DiþðHUÞ�i;j �
Dt
2

DjþðHVÞ�i;j; ð14dÞ

ðHUÞnþ1
i;j ¼

1
2
ððHUÞni;j þ ðHUÞ�i;jÞ �

Dt
2

DiþðHU2Þ�i;j �
Dt
2

DjþðHUVÞ�i;j �
gDt

2
H�iþ1=2;jDiþðH þ HbÞ�i;j

þ DtDiþ ðmtHÞ�i�1=2;jDi�U�i;j
� �

þ Dt
2

Djþ ðmtHÞ�i;j�1=2Dj�U�i;j
� �

þ Dt
2

Dj ðmtHÞ�i;jDiV
�
i;j

� �

þ
Dtðss�

xi;j
� sb�

xi;j
Þ

2q
� Dt

2q
DiþS�xxi;j

� Dt
2q

DjþS�xyi;j
; ð14eÞ
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ðHVÞnþ1
i;j ¼

1
2
ðHVÞni;j þ ðHVÞ�i;j
� �

� Dt
2

DiþðHUVÞ�i;j �
Dt
2

DjþðHV2Þ�i;j �
gDt

2
H�i;jþ1=2DjþðH þ HbÞ�i;j

þ Dt
2

Di ðmtHÞ�i;jDjU
�
i;j

� �
þ Dt

2
Diþ ðmtHÞ�i�1=2;jDi�V�i;j
� �

þ DtDjþ ðmtHÞ�i;j�1=2Dj�V�i;j
� �

þ
Dtðss�

yi;j
� sb�

yi;j
Þ

2q
� Dt

2q
Di�S�xyi;j

� Dt
2q

Dj�S�yyi;j
: ð14fÞ

ðHCÞ�i;j ¼ ðHCÞni;j � DtDi�ðHUCÞni;j � DtDj�ðHVCÞni;j þ DtDiþ Di�ðHCÞni;j
� �

þ DtDjþðDj�ðHCÞni;jÞ; ð15aÞ

ðHCÞnþ1
i;j ¼

1
2
ððHCÞni;j þ ðHCÞ�i;jÞ �

Dt
2

DiþðHUCÞ�i;j �
Dt
2

DjþðHVCÞ�i;j �
Dt
2

DiþðDi�ðHCÞ�i;jÞ �
Dt
2

DjþðDj�ðHCÞ�i;jÞ: ð15bÞ

In the above, Dm�()i,j and Dm+()i,j (m = i,j,k, l) are backward and forward differences, respectively. The values at half nodes are
evaluated using an arithmetic average. For example, ()i+1/2,j = (()i,j + ()i+1,j)/2. The morphology Eq. (12) is discretized using the
following scheme:

Hnþ1
bi;j
¼ Hn

bi;j
� BDtDi½UðU2 þ V2Þ�ni;j � BDtDj½VðU2 þ V2Þ�ni;j: ð16Þ

The time steps for integrating the wave, current, and sediment transport/morphology equations are, respectively

Fig. 1. Numerical solution of wave propagation given by (17a) and (17b). T = 3.5 s. Error kN � Nak1 = 3.37 � 10�2, where N and Na are respectively
numerical and analytical solution.
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ðDtÞ1 ¼min
i;j

CFL 	 Dx
Cgxi;j;k;l

;
CFL 	 Dy
Cgyi;j;k;l

;
CFL 	 Dr

Cri;j;k;l

;
CFL 	 Dh

Chi;j;k;l

( )
; ð17aÞ

ðDtÞ2 ¼min
i;j

CFL 	 Dx
jUi;jj þ

ffiffiffiffiffiffiffiffiffi
gHi;j

p ;
CFL 	 Dy

jVi;jj þ
ffiffiffiffiffiffiffiffiffi
gHi;j

p ;
von 	minðDx2;Dy2Þ

mti;j

( )
; ð17bÞ

ðDtÞ3 ¼min
i;j

CFL 	 Dx
jUi;jj

;
CFL 	 Dy
jVi;jj

� �
; ð17cÞ

where CFL and von are constants. The time step for the coupled system is

Dt ¼minfðDtÞ1; ðDtÞ2; ðDtÞ3g: ð17dÞ

4. Numerical examples

4.1. Validation

The numerical methods presented in the previous section and the corresponding computer code are validated using
various test problems with analytical solutions. The first test problem is long wave propagation in a uniform current with

Fig. 2. Solution for surge problem Eqs. (18a) and (18b). T = 2 s. Lines – exact solutions, circles – numerical solutions.
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U ¼ 1 m=s; V ¼ 1 m=s; H ¼ 1 m; ð18aÞ

and the source term given as

S ¼ 4a5Nððx� tÞ2 þ ðy� tÞ2 � t2Þðxþ y� 2t � a1t � Cgxðx� tÞ � Cgyðy� tÞÞ

þ a6N
1

1� expð�a6tÞ þ
1
r
� 2a2ðr� a3Þ

� �
þ a4NCh cos a4t

2þ sin a4h
: ð18bÞ

A solution of Eq. (1) is

N ¼ a7ð1� expf�a6tgÞð2þ sin a4hÞ expf�a2ðr� a3Þ2g expf�a5ððx� tÞ2 þ ðy� tÞ2 � a1t2Þ2g; ð18cÞ

which is a moving circular ring with a diameter increasing with time. Let a1 = 1, a2 = 001, a3 = 2.5, a4 = 1, a5 = 0.01, a6 = 0.05,
a7 = 1, Dx, Dy = 0.4 m, and CFL = 0.5. The numerical solution is plotted in Fig. 1 with the error given in the figure caption.

The second test problem is a one-dimensional surge-current without viscosity, surface, and bottom friction. The initial
condition is

x 6 0 : U ¼ 2 m=s V ¼ 0 m=s; H ¼ 5 m; ð19aÞ
x > 0 : U ¼ 2 m=s; V ¼ 0 m=s; H ¼ 3 m: ð19bÞ

Letting Dx = Dy = 0.2m and CFL = 0.95, the numerical solution is obtained as shown in Fig. 2, together with the corresponding
exact solution (e.g., [32]).

Fig. 3. (a) Numerical solution for sediment transport from a point source. T = 4 s. Error kC � Cak1 = 1.35 � 10�2, where C and Ca are respectively numerical
and analytical solution. (b) Morphology evolution. T = 5 s. Lines – exact solutions, circles – numerical solutions.
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The third test problem is an initial value problem for sediment transport with a point source that has the following solu-
tion ([33]):

C ¼ K
4pDct

exp �ðx� UtÞ2

4Dct
� ðx� VtÞ2

4Dct

" #
: ð20Þ

The point source is initially located at (x,y) = (0,0), and K = 50, U, V = 1 m/s, and Dc = 1 m2/s. With Dx, Dy = 0.4 m,
CFL = 0.95, and von = 0.2, the numerical solution is obtained as shown in Fig. 3a. The last test problem is an initial value prob-
lem of one-dimensional seabed evolution from initial elevation
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Fig. 4. Solutions for water surface and bed morphology elevations (z) of dam-break flow over mobile-bed.
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Hb ¼ 1þ cos
px
10

� �
; ð21aÞ

with BU(U2 + V2)q = 1/H in Eq. (12) (e.g., [29]). An exact solution is (e.g., [27,29])

Hb ¼ 1þ cos
p
10

x� t

ð3� HbÞ2

 ! !
: ð21bÞ

The numerical solution is presented in Fig. 3b with Dx = 0.2 m, and CFL=0.95. All of these tests indicate that the numerical
methods and the computer code work correctly.

Fig. 5. Solution of wave action for the wave-driven dune problem.
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4.2. Applications

The first application represents the interaction between surge and bed morphology in an idealized dam-break experiment
over a movable and initially flat bed, as described by Spinewine and Zech [34]. A horizontal glass-walled flume of rectangular
cross sectional geometry was used. The initial bed profile featured flat horizontal reaches upstream and downstream of a
gate, with a saturated bed of constant thickness. In the upstream reach, a water layer of 0.1 m was retained and released
at time 0 s by raising the gate rapidly. The problem is formulated as the following initial value problem:

x 6 0 : U ¼ 0 m=s; V ¼ 0 m=s; H ¼ 0:1 m; Hb ¼ 0 m; ð22aÞ
x > 0 : U ¼ 0 m=s; V ¼ 0 m=s; H ¼ 0:002 m; Hb ¼ 0 m: ð22bÞ

Fig. 6. Solution of current for the wave-driven dune problem.
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Here a thin layer of water is given at x > 0 for convenience of computation and the Lax–Friedrich scheme [30] is used for the
surge with the following parameters: n = 0.025, B = 0.1 1/s, Dx = 0.05 m, CFL = 0.95, and von = 0.5.

The numerical solution is obtained as shown in Fig. 4. In the figure, H0 = 0.1 m, t0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
H0=g

p
, and numerical solutions and

experiment measurements for both water surface and bed elevations are presented at x = 0 (gate location), x = �0.25 m (up-
stream), and x = 0.25 m (downstream). It is seen that the surface elevation decreases upstream, increases downstream, and
remains about the same at the gate. All three locations experience flushing and the bed elevation decreases. The figure shows
that there is reasonable agreement between the simulation and the experimental data for both surface and bed elevations. A
large difference between simulation and experiment occurs mainly at the initial time at the gate, which is probably attrib-
utable to three-dimensional effects that the model does not capture. The degree of agreement between numerical simulation
and experimental measurement is about same as that in work of Abderrezzak et al. [35].

Fig. 7. Solution of morphology for the wave-driven dune problem.
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The second application is a short wave-driven flow over a sand dune. The initial conditions for the wave action, the veloc-
ity field, and the bottom shape are, respectively

N ¼ 0; ð23aÞ
U ¼ 0; V ¼ 0; H ¼ 2� expf�0:01ðx2 þ y2Þg; ð23bÞ
Hb ¼ expf�0:01ðx2 þ y2Þg: ð23cÞ

The upstream boundary condition is

H ¼ 2 m; x ¼ �15 m: ð23dÞ

The wave action is introduced as a source term in Eq. (1) at the upstream end

S ¼ 0:15ð1� tanhð20þ x� 0:01tÞÞ; ð23eÞ

which generates waves starting at the upstream end and propagating in the x-direction: n = 0.025, at = 1, and a short wave is
considered. In the simulation, Dx, Dy = 0.4 m, Dr = 0.1 1/s, Dh = 0.76 radians, CFL = 0.5, and von = 0.2. Extrapolation is used
to update solutions at the boundaries.

The instantaneous solutions at three different moments are given in Figs. 5–7. As shown in Fig. 7, initially (t = 427 s), the
shape of the sand dune is changing into a triangle, and low-elevation regions are forming at the upstream region, lateral sides
and immediately downstream of the sand dune. At the same time, the sand dune is propagating downstream, and its height
gradually decreases. In this process, the sand dune becomes asteroidal (t = 500 s), which is consistent with other simulations
(e.g., [16]). The low-elevation regions enlarge and merge, and the elevations at the upstream region and lateral sides of the
sand dune become the lowest (t = 500 s, 568 s). Finally, the sand dune is removed by the flow and the final seabed elevation
is lower than the initial value throughout the model domain. Fig. 6 shows that surface elevation reaches its highest value in
front of the sand dune but forms a dip immediately behind it, and it gradually decreases in all regions. Fig. 5 indicates that
wave action takes larger values at the upstream end, and it propagates downstream. It can also be seen from Figs. 5 and 6
that, during the evolution of the sand dune, both the wave field and water surface elevation evolve congruently with the
sand dune. Fig. 5 reveals clear traces of bed morphology, which indicate its strong effect on the wave field.

5. Concluding remarks

This study presents a framework for synchronically coupling wave, current, sediment transport, and bed morphology as
well as preliminary simulation results. The numerical algorithms adopted in the paper lack the high-resolution capability
required for rapidly evolving flow like surges, and they could lead to spurious oscillations. Besides, the algorithms have se-
vere restrictions on time step because of their explicit forms. Alternative high-resolution schemes should be developed for
the coupled system. More comprehensive validation tests with experimental and field data are needed to test the capability
of the proposed coupled framework. Furthermore, in order to provide guidance for coupling actual models (e.g., SWAN) in
practical simulations, it would be useful to study strategies for coupling waves, currents, sediment transport, and morphol-
ogy, that will permit different models to use with different time steps and grid spacing.
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