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Cycling the Representer Method
with Nonlinear Models

Hans E. Ngodock, Scott R. Smith and Gregg A. Jacobs

Abstract Realistic dynamic systems are often strongly nonlinear, particularly those
for the ocean and atmosphere. Applying variational data assimilation to these sys
tems requires the linearization of the nonlinear dynamics about a background state
for the cost function minimization, except when the gradient of the cost function
can be analytically or explicitly computed. Although there is no unique choice of
linearization, the tangent linearization is to be preferred if it can be proven to be
numerically stable and accurate. For time intervals extending beyond the scales of
nonlinear event development, the tangent linearization cannot be expected to be suf
ficiently accurate. The variational assimilation would, therefore, not be able to yield
a reliable and accurate solution. In this paper, the representer method is used to
test this hypothesis with four different nonlinear models. The method can be im
plemented for successive cycles in order to solve the entire nonlinear problem. By
cycling the representer method, it is possible to reduce the assimilation problem
into intervals in which the linear theory is able to perform accurately. This study
demonstrates that by cycling the representer method, the tangent linearization is
sufficiently accurate once adequate assimilation accuracy is achieved in the early
cycles. The outer loops that are usually required to contend with the linear assimi
lation of a nonlinear problem are not required beyond the early cycles because the
tangent linear model is sufficiently accurate at this point. The combination of cy
cling the representer method and limiting the outer loops to one significantly lowers
the cost of the overall assimilation problem. In addition, this study shows that weak
constraint assimilation is capable of extending the assimilation period beyond the
time range of the accuracy of the tangent linear model. That is, the weak constraint
assimilation can correct the inaccuracies of the tangent linear model and clearly
outperform the strong constraint method.
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1 Introduction

H.E. Ngodock et aI.

The representer method of Bennett (1992) is a 4D variational assimilation algorithm
that relies on the adjoint of the dynamical model and expresses the analyzed solution
as a first guess plus a finite linear combination of representer functions, one per
datum. The explicit computation and storage of all the representer functions (direct
method), however, is not required since the method can be implemented indirectly
(Amodei, 1995; Egbert et aI., 1994) using the conjugate gradient method (hereafter
CGM). A description of the representer methodology is provided in the Appendix.
The representer method has earned an established reputation as an advanced data
assimilation technique within the past decade, and gained the attention of many
potential operational users. Two primary issues, however, need to be addressed prior
to implementing the representer method operationally.

The first issue addressed in this paper is the stability and validity of the tan
gent linear model (hereafter TLM). When the representer method is applied to a
nonlinear model, the model must be linearized, preferably using the 1st order ap
proximation of Taylor's expansion. Traditionally, the representer method has been
implemented for the assimilation of all observations in the time window considered.
As with every other variational data assimilation method with nonlinear dynamics,
the representer method necessitates that the TLM and its adjoint be valid and/or sta
ble over the entire assimilation time window. The validity of the TLM is difficult to
maintain over a long time period for strongly nonlinear models and complex regions.

The second issue addressed in this paper is the cost of the representer method.
The indirect representer method requires the integration of the adjoint and TLM
within a CGM that determines the representer coefficients for the minimization of
the cost function (see Appendix). This set of representer coefficients is then used
to provide a correction to the background. The number of iterations of the CGM
(this is referred to as the inner loop) is typically a small fraction of the total num
ber of measurements. For strongly nonlinear systems, outer loops are required. To
initialize the outer loop, one would pick a first background solution around which
the model is linearized. The best solution (corrected background) obtained from this
assimilation would become the background for the next outer loop, and so on un
til fOffilal convergence (Bennett et aI., 1996; Ngodock et aI., 2000; Bennett, 2002;
Chua and Bennett, 2001; Muccino and Bennett, 2(02). This outer loop exacerbates
the computational cost of the representer method. In this study the background that
serves for linearization is also taken as the first guess.

These two issues have discouraged many potential users of the representer
method for operational purposes. It is possible, however, to address these issues and
implement the representer method at a reasonable cost for operational applications.
Given a time window in which one desires to assimilate observations, it is possible
to apply the representer method over cycles of subintervals. The name adopted for
this approach is the "cycling representer method" (Xu and Daley, 2(00), and its as
sociated solution is called the "cycling solution". The solution that is obtained by
assimilating all the observations at once in the original time window will be called
the "global solution".
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By using the cycling representer method, the assimilation time window is con
strained to a period over which the TLM produces an accurate dynamical representa
tion of the nonlinear model. Doing this reduces the need for outer loops. Because the
representer method solves a linear assimilation problem, the outer loop is designed
to solve the nonlinear Euler-Lagrange conditions associated with the assimilation
problem of the nonlinear model. In the global solution problem, the TLM may not
be an accurate representation of the dynamical system, and the adjoint would not be
an accurate estimate of the derivative of the state with respect to the control vari
ables. If the TLM is an accurate representation of the dynamics, the need for outer
loops is removed. In the initial cycles of this assimilation approach, the first guess
or background solution may not be accurate and thus outer loops may be required.
Once the system is spun up and the TLM is an accurate approximation (thanks to
improved background solutions), outer loops may no longer be necessary, thus low
ering the computational cost of the assimilation. However, there may be situations
in real world applications where a few outer loops would be needed in the current
cycle, even though a single outer loop sufficed in previous cycles. An example is
a nonlinear ocean response (advection and mixing) to a sudden, stronger than nor
mal, atmospheric forcing, especially in coastal areas with complex bathymetry. The
need for additional outer loops may be assessed by the discrepancy between the
assimilated solution and the data.

The idea of cycling the representer method was investigated by Xu and Daley
(2000) using a ID linear transport model with synthetic data. In that study, the error
covariance of the analyzed solution was updated at the end of each cycle and used as
the initial error covariance in the next cycle. Another application of the cycling rep
resenter method was performed by Xu and Daley (2002) using a 2D linear unstable
barotropic model with no dynamical errors. In this study, the covariance at the end
of the cycle was not updated because its computation was too costly to be practical.
Updating the covariance requires the evaluation and storage of the representer func
tions at the final time. These two studies found that updating the covariance at the
end of each cycle produced significantly more accurate analyses. However, in these
two applications of the cycling representer method, only linear models were used
and thus there was no need for a TLM. Most realistic applications are nonlinear and
their TLM may not be stable over the time window considered. It is in this context
that this study applies the cycling representer method.

There are three clear advantages that one can foresee in this approach: (i) a
shorter assimilation window will limit the growth of errors in the TLM, (ii) the
background for the next cycle will be improved and, (iii) the overall computational
cost will be reduced. It is assumed that the assimilation in the current cycle will
improve the estimate of the state at the final time. The ensuing forecast (the solu
tion of the nonlinear model propagated from the final state) is a better background
for the next cycle than the corresponding portion of the background used in the
global solution. This forecast uses the same forcing as the standalone nonlinear
model, although the estimated model error could be ramped to the original ex
ternal forcing in order to minimize shocks in the model. The latter has not been
tested yet.
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A good candidate for testing assimilation methods for strongly nonlinear models
is the acclaimed Lorenz attractor model (Lorenz, 1963). It has been used to study
the behavior of assimilation methods based on sequential filtering and variational
techniques: Gauthier (1992), Miller et al. (1994, 1999), Evensen (1997), Evensen
and Fario (1997) and Evensen and Van Leeuwen (2000), to cite but a few. This is
done with the intent that if an algorithm perfomls satisfactorily well with this model,
then it may be applied to atmospheric and ocean models. This is a necessary but not
a sufficient condition.

Although being a strongly nonlinear model, the Lorenz attractor suffers from its
low dimension; it has only three scalar prognostic variables. Assimilation experi
ments with the cycling representer method are presented for the Lorenz attractor
(Ngodock et al. 2007a, b) in Sect. 2. Section 3 deals with the second model consid
ered in this study, the one proposed by Lorenz and Emanuel (1998). It is a strongly
nonlinear model with 40 scalar prognostic variables. It is called "Lorenz-40" in this
paper for the sake of convenience. In Sect. 4, we present the third model in this
study: a nonlinear reduced gravity model for an idealized eddy shedding in the Gulf
of Mexico by Hurlburt and Thompson (1980). The fourth model is presented in
Sect. 5. It is the Navy coastal ocean model (NCOM), a 40-layer primitive equation
general circulation model based on the hydrostatic and Boussinesq approximations
with a hybrid (terrain-following and z-levels) vertical coordinate. Concluding re
marks follow in Sect. 6.

One can clearly notice the progression in this study, as nonlinear models of in
creasing dimension are considered. In all four applications, the cycling representer
method is applied using the full TLM (as opposed to simplified linearizations) and
its exact adjoint. In the experiments presented here a significance test is not per
fomled. This would tum the assimilation problem into a search for suitable prior
assumptions about errors in the data, initial condition, and dynamical errors, and
hence cloud the issue at hand.

2 The Lorenz Model

The Lorenz model is a coupled system of 3 nonlinear ordinary differential equations,

dx
dt = (j(y-x)+¢,

dy
dt = px-y-xz+qY,

dz
dt =xy-f3z+cf,

(1)

where x, y and z are the dependent variables. The commonly used time invariant
coefficients are (j = 28, P = 10 and f3 = 8/3. The model errors are represented by
tt, qY and if. The initial conditions for Eq. (2) are,
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x(O) =xo+ix
,

y(O) = Yo + P',

z(O) = Zo + t,

(2)

where Xo = 1.50887, Yo = -1.531271 and ZO = 25.46091 are the first guess of the
initial conditions. These are the same values that are used in the data assimilation
studies by Miller et a1. (1994), Evensen (1997), Evensen and Fario (1997), Miller
et al. (1999), and Evensen and Van Leeuwen (2000). The initial condition errors
are represented by iX, P' and iZ • By setting the model and initial condition eITOrs
in Eqs. (1) and (2) to zero, the solution to the Lorenz Attractor is computed for
the time interval [0, 20] using the fourth-order Runge-Kutta (RK4) discretization
scheme with a time step of dt = 1/600 (Fig. I). This solution is labeled as the
true solution, since using time steps smaller than dt = 1/600 does not significantly
change the solution within the specified time period.

The dimensionless time (t) in the Lorenz model is related to a simplified one
layer atmospheric model time Cr) by t = Jr2H-2 (1 + ([2)/(T, where a2 = 0.5, H is
the depth of the fluid and /( is the conductivity. For a fluid depth of 500m and a
conductivity of 25 x 10-3 m2s- 1, a time unit in the Lorenz model corresponds to

--Background
............ Assimilated

76542
O'-----'-----'-----1.........--_"-- -'- -'--__----...J

o

20
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15

time

Fig. 1 R1VIS misfits between the data tUld the background (solid line) and assimilated (dOlled !ille)
solutions for the first 7 time units of Fig. 4. This plot reveals that even though the TLM is only
reliable for about 0.4 time units the assimilated solution is ~table for about 7 time units and is
correcting the background towards the duw during this time period
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7.818 days. The doubling time of the Lorenz attractor is about 1.1 time units, and
the tangent linearization is not expected to be stable beyond this time range, which
becomes a limiting factor for strong constraint assimilation. It is not so with the
weak constraint. The latter is able to assimilate and fit the data beyond the time
range of accuracy of the TLM, because the linear perturbation model is not solely
driven by initial perturbation, but also by the estimated model error given by the
adjoint model.

In the time interval [0, 20] there is a set of M observations d E ~M such that

d = H(x,y,z) +£ (3)

where H is a linear measurement functional (an M x 3 matrix), £ E ~M is the vector
of measurement errors, and M is the number of measurements. The data used for all
assimilation experiments are sampled from the true solution with a frequency of0.25
time units. The measurement error is assumed to be e = 0.002, and its covariance
matrix is assumed to be diagonal. The initial condition error that is used to perturb
Eq. (2) is specified to be 10% of the standard deviation of each state variable of
the true solution (r = 0.784, iY = 0.897, and iZ = 0.870). The initial condition error
covariance (Cjj ) is simply a 3 x 3 diagonal matrix with values equal to the square of
the RMS of these initial condition errors. The model error covariance is prescribed
as a time correlation function exp [ - ((t - t') / -rl] multiplied by a 3 x 3 stationary
covariance matrix

[

1.36 X 10-5

Cqq = 5.99 X 10-7

-1.56 X 10-6

5.99 X 10-7

1.36 X 10-5

-2.07 X 10-6

-1.56 x 10-
6

]

-2.07 x 10-6

1.36 X 10-5

(4)

Even though the time frame of assimilation is far greater than the stability of the
TLM, the global solution is able to track the data somewhat for about 7 time units.
It can be seen from Fig. 1 that the global solution is able to reduce the prior misfits
significantly (even beyond the time range of accuracy of the TLM) before loosing
track of the data. Beyond 7 time units, the misfit between assimilated solutions and
data grows rapidly and can be attributed to the increasing errors in the TLM ap
proximation. One can therefore conjecture that the error growth in the TLM can be
limited by reducing the length of the assimilation window.

The results in Fig. 2 show the RMS error between the truth and the assimilated
solution with respect to time for cycle lengths of 1, 2, 5 and 10 time units. It is
shown that the RMS error increases with the cycle length. This is to be expected
since longer cycles violate the TLM accuracy criterion. In other words, the steady
decrease of RMS error with respect to the cycle length indicate that as the latter ap
proaches the TLM accuracy time for the range of perturbations given by the adjoint
model, the assimilation algorithm is better able to fit the data.

Results in Fig. 2 are obtained with 4 outer loops in each cycle. However, results
with similar accuracy were obtained with 4 outer loops in the first cycle and a single
outer loop in subsequent cycles, Ngodock et al. (2007a, b).
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Fig. 2 RMS of the misfit between assimilated and true solutions using different numbers of cycles:
(a) 20, (b) 10, (c) 5, and (d) 2 cycles. The cycle boundaries are depicted by vertical dashed lines.
By increasing the number of cycles from 2 (d) to 20 (a), significant improvement in the assimilated
solution is achieved

The strong constraint solution (not shown here) is obtained by the same proce
dure as the weak, except that the model error covariance is set to zero. The weak
constraint solution is not only more accurate, but also can afford longer cycles than
the strong constraint. The strong constraint is almost confined to the TLM validity
time, and needs quite a few cycles to start matching the data. In the experiment with
cycles of 2 time units, the weak constraint accurately fits the data after 3 cycles, but
the strong constraint never does. When the cycle length is decreased to I time unit,
the weak constraint fits the data in the second cycle and afterward (Fig. 2a), while
the strong constraint starts fitting the data only in the 16th cycle. Strong constraint
assimilations will not be carried out with subsequent models.

2.1 The Cost

One major reason why the representer method is not widely implemented is the per
ceived computational cost. The biggest reduction in cost is achieved by limiting the
outer loops to one, as was mentioned above. Further gains in computational cost are
obtained by cycling the representer method. Assume that the matrix inversion in the
indirect method is performed with a cost of tJ (MlogM) for computing M represen
ter coefficients, where M is the number of measurements. The cycling approach total
cost will be Ncy x tJ (Mcy 10gMcy ), where Ncy is the number of cycles and Mcy is the
number of measurements within each cycle (assuming that the measurements are
uniformly distributed in the assimilation interval). Although Ncy x Mcy = M, log Mcy

gets exponentially smaller with increasing Ncy , thus decreasing the computational
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Table 1 Computational cost of the global and cycling solution using a single outer loop

Time (sec)

Global

21.37

2 cycles

9.33

4 cycles

4.49

5 cycles

3.59

10 cycles

1.90

20 cycles

1.09

(5)

cost as illustrated in Table 1. However, there is a drawback to reducing the cycle
length. The data influence is extended beyond the cycle interval only through an
improved initial condition for the next cycle. Future data contained in subsequent
cycles will not contribute to the assimilation in the current and past cycles. One
should keep this in mind, as well as the time decorrelation scale of the model errors,
in choosing the appropriate cycle length.

3 The Lorenz-40 Model

The Lorenz-40 model (Lorenz and Emanuel, 1998) is a system of 40 coupled non
linear ordinary differential equations designed to represent the time evolution of
advection and diffusion of a scalar quantity in one space dimension with periodic
boundaries.

dXidi = (Xi+l - Xi-2)Xi-l - Xi +8 +qi, 1 ~ i ~ 40.

The model is numerically solved with the 4th-order Runge-Kutta method us
ing a time step of ~t = 0.05, which corresponds to about 6hr for Atmospheric ap
plications. This model has an estimated fractal dimension of 27.1, and a doubling
time of 0.42, given by the leading Lyapunov exponent. It has previously been used
to test ensemble-based assimilation schemes by Anderson (2001), Whitaker and
Hamill (2002), and Lawson and Hansen (2004).

The assimilation window is [0, 1000]. The data are sampled from a reference
solution at every other component and every time step with a variance of 10-2.

The assimilation background uses perturbed initial conditions and forcing. Due to
the long time window and the increased chaotic behavior of this model, there is no
possibility of computing a global solution; both the TLM and adjoint are unstable.
Two cycling assimilations are considered: the first uses 100 cycles of 10 time units
and the second uses 10 cycles of 100 time units. Results in Fig. 4 show that the as
similation with a shorter cycle is significantly more accurate. The short-cycle errors
decrease rapidly after the first few cycles and never grow again. In contrast, errors
in the solution from the longer cycle persist over time, an indication that the global
solution would have been unable to match the data.

The cycle lengths of 10 and 100 time units are significantly longer than the dou
bling time of 0.42 given by the leading Lyapunov exponent. Thus the tangent lin
earization is not expected to be stable, much less accurate, for any of the cycles. A
strong constraint assimilation would therefore fail to fit the data. However, the weak
constraint approach is known to be able to fit the data beyond the time limit imposed
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by the linearization stability (mostly because the assimilation is able to minimize the
errors in the linearized model), and the results with the Lorenz-40 model shown here
in Fig. 3 corroborate that fact.

4 The Nonlinear Reduced Gravity .iVlodel

A nonlinear reduced gravity (primitive equation) model is used to simulate an ide
alized eddy shedding off the Loop Current (hereafter LC) in the Gulf of lvlexico
(hereafter GOM). It is the same a~ the I 1/2 layer version of the reduced gravity
model introduced by Hurlbun and Thompson (1980). The dynamical equations are:

ahu auhu dllhv. I dh .. (d 2 /IU ;]2 flU .) ,-- + -- +- -.- - f!lv +g h- = AM --?- + --.,- +r - dra8.,-,
Ot ax dy ax dX- dy-

dh!' dvhu dvhv. I dll (d 2
hV a2h") ,

~ + ---. + --,- + jhu -+- g Jr.:)" = A,1f ~ +:;--2 + -r) - drag)',
vI U.>: oy vy vX- UY

ah dim aliI'
at + dx +J:Y = 0,

(6)

where u and \. are u1e zonal and meridional components of velocity, Jr is the layer
thickness,}" is the Coriolis parameter (here a [3-plane is adopted), g is the accelera·
tion due to gravity, g' is t.he reduced gravity, AM is (he horizontal eddy diffusivity,
computed based on the prescribed Reynolds number Re, the maximum inflO\\I Ve

locity and half the widtJl of the inflow port. The model parameters ,lfe listed on
Table 2.

Hurlburt and Thompson (1980) showed that it is possible to simulate the eddy
sheddillg by specifying time-invariant transport at the inflow and outflow open
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Table 2 Table of model parameters

HE Ngodoek el al.

/0 g

9.806ms-2

Re

50.2

boundaries (see the model domain in Fig. 4). In this case the wind stress and the
bottom drag are neglected. With a transport of 355v at inflow and outftow ports, we
can simulate an eddy shedding with a period of about 4 months.

The data are sampled from the reference solution according to 8 networks de
scribed in Ngodock et al. 2006 (hereafter NG06), with 5cm and 5cmJsec data error
for SSH and velocity respectively. The networks are ordered with increasing obser
vation density, with network 8 yielding the most observations. Here the assimilation
experiments are carried out for networks 3,2 and 1 using SSH and velocity data, and
for network 3 with only SSH data. The assimilation window is 4 months. In network
3, data are sampled from the reference solution every 200km in each spatial dimen
sion and every IO days, while nel\vorks 2 and J sample the reference solution every
300km (in both x and y directions) and every 5 and 10 days respectively. This pro
duces a data density that increases with the network number. The covariances for the
data, model and initial errors are the same as in NG06: the data error covariance is
assumed diagonal with a variance of 25 cm2 for SSH and 25 cm2s-2 for both com
ponents of velocity; the model errors are allowed only in the momentum equations
follovv'ing Jacobs and Ngodock (2003), and have spatial correlation scales 100 km

Fig. 4 The rnodel dornain is aJI idealized Gulf of i'vlexico representation with inflow and outflow
pons. The sclectc.d diagnostic locations of the assjmjlation solution are marked with bullelS
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ill both X and y directions, a standard deviation 10-4 1112$-2 (obtained by accounting
for a typical wind stress of 0.1 Nm-2 which in turn is divided by a typical density
of 1000 kg m-3). and a time correlation scale of 10 days. The results from the non~

cycling assimilation experiments are available from the experiments reported in the
same reference. Only the cycling assimilation experiments are carried Ollt here and
compared to the corresponding non-cycling solution obtained with 6 outer loops. It
should be noted that the initial error covar'lance at the beginning of a new cycle is not
updated as the posterior error covariance from the previous cycle. This procedure is
compul3tionally expensive and is avoided here. The original initial error covariance
is used in every cycle. A set of 5 diagnostic stations is used for evaluation in this
study. The station locations are shmvn in Fig. 4. They are selected in such a \vay that
they are common to all the sampling networks; locations 1-3 are distributed along
the path of the LeE. location 4 is in the region where the LeE sheds, and location 5
is north of the LCE shedding region.

The first cycling representer assimilation experiments are carried out for network
I using 4 cycles of 1 month each and 3 outer loops in each cycle. A cycle length of
I month is chosen to allow (i) a stable and accurate TLM, (ii) time distributed data
within each cycle- (especially when the data is sampled every IO days e.g. networks
I and 3), and (iii) the propagation of the data inAuencc in lime through the model
dynamics and the model error covariance function. Figure 5 shows the difference
between the reference and the assimilated solutions for both the non-cycling and
the cycling at lhe end of each month. This figure shows that although both solutions
have comparable discrepancies in velocity and sea surface height with the reference
solution at the end of the first month, the discrepancies decrease rapidly in the cy
cling solution and by the end of the assimilation window they are greatly reduced
relative to the non-cycling solution. It is not the case with the non-cycling solution;
the discrepancies persist and are mostly located around the region where the LCE
sheds from the LC, i.e. where advective nonlinearities are strongest. This indicates
that the failure of the non-cycling solution is associated with an inaccurate TUv!
as suggested in NG06. It is also worth mentioning here that the cycling solution is
obtained with 3 oUler loops in each cycle, which is half the computational cost of
the non-cycling solution computed with 6 outer loops as reported in NG06.

Tn the second set of cycling representer experiments. data is assimilated for net
works 3, 2 and I using 4 I-month cycles in 1\\'0 cases: in the first case 3 outer loops
arc used in each cycle, and in the second case 3 outer loops are used only in the first
cycle and I outer loop in the remaining cycles. Figure 6 shows the discrepancies
to the reference solution computed for the non-cycling and the cycling solutions at
the end of the third month for all networks, including an experiment where only
SSH data from network 3 is assimilated. This figure shows that the errors in the
non-cycling solution are consistent for allnet"works. One might have expected in
creasing errors as the data coverage decreases from \let work 3 to network I. Such is
the case for the non-cycling solution and not for the cycling. It can be hypothesized
that tlle errors in the non-cycling solution are dominated by systematic errors in the
TLM approximation. Fortunately, the cycling solution is able to fit the data properly'
because the growth of TLM etTOrs are inhibited by a limited assimilation interval
and a more accmate background provided by tlle previous cycle nonlinear forecast.
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Fig. 5 The difference between the reference ,ll1d the a~simila(ed solutions obtained from the nOIl
cyding U4i (0111111I1) and the cycling (righT COllilllll) reprcscntcr algorithms for network I. 111e
differcnces arc showll at the end the lirst l110mh (fOp mw), second momh (second row), third month
(Third row) and founh month (jOlll'lh mll'). Arrows represcnt tht: vclocily and tht: contour lines
represcn( the sea surface height, with a contonr linc ofO.t)) m (I CIll)

A final experiment is carried out with the assimilation of only SSH data from
network 3. As in NG06 for the non-cycling solution. the ability of the cycling al
gorithm to infer the velocity field through the model dynamics by assimilating only
SSH measurements is tested. The non-cycling and the cycling solutions accuracy is
evaluated through the rms error to the reference solution at the selected locations.
Results in Table 3 show that the non-cycling solution is able to accurately fit the
SSH data at all locations (except for location 4 where the tll1S exceeds 2 standard
deviations) and the velocity only at the Ilrst two locations. At the remaining and
critical locations 3-5, the non-cycling solution miserably fails to correct the veloc
ity components with rms values sometimes exceeding 5-10 standard deviations. In
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Fig. 6 Comparison of lhe difference between the reference ami lhe assimilated solution using
the non-cycling (left cohwlIl) and the cycling (righl COIIlIllIl) algorithms at the end of the third
month for networks 3 (first row), 2 (second row). I (Ihird row) and network I with only SSH data
assi milated (last roll')

Table 3 R..MS error of the solutions at the five diagnostic locations for network :I assimilating only
SSH data

Location SSH U V

Non-cycling Cycling Non-cycling Cycling Non-cycling Cycling

00160 0.0619 0.0871 0.0353 00307 00658
2 0.0253 00330 0.0521 0.021 J 0.0416 00670
3 0.0679 0.0173 0.1073 0.0164 0.4772 0.0170
4 0.1354 0.0060 0.1795 0.0094 0.3671 0.0212
5 0.0963 0.0075 0.2926 0.0156 05844 00244
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contrast, the cycling solution accurately fits the SSH data and the inferred velocity
accurately matches the non-assimilated velocity data within expected errors.

5 The NaV)' Coastal Ocean Model (NCOM)

NCONr is a free-surface ocean model based on the primitive equations and the hy
drostatic, BOllssinesq, and incompressible approximations, solved on an Arakawa
C-grid with leapfrog time stepping and an Asselin filter. An implicit time stepping
is used for the free-suli'ace, and the vertical discretization uses both sigma coordi
nates (for the upper layers) and z-leveJ coordinates (for the lower layers). Further
detailed specifications of NCOM can be found in Barron et al. (2006).

The model domain is shown in Fig. 7 where the 30X34 black dots are spaced
2.5 km apart and represent the cenrer points of the Arakaw"a C-grid at which sea
surface height (SSH), salinity and temperature are solved. This grid resolution re
quires a 4 minute time-step for numerical stability. In the venical, there are 40 layers
with 19 sigma layers in the upper 137m to resolve the shelf-break. The bathymetry
is extracted from a Navy product called DBDB2, which is a global database with
2-min resolution. All of the atmospheric forcing, including wind stress. atmospheric
pressure, solar radiation, and surface heat flux, is interpolated from the Navy Oper
ational Global Atmospheric Prediction System (Hogan and Rosmond, 1991), which
has a horizontal resolution of I degree and is saved in 3 hour increments.

An array of 14 acoustic Doppler CUn-eot profile (ADCP) moorings was deployed
by the Naval Research Laboratory (NRL) for I year (May 2004-May 2005) along

~ ~ ~ ~ 1~ ,~ I~ I~ 1~ ~

EloGlo,motry (m)

Fig. 7 The model dornain for the IVlississippi Bight nested NCOM



Cycling the Representer lv1ethod Wi.Ul Nonl inear tvlolic!s 335

the shelf, shelf-break, and slope of the Mississippi Bight (abollt 100 miles south
of Mobile, Alabama). These moorings were spaced about 10-20km apart and are
identified in Fig. 7 as the numbered grey SIMS. During the time period of this study
(the month of June, 2004), the filtered velocity data on the slope (moorings 7-14)
exhibits a general transition of the flow field from being predominantly westward
to eastward. AJso, the flow on the slope had a strong correlation with the wind
stress (-......0.8) and was fairly uniform in the along-shelf direction with a slight cross
shell' current to\vards the shore. In contrast, the circulation on t11e shelf (0100l111gS

1--6) exhibits a weaker correlation with wind stress (less than 0.6), strong inenial
oscillations with a period of about 24 hours. and a substantial velocity shear in
the water column. Teague et ai. (2006) provides an extensive presentation of thiS
collected data set. The measurements are sampled every 3 hours and at 5 different
depths for every mooring. The two velocity components are counted as 2 separate
measurements.

As a precursor to the cycling experiments, a long IO-day assimilation experiment
was attempted, and the resulting solution misfit (red) is plotted in Fig. SA. The
background misfit (blue) is also plotted for comparison. These misfits are computed
as the RJ\1S of the difference between the data and the solution. The assimilation

1.~'" -

(A) 1--Background Misfit
-- Solution Misfit---------

0.15

0.1 -

~~---=-'c,------ ~-~~,._______!t---~~--~;o"',.:;.::--~

Days or ...luna 2004 (00:00 GMT)

Fig. S R>\liS misfits of (he assimilated solulion (red) and the background (blue) for a }()-day (A)
and 2-day cycling (13) assimilation experiments
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performs fairly well for the first day (which is about the range of TLM accuracy),
then the assimilated solution begins to lose its skill, and by the third day it becomes
unstable and its errors begin to increase exponentially.

The first cycling experiment performed employs 2-day cycles. The misfit results
are displayed in Fig. 8B and reveal that the first cycle did well, but the second cycle
began to severely lose skill midway through the cycle. At the end of the second
cycle the solution was too poor to provide a sufficient initial condition for the next
background forecast (the forecast grew numerically unstable). The dashed black line
in this figure represents the break in between cycles and the vertical portion of the
blue line along this dashed line is a result of the background being reinitialized to
the assimilated solution. It is apparent that a 2-day cycle time period is too long
in order to ensure solution accuracy. This falls in line with the time frame of TLM
stability.

Two additional assimilation experiments are carried out for a period of 30 days,
using l2-hr and 24-hr cycling lengths respectively. Results are shown in Fig. 9,
where it is apparent that for the first 12 days of the experiment, the I-day cycle
experiment outperforms the l2-hour cycle experiment. From June 2 to June 14, the
solution misfit in the I-day experiment obtains lower values relative to the l2-hour
cycle experiment and the general slope has a steeper downward trend. Also, in the
I-day cycle experiment there is a significant improvement in the background misfit.
This is signified by a steep downward trend starting at the middle of each cycle. It
is believed that this drastic change in the background misfit is due to the inertial
oscillations, which are relatively strong in this region. It appears that the longer 1
day cycles are able to better resolve the inertial oscillations and therefore produce
a more accurate solution that better matches the observed flow field. This result
illustrates the importance of choosing a cycle time period that is long enough to
include the important dynamic features that are prevalent in the region and allow
the data to influence as long of a time window as possible.

6 Summary and Conclusions

The cycling representer algorithm that was only tested on linear models when ini
tially proposed has now been applied to nonlinear models with increasing complex
ity and dimensions: the low-dimension Lorenz attractor, the 40-component strongly
nonlinear model from Lorenz and Emanuel, the 2-dimension 1.5-layer reduced grav
ity nonlinear and the 3-dimension 40-layer NCOM models. In each of these models
a global assimilation is impractical because the TLM is not stable over the entire
assimilation time interval. One may argue that other linearization approaches may
be more stable than the TLM. The cycling assimilation method could still be ap
plied should the chosen linearization fail to be stable over the assimilation window
considered.

However, the TLM is not the only factor guiding the decision for cycling. The
cycled solution has proven to be more accurate than the non-cycling with the linear
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models to which the algorithm was first applied. Even more so in the context of
nonlinear models with limited TLM stability time range. One reason why the cy
cling algorithm improves the accuracy of the solution is the introduction of new
constraints at the beginning of each cycle. These constraints are absent in the non
cycling solution, and thus the cycling solution is more weakly constrained than the
non-cycling. Another reason is the immediate improvement of the background in
subsequent cycles. This improvement reduces the magnitude of the innovations and
thus enables the tangent linear approximation and the assimilation to be more accu
rate. In contrast, the non-cycling solution has to overcome larger innovations to fit
the data, which will require more inner and outer iterations for the process to con
verge. Finally the computational cost associated with the cycling algorithm is sig
nificantly lower than the non-cycling, especially when outer iterations are dropped,
as shown in previous studies.
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Appendix: Solving the Linear EL System Using
the Representer Method

Given a background field xf, the linear EL to be solved is

_ d'A. = [dF(X2]T 'A.- HTw(d _ Hi)
dt dx

'A.(T) = 0

and

dx f dF(xf
) " f

- =F(x )+-d-(x-x )+Cqq-'A.
dt x

x(O) = xi> + C;;A,(O)

The representer expansion for uncoupling (7) and (8) is:

M

x(t) = xf(t) + L amrm(t).
m=l

(7)

(8)

(9)

Here the background (i.e. the trajectory around which the model is linearized)
is also taken as the first guess (the solution that the assimilation will correct). The
representer functions r m , m = I, ... M are computed from
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_ dAm = [dF(X
f
)] T A _ HT S(t _ t )

dt dx m m

A(T) = 0

and
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(10)

(11)

It may be shown (e.g. Bennett, 2(02) that the representer coefficients am m = 1,
... M in (9) are the solution of the linear system

(12)

where R e is the representer matrix, obtained by evaluating the representer functions
at the measurements sites, i.e. the mth column of Re is Hrm . In practice, solving
(12) does not require the computation of the entire representer matrix. An itera
tive method such as the conjugate gradient may be invoked, as long as the matrix
vector product on the left hand side of (12) can be computed for any vector in
the data space. This is made possible through the indirect representer algorithm
(Amodei (1995), Egbert et al. (1994», which is also used to assemble the right hand
side of (9) without the explicit computation and storage of the representer func
tions. Specifically, given a vector y in the data space, the product Rey is obtained
by solving (10) and (11) with y replacing the Dirac delta in the right hand side of
(10), then applying the observation operator H to the resulting r. Once the repre
senter coefficients a are obtained, the optimal residuals are computed by solving
(10), where the single Dirac delta function is now replaced by the linear combina-

M
tion L umS(t - tm). These residuals are then used in the right hand side of (11) to

m=l

compute the optimal correction to the first guess xf .
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