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During the MREA07 trial, off the NW coast of Italy in the late spring and summer of 2007, Navy Coastal Ocean
Modeling (NCOM)multiple nests free-runensemblesweremade available in real-time for the LASIE07 andBP07
events and a fairly complete set of observations were collected inside the inner nests domains. This note
addresses theproblemof predictingNCOM local unbiased 0–24h forecast errors by perturbing a limited number
of possible error sources through Monte-Carlo simulations, without local data assimilation. It discusses
preliminary results using theEnsemble Transform [Bishop, C.H., and Toth, Z.,1999: Ensemble transformation and
adaptive observations. Journal of the Atmospheric Sciences, 56, 1748–1765] to calibrate the ensemble spread by
adjusting its characteristics (spread–skill relationship and magnitude) to an observed or pre-estimated error
field. A small (10 members) ensemble of free runs was used for water column temperature forecast Root Mean
Square (RMS) error prediction. After being post-processed they were comparedwith observed errors and those
estimated using time variability as an error proxy. The ensemble runs were generated through atmospheric
forcing perturbations using the space–time deformation method as proposed by [Hong, H.X., Bishop, C., 2007.
Ensemble and probabilistic forecasting. IUGG XXIV General Assembly 2007, Perugia, Italy, 2–13 July], keeping
independent initial conditions. Because at the starting time all runs shared the same IC, the ensemblewas run for
roughly two weeks for spinning up and then used during the following 10 days for data comparisons, during
which the ensemble spread did not diverge and was consistent with the observed dynamics. Comparisons of
ensemble spread of temperature profiles with local observed errors and time variability (assumed as an error
proxy) showed that theywere consistent through this 10 day analysis period,with performances above the non-
calibrated ensemble estimates and time-variability used as error proxy.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction

When considering numerical prediction of ocean dynamic states
using nested domains, several sources of error can contribute to
cascading uncertainty into state variable estimation (Coelho and
Rixen, 2008). These sources of error include the errors of the initial
and lateral boundary conditions, local forcing, bathymetry errors,
numerical approximations and filtering, errors due to approximations
when assimilating observations, errors in the forcing terms and un-
resolved scales (sub-grid variability). To address this problem, local
unbiased (correlation) and persistent errors (bias) of the Navy Coastal
Ocean Modeling (NCOM) System nested in global ocean domains, are
typically reduced and monitored by assimilating dynamical balanced
analysis fields of state variables, derived from observation networks,
using the Navy Coupled Ocean Data Assimilation (NCODA) system
(e.g., Cummings, 2005). This system also provides an error estimate of
these analysis fields at an analysis time.
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In recent implementations (Coelho and Rixen, 2008; Fabre et al.,
2008), ensemble based stochastic methods have been used to track
these NCOM analysis multi-scale ocean errors by running the model
several times using different forcing and starting from different initial
conditions. The resultant ensemble spread was constrained at each
new analysis time by the new estimate of the analysis errors using a
technique named Ensemble Transform (ET) (Bishop and Toth, 1999).
In order to be accurate, the perturbed ensemble members should be
taken from a fairly large number of independent runs to resolve state
variables error covariances and should include all significant sources
of error and uncertainty (Judd et al., 2007, Lermusiaux et al., 2006).
Since this is not easy to obtain in operational timeframes, and once a
smaller number of runs are selected, one can expect the ensemble to
perform differently inside the simulation domain and through time
depending on the number of the dominant error modes. This
limitation motivates on-going work in developing dedicated metrics
to diagnose and prognoses ensemble performances through the
overall domains and forecasting lead times.

In any case, it is anticipated that a small number of runs may still
provide useful information under certain conditions (e.g. when there
are no strong non-linearity and bias errors are on the same order of
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magnitude of the correlations errors). Furthermore, if the ensemble
estimates define a domain that contain the most relevant features and
scales of the physical system, then they can be improved in their
consistency through calibration and post-processing by adjusting their
spread and bias to some training sequence. These methods have been
successfully used formeteorological ensemble calibration (e.g. Doblas-
Reyes et al., 2005; Hamill and Whitaker, 2007) and for multi-model
ocean ensembles applications (e.g. Rixen et al., 2008; Coelho, 2008).

It should be noted that with a small number of independent runs
we should not expect to resolve the full ocean state covariances with
the original model grid resolution, but one can expect that a small
number of runs between 10 and 15 may still be adequate to track
single variable forecast errors on a re-sampled spatial domain as long
as the number of independent variables can be kept within the order
of O(103), following the estimates of Judd et al. (2007). This note will
discuss the limitations of a small ensemble size used during the
MREA07 trial and proposes a method to improve forecast error
prediction consistency for specific target variables, applicable also for
non-state variables estimates when there are not many observations
or prior to use observations into the assimilation process.

Several methods have been used to perturb the initial conditions
fields based on the observed errors. In particular Bishop and Toth
(1999) proposed a technique named Ensemble Transform that allows
computing dynamically balanced initial conditions perturbations that
are consistentwith a best estimate of the error covariance.On the other
hand, ensemble calibration can also be sought through post-proces-
sing using Bayesian methods (e.g. Gneiting et al., 2004, Coelho et al.,
2005 and Rixen and Coelho, 2006), within the limits of the known
cross-correlations among the observed and modeled variables. This
work combine both techniques as a post-processing method, applied
to local single variable ensemble spread calibration. The methodology
uses the perturbed model statistics re-scaled through an estimate of
the error variance, to obtain short-term estimates of posterior normal
probability distributions envelopes of a selected ensemble variable.

The MREA07 (BP07 and LASIE trials), took place off La Spezia, Italy
in the spring and summer of 2007 (e.g., LeGac and Hermand, 2007).
During the trial, mesoscale relocatable NCOM implementations using
the RELO systemweremade available in real-timewithout performing
local data assimilation, though remote sensing and global data was
assimilated on the outer nests used for boundary conditions and
initialization. In standard implementations the RELO system runs
together with the Navy Coupled Ocean Data Assimilation (NCODA)
system that performs observations quality control and produce local
analysis for assimilation that in the present version are based on a
Multi-Variate Optimum Interpolation technique (e.g. Cummings,
2005). NCODA also provides the analysis error fields that are used to
re-set the ensemble spread of the initial fields in operational ensemble
runs using the same ET technique (e.g. Fabre et al., 2008). This present
solution does not provide reliable analysis error covariances but it is
planned that the NCODA system will evolve in the near future into
using hybrid Monte-Carlo ensembles (e.g. Lermusiaux et al., 2006)
and Variational analysis (e.g. Ngodock et al., 2007). This will improve
error covariance estimates and produce analysis fields consistent with
the boundary conditions and other forcing fields. For this specific
implementation, the NCODA assisted assimilation process in the inner
nests was turned off to allow a fully independent analysis of themodel
results and observations, simulating a scenario where no local data
would be available in useful timeframes.

During this trial the free-run error fields of the RELO system were
estimated using an ensemble of 10 independent runs with indepen-
dent initial conditions starting from a common field far back in time
and perturbed through atmospheric forcing using space–time
deformation of the surface forcing fields (Hong and Bishop, 2007).
The ensemble spread of the free runs was then re-scaled in post-
processing through an Ensemble Transform (Bishop and Toth, 1999)
using the temporal variability as an error proxy. These preliminary
error estimates were then used for model benchmarking and aiming
specific ocean-acoustic applications (e.g. Carriere et al., 2009) and to
estimate the relative impact of different observational strategies
(Coelho et al., 2007).

2. RELO-NCOM setup

The Relocatable Navy Coastal Ocean Model (RELO-NCOM) is a
scalable, portable, and user-friendly system for nowcasting and short-
term (2–3 day) forecasting simulations. There are two major com-
ponents: 1) NCOM (Martin, 2000) and 2) the Navy Coupled Ocean
Data Assimilation (NCODA) (Cummings, 2005) for data analysis and
model initialization. For a rapid configuration, the system relies on a
set of data and products available on a global scale (bathymetry,
winds, analysis of the remote sensing data). These products are
generally on a low resolution and it is possible to substitute themwith
local and high-resolution databases. RELO-NCOM meets the naval
requirements to generate real-time description of the environmental
variables and it is operational at the US Naval Oceanographic Office
(NAVO).

There is a fundamental difference between assessing an ocean
model configuration in a research and an operational mode. Both need
to be designed, calibrated, and evaluated to encompass the dominant
dynamics of a given region. The goal is to provide the best possible
representation of the dynamical features of a specific area. However, a
predictive system that supports operational applications must be
rapidly relocatable anywhere in the ocean (oil-spill response and
naval operations are the most relevant applications), and easily
reconfigured. The principal goal is to provide good representations
everywhere with the available data (i.e., in spite of the absence of
complete sets of observations), motivating the need to associate with
the system a reliable error diagnostics and prediction tool, to allow
tracking consistently the error dynamics.

For the MREA07 trial the RELO-NCOM was deliberately set on its
default mode as for a generic applicationwith little or no tuning of the
physical and numerical parameters. Furthermore, noMREA07 or other
data were assimilated into the inner nests. The goal of this
implementation was to test the modeling skills of these free runs
and estimate the relevance of the atmospheric forcing as a single
source of error.

The daily predictive cycle during MREA07 is described as follows:

• NCOM is started from theprevious day's nowcast (−24h) and forced
by the available operationalwinds. OpenBoundary Conditions (OBC)
are extracted from the simulation of the parent domain. The OBC for
the outer most nest are extracted from NCOM configured on a global
scale at a 1/8° resolution (NCOM-GL) which is operational at the
Naval Oceanographic Office (NAVO) (http://www7320.nrlssc.navy.
mil/global_ncom/index.html) (Barron et al., 2006). However, this
procedure is not restricted to NCOM–NCOM nesting; any nest could
be coupled with several other dynamical model formulations.

• During the nowcast, temperature (T) and salinity (S) fields are
nudged to the nowcast fields of the parent simulations. The nudging
during the hindcast phase has been suggested to provide a
minimum connection with real-time data since NCOM-GL assim-
ilates sea surface temperatures (SST) and Modular Ocean Data
Assimilation System (MODAS) synthetics (with the surface height
derived from the Naval Layer Ocean Model (NLOM) (http://
www7320.nrlssc.navy.mil/global_nlom/). No data are nudged after
the nowcast (0 h).

• A short-term (2-day) forecast is provided. The 48-hour interval has
been chosen because this is the typical period in which meteor-
ological mesoscale forecasts are available and reliable.

• The nested domains run then in sequence using boundary
conditions from the outer nests (i.e., one way nesting). Although
NCOM provides a tile nesting approach, the default procedure

http://www7320.nrlssc.navy.mil/global_ncom/index.html
http://www7320.nrlssc.navy.mil/global_ncom/index.html
http://www7320.nrlssc.navy.mil/global_nlom/
http://www7320.nrlssc.navy.mil/global_nlom/


Fig. 1. The triple nest configuration for MREA_07.
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allows an easy and rapid configuration and assessment of each
domain, and more importantly, a possible different choice of the
vertical coordinate between nests. Fig. 1. illustrates the triple nested
configuration for the MREA07 exercise.

In this model configuration, all domains are forcedwith the Coupled
OceanAtmosphereMesoscale Prediction System (COAMPS®1) Europe-2
winds (27 km) (Hodur, 1997) and heat fluxes from 0.5° Navy
Operational Global Atmospheric Prediction System (NOGAPS, Rosmond
et al., 2002).Monthly riverdischarges are extracted from the global river
data set of NCOM-GL (Barron and Smedstad, 2002), with the Arno,
Magra, and Serchio transports provided by the Istituto Idrografico
Italiano. The vertical resolution of each domain has 38 σ- and 7 z-levels
(45 levels). The outer nest (nest0) is at 4 km horizontal resolutionwith
the primary purpose of serving as a buffer zone between NCOM-GL's
NOGAPS forcing and the higher resolution wind data set. Nest 1 (2 km
resolution) includes tides. Tides are specified at the boundaries from the
Oregon State University tide model (Egbert and Erofeeva, 2002). Nest2
and nest3 are at about 0.6 km resolution and configured for the BP07
(Elba) and LASIE07 (LaSpezia) domains, respectively. An ensemble of 10
independent runs of the inner nests was also made available in real-
time, using similar set-ups but with perturbed atmospheric forcing
using the space–time deformations method (Hong and Bishop, 2007).

One of the most pressing issues of real-time operational forecast-
ing is to provide the information in a timely manner. Ocean forecasts
are usually one of the final components of a long string of products
developed at several different centers: a delay in acquiring one of the
input data (e.g., winds, boundary conditions), the classic computer
breakdowns (just to mention a few issues) may create a domino effect
and ultimately a late delivery of the forecast. In order to avoid delays in
the queue submissionwhich are often occurring at the supercomputer
sites, the full forecast cycle is performed at the Naval Research
Laboratory — Stennis Space Centre (NRLSSC) on dual processor
Opteron-based LINUX platforms. The latest NOGAPS and COAMPS
analyses and forecasts are usually available at NRLSSC before
1000GMT, but NCOM-GL daily hindcasts and forecasts arrive at
about 1130GMT. Therefore, to speed up the delivery of the results,
the OBC for nest0 are extracted from the NCOM-GL 72 h forecast of the
previous day. This makes it possible to start the simulations at about
1000GMT and complete the forecast cycle usually before NCOM-GL
latest files are available at NRLSSC. Unfortunately, only a partial
COAMPS data set is archived at NRLSSC, so the price for this procedure
is the use of NOGAPS-0.5 heat fluxes.

Themodel results arewritten toNetCDF files at user specified z-levels
and time increments. It is important that the z-levels be consistent with
the NCOM vertical grid. A coarse vertical resolution in the NetCDF files
may remove features reproduced by the model; a too fine vertical
resolution increases the computational cost and memory requirement
1 COAMPS is a registered trademark of the Naval Research Laboratory.
without increasing the physical accuracy of the solutions. For this real-
time exercise, the NCOM fields were provided on 47-levels and at a 1 h
increment. To reduce the amount of transferred data, only the 48 h
forecast (i.e., no hindcast) of the model and only a few upper vertical
levels for the ensemble spread were posted on the MREA07 ftp server,
generally at about 1230GMT and 1500GMT, respectively.

3. RELO-NCOM control analysis and data comparison

This note will focus on the analysis and discussion for the period
June 10 to 25, 2007 and for the nest 3 area only. In this region, dynamics
weremostly dominated by a persistent cyclonic gyre centered roughly
at 43 40N and 9 20W, modulated by smaller re-circulation cells north
and east, closer to the coast. The shapes and temperature distributions
of these smaller cells were strongly perturbed by the wind forcing.
During the “sirocco” south-easterly winds (e.g. 06/19 06:00 snapshot
displayed in Fig. 2, left panel) the average surface temperatures were
higher, withwarmerwaters trapped closer to the eastern coast. During
the “libeccio” south-westerly winds ((e.g. 06/23 12:00 snapshot
displayed in Fig. 2, right panel), the cold eddy signature becomes
more noticeable and different re-circulation patterns can be found
between the eddy and the coastline.

The Sea Surface Temperature (SST) images obtained from NOAA
AVHRR displayed in Fig. 3, although with different resolutions, concur
with the analysis of the previous paragraph.

The water columnwas strongly stratified during the whole period.
Model temperature hindcast and forecast estimates were compared
with 160 CTDprofiles collected during the trial in the period June 4–26,
2007 by three ships in the area (RV Planet, RV Leonardo and NI
Galatea). The daily CTDs' covered both deep and shallow water
throughout most of the surveying time. For this work only profiles
inside the nest 3 domainwere used. For each CTD, the nearest (in space
and time) hourly model profile was extracted. No horizontal or
temporal interpolation is performed on the model or data. Since
observations are on a higher vertical resolution relative to model
estimates, the model temperature at a specific z-level should be
compared with the mean value of the observed values between the
intermediate levels up and below (i.e. for themodel estimate Ti at level
Zi, observations should be averaged between the levels (Zi−1+Zi)/2
and (Zi+Zi+1)/2). The model-data comparisons displayed in Fig. 4
show that temperature errors were more noticeable on average at the
bottomof thewellmixed layer (at roughly 50mdepth),with the surface
waters typically cooler than observations and warmer waters below.
Temperature errors were very small below the 200 m depth. It is also
noticeable that these error characteristics did not change significantly
during the analysis period, though significant changes occur in the
forcing and dynamic responses as mentioned above.

From these comparisons one can assume that the prediction skills of
the model were limited, not significantly above model persistency, such
that these free-run RELO-NCOM fields could be considered as an analysis
tool capable of providing reasonable spatial distributions of the



Fig. 2. RELO-NCOM upper layer temperature snapshots for the days 06/19 (left panel) and 06/23 (right panel). The shapshots hours, displayed in the images, correspond to the d maximum stress for each day. During the 19th winds were
predominantly south-easterly (“Sirocco”) and during the 23rd they were predominantly south-westerly (“Libeccio”). Both panels display how flow patterns changes around th ersistent gyre in the South-West corner, with warmer waters
intruding northward during the “Libeccio” event.
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Fig. 3. NOAA AVHRR Sea Surface Temperature estimates for 06/19 (left panel) and 06/23 (right panel). During the 19th winds were predominantly from the south-east (“Sirocco”)
and during the 23rd from the south-west (“Libeccio”). Images were produced by automatic processing using NURC TERASCAN software.
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temperature fields, up to at least 48 h. This is mostly due to the persistent
nature of the dominant local dynamics that did not change significantly
during the analysis period. In othermore dynamic areas one could expect
these free-run errors to increase significantly after a few hours and
differences between forecast lead times also to become more noticeable.

Since there were no significant differences between these errors,
the discussion below regarding error prediction will use the 0–24 h
and 24–48 h temperature forecasts as equivalent estimates.

4. Ensemble re-scaling using the ensemble transform

The ocean is driven by surface fluxes that are determined by the
atmospheric state and are one major source of uncertainty. Predicted
atmospheric fields often contain the forecast feature of interest, but
Fig. 4. RELO-NCOM water temperature bias and RMS error estimates. The four panels in the l
estimates compared with the observations. The color plot named “A04” in the upper left u
(hour 0 snapshot) and the plots below named “F24” and “F48” use 24 and 48 h lead forecast
the same model estimates.
they can be misplaced in space and time (e.g. Hoffman et al., 1995).
This characteristics motivated the attempts to represent forecast
errors in terms of a shift of a forecast in space and time similar to the
pseudo-random fields method described by Evensen (2003) and
applied in ocean ensemble generation problems (e.g. Demirov et al.,
2003). For the present work, the atmospheric forcing perturbations
used to force the ocean ensemble members were produced using the
method developed by Hong and Bishop (2007). It uses only time shifts
of the forecast, with a choice of parameters to provide a good precision
in the atmospheric perturbations, though accuracy may not be
guaranteed over the whole simulation period.

Ifweneglect bathymetry, error inducedbynumerical approximations
and other sources of possible model bias, the ensemble transform (ET)
method of generating initial perturbations applied in atmospheric
eft show the RMS errors along each simulation day (24 h period), using different model
ses hindcast atmospheric forcing fields, the plot named “Pers” uses model persistency
s respectively. The four panels in the right show the error bias (24 h mean errors) using



Fig. 5. Error scatter plots computed using the run of June 13. The upper scatter diagrams show the ensemble spread vs. observed forecast error before re-scaling (A) and after re-scaling
(B). The forecast errors were computed using the 0–24 h forecasts (panels in the left) and using the 24–48 h model forecasts (panels in the right). The color plot below each scatter
diagrams shows the surface temperature error estimate (ensemble standard deviation) at hour 00:00 (left) and 24:00 (right) relative to the simulation day and the white crosses
depict the locations used for model-data comparison.
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ensemble forecasts (BishopandToth,1999) canbeused to re-balance and
re-shape the IC fields of the ensemble subset. Besides assuring that all
detected error growingmodeswill be equally represented, the advantage
of this technique is such that: it respects hydrodynamic balances by
ensuring that initial perturbations are a linear sum of forecast perturba-
tions from the preceding forecast; and ensures that the initial perturba-
tions are equally likely and orthogonal under ameasure of the probability
of initial condition error based on the best available estimate of initial
condition error variance. This technique does not provide though an
initial set of background perturbations that need to be introduced using
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complementary methods, such as forcing from an ensemble of atmo-
spheric forecasts as mentioned in the previous paragraph.

As detailed in Bishop and Toth (1999), through the ET ensemble
generation technique, K forecast perturbations of N state variables
Xo(N×K), can be transformed into a set of perturbations Xr that
are consistent with the background error analysis covariance Pg

a,
using

Xr = XoT

where T is a transformation matrix determined by the eigenvectors
and eigenvalues of the projections of the magnitude of the predicted
analysis perturbations on the inverse of the error analysis covariance
matrix. If the number of ensemble members equals the number of
state variables, this projection guarantees the perturbations covar-
iance to be equal to the error covariance.

Through this transformwe can then obtain a set of perturbed fields
that are consistent with an independent estimate of the error
covariance. In operational implementations these initial fields are
used as new initial conditions for the K independent ensemble runs,
providing a method to assimilate the observed errors into the
ensemble forecasts. For the present application and to use this
method in post-processing a persistency assumption during the 48 h
forecast cycles is taken, regarding the projection of the ensemble
covariances into the observed errors.

5. MREA07 error predictions

For the present application since no data are to be used the ET is
computed using the temperature 48 h forecast time variances, as
estimated by the RELO-NCOM free runs, producing a diagonal error
covariance matrix Pg

a. Besides allowing for a faster transform, this
approach allows keeping the shapes of the off-diagonal terms (spatial
cross-correlations) as estimated by the ensemble, while consistently
re-scaling the analysis errors, without introducing further analytical
or numerical approximations.
Fig. 6. Same as in Fig. 5-B, but using the time variability as an erro
The temperature estimates ensemble spatial correlations are then
updated only by the RELO-NCOM independent runs. This method
allows keeping error covariance updates, without the cost of comput-
ing and inverting very largematrices. Furthermore, since only a limited
number of ensemble members are available, this method limits the
growth of spurious cross-correlations. The same transform matrix T is
applied to all time steps of the ensemble estimates.

The resulting ensemble spread (standard deviations) for each
temperature estimate is then compared against the absolute value of
the RELO-NCOMvs. datamismatches anddisplayed in scatter diagrams
as those shown in Fig. 5 for days Jun 13 and 14, before and after
applying the ET. The statistical significance of each of these individual
estimates (small blue dots) is negligible, such that they are grouped in
equally populated bins with 1000 elements, defined along the
ensemble spread axis. These bins displayed inside the scatter diagrams
as large red dots will have similar likelihoods and will be statistically
relevant. For the ensemble to be accurate, bins should be aligned along
the main diagonal, highlighted as a black line on the plots. The green
rectangles around the bins show the standard deviations of each bin
along each axis (error and ensemble spread). Other relevant statistic is
the mean ratio between measured error vs. ensemble spread, (Err/Std
in thefigures) that should be close to 1 for the ensemble to be accurate.

The graphics in Fig. 5 left of the black line show the scatter
diagrams for days 13 (left upper plot) and day 14 (right upper plot)
computed from the ensemble before post-processing. From the bin
distribution we can see the ensemble to have a positive spread–skill
relationship, through all ranges of the observed errors, such that
estimates of smaller ensemble spread arewell correlated with smaller
errors and estimates of larger error are well correlated with the larger
errors, through all ranges of observed errors. However, we can see that
the ensemble was grossly under-predicting the magnitudes of the
observed errors in roughly one order of magnitude. This is most likely
due to the fact the initial fields and other major sources of error
besides atmospheric forcing were not being properly perturbed.

The data of June 13 were used as the initial day to start the
procedure and adjust the ensemble spread to the observed error. For
r proxy instead of the ensemble spread as an error estimate.



Fig. 7. Same results as described for Fig. 5-B (on the left) and Fig. 6 (on the right) but for the model run of June 24. The panels left of the vertical line show the results using the calibrated ensemble. Panels in the right show the same results but
using the time variability as an error proxy.
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this purpose, a multiplication factor of 4 was estimated from the data
and applied to the temporal standard deviations used to compute the
ET throughout the simulation period. This value was estimated
iteratively in order to bring the ratio Err/Std from a value of 11 before
the transform to 1. As a result, the red bins also became closer to the
main diagonal as we can see on the scatter diagrams right of
the vertical black line in Fig. 5. For the following day represented by
the 24–48 h forecast this ratio increased slightly to 1.5, though the bins
remained close to the main diagonal.

Other relevant result from Fig. 5 is the spatial distribution of the
error estimates. In the lower color maps one can see the ensemble
spread at the surface for days 13 and 14. The black crosses show
the points where data was collected during those days respectively.
One can see that the spatial patterns were not strongly changed by
the transform and the areas with larger estimated errors are shaped
along the boundaries of the persistent cyclonic eddy in the SW
portion of the domain as one could expect. The sampling locations
during these two days included several runs across the boundaries of
this cyclonic gyre.

Since the ET was using the temporal standard deviation to re-scale
the ensemble spread one could argue that the information contained
in the ensemble would be erased and time variability would be the
dominant error proxy. In order to evaluate this hypothesis the same
scatter diagrams were computed using the temporal standard
deviation instead of ensemble spread, as displayed in Fig. 6. To keep
an equivalent accuracy a multiplication factor of 7.8 was also applied
to set the ratio Err/Std to 1 for the day 13 data. From the scatter
diagrams one can see that this error proxy keeps similar positive
spread–skill relations, though the spatial distribution of errors is
significantly different from those estimates by the ensemble and not
so well correlated with the dominant dynamics.

Using the tuning parameters estimated for day 13, one can estimate
the ensemble spread and the time-variability error proxy for the
following forecast days. Since observations were made until June 25,
Fig. 7 displays the samediagrams for the last two days of June 24 (0/24 h
in the labels) and 25 (24/48 h in the labels) when model-data
comparisons were possible. The four plots panel in the left shows the
results using the transformed ensemble and the panel in the right shows
the same results using the time-variability proxy. One can see that the
ensemble spread was kept consistent with the dynamics and the
performance of both the transformed ensemble and time variability as
error proxy seems close in performance. However, looking to the spatial
distribution of the predicted surface temperature errors as displayed in
Table 1
This table shows the daily mean values of the ration between individual observed error
magnitudes vs the correspondent ensemble standard deviation (Err/Std), the
correlation coefficient or linear regression slope of the 1000 point bin averages (Corr.
Coef) and the difference between the bins ensemble standard deviation and bin errors
in °C (Bin Bias BB).

Day Err/Std Corr.Coef. Bin BIAS (BB)

Ens ET Time Ens ET Time Ens ET Time

06/13 11.0 1.0 1.0 0.84 0.84 0.75 0.3 0.0 0.0
06/14 16.3 1.5 1.5 0.74 0.73 0.67 0.4 0.1 0.1
06/17 20.3 1.6 1.8 0.79 0.80 0.55 0.3 0.1 0.2
06/18 10.0 0.8 1.0 0.67 0.67 0.89 0.5 −0.2 0.0
06/20 17.4 1.4 1.8 0.48 0.53 0.38 0.4 0.1 0.2
06/21 12.1 0.9 1.0 0.89 0.90 0.85 0.3 0.0 0.0
06/22 10.3 0.8 0.9 0.85 0.86 0.76 0.3 −0.1 −0.1
06/23 13.0 1.0 0.9 0.90 0.91 0.90 0.3 0.0 0.0
06/24 11.9 0.8 0.6 0.85 0.85 0.94 0.2 −0.1 −0.2
06/25 11.9 0.8 0.7 0.70 0.69 0.46 1.3 −0.3 −0.5
Mean 13.4 1.0 1.1 0.8 0.8 0.7 0.43 0.00 −0.03

Each oneof these estimateswas computed for the ensemblewithoutpost-processing (Ens),
with theETpost-processing(ET) and for thepost-processed timevariabilityusedas anerror
proxy (time). The row at the bottom shows the overall averages during the experiment.
the lower color maps for days June 24 and 25 one can see that the
ensemble responded consistently with the “Sirocco” and “Libeccio”
wind events, spreading the areas of larger uncertainty around the
cyclonic eddy, not so well represented by the time-variability proxy.

In order to obtain more objective performance estimates, daily
performance statistics were computed as displayed in Table 1. These
include the ration Err/Std as an estimate of the error estimate accuracy,
the bins correlation coefficient (C) as an estimate of the spread–skill
and the bin deviation from the main diagonal (Bin Bias — BB) as an
estimate of the error estimates bias.

Overall, during the period June, 13 to 25 the positive spread–skill
was kept for all estimates (ensemble with and without transform and
time variability), with the ensemble performing slightly better
showing a 0.8 correlation coefficient among the bins while the time
proxy had a 0.7 coefficient. The ratio Err/Std was also kept consistently
through this period such that on average through this period the
ensemble valuewas 13.4, the ETwas kept as 1 and the time proxy as 1.1.

The mean differences between bin coordinates (i.e. deviations
from the main diagonal) can also be used as an error bias estimate.
Through this 12 day period (June 13 to 25) the ensemble estimates
after the transform remained unbiased while the original ensemble
had a value of 0.4 and the time-variability proxy showed also a
negligible negative bias of 0.03.

6. Concluding remarks

Thework presented above showed that some level of predictability
of stochastic environmental variables through numerical modeling
could be achieved using Monte-Carlo methods, producing ensemble
based error estimates along with the predicted state variables, even
using a limited number of ensemble runs. However, the system
performance will be space and time dependent requiring an accurate
metrics system to produce both diagnostics and prognostics of the
precision and accuracy of the outputs.

The Ensemble Transform (ET) approach was successfully applied
for free-run oceanMesoscale error prediction calibration, by re-scaling
RELO-NCOMensembles produced through atmospheric perturbations.
Independent data was used for this analysis where the model runs
were not assimilating any local data. Results show that the ensemble
spread did not diverge andwas consistentwith the observed dynamics
throughout the simulation period. The ensemble showed a positive
spread–skill through all ranges of the observed errors.

Comparisons of ensemble spread of the temperature profiles with
local observed errors and time variability (assumed as an error proxy)
showed that they were consistent through a 12 day analysis period.
The ET calibrated ensemble had slightly better performance statistics
than the time-variability error proxy, most likely due to the fact that
the ensemble predicted errors were better correlated with the local
observed dynamics.

Results show that the ensemble spread did not diverge and was
consistent with the observed dynamics throughout the simulation
period. Furthermore, comparisons of ensemble spread of the tempera-
ture profileswith local observed errors and time variability (assumed as
an error proxy) showed that they were consistent through the 12 day
analysis period, with performances above the non-calibrated ensemble
estimates and time-variability used as error proxy. Overall error
estimates became unbiased and the system was able to accurately
separate large errors from smaller errors with a positive spread–skill
relationship, through all ranges of the observed errors.
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