
Naval Research Laboratory
Stennis Space Center, MS 39529-5004

NRL/MR/7320--08-9150

Approved for public release; distribution is unlimited.

Software Design Description for the
Polar Ice Prediction System (PIPS)
Version 3.0

Prepared for:
Naval Oceanographic Office
Systems Integration Division

Prepared by:
Pamela G. Posey
Lucy F. Smedstad
Ruth H. Preller
E. Joseph Metzger

Ocean Dynamics and Prediction Branch
Oceanography Division
and

Suzanne Carroll

Planning Systems, Inc.
Stennis Space Center, Mississippi

November 5, 2008

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
	 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
	 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Software Design Description for the Polar Ice Prediction System (PIPS) Version 3.0

Pamela G. Posey, Lucy F. Smedstad, Ruth H. Preller, E. Joseph Metzger,
and Suzanne Carroll*

Naval Research Laboratory
Oceanography Division
Stennis Space Center, MS 39529-5004 NRL/MR/7320--08-9150

Approved for public release; distribution is unlimited.

Unclassified Unclassified Unclassified
UL 147

Pamela Posey

(228) 688-5596

The Polar Ice Prediction System (PIPS) Version 3.0 is a dynamic sea-ice model that forecasts conditions in all sea-ice covered areas in the
northern hemisphere (down to 30° north in latitude). It has a horizontal resolution of approximately 9 km. The vertical resolution in the model has
been set at 45 levels so that Arctic shelves, continental slopes, and submarine ridges are accurately represented. Currently, the domain includes the
Irminger, Labrador, North and Baltic Seas on the Atlantic side and the Bering Sea, Sea of Japan, and the Sea of Okhotsk on the Pacific. The PIPS
3.0 system is based on the Los Alamos ice model and coupled (via file transfer) to the operational, global Navy Coastal Ocean Model (gNCOM).
The system forecasts daily ice thickness, concentration, and drift in the Arctic Ocean. This report documents the mathematical formulations, flow
charts, and descriptions of the programs and subroutines.

05-11-2008 Memorandum Report

Office of Naval Research
One Liberty Center
875 North Randolph St.
Arlington, VA 22203-1995

73-6057-08-5

ONR

0602435N

Ice forecast
Ice drift

Ice edge
Ice model

*Planning Systems, Inc., MSAAP Building 9121, Stennis Space Center, MS 39529

iii

 PIPS 3.0 SDD

TABLE OF CONTENTS

TABLE OF CONTENTS .. iii

TABLE OF FIGURES .. v

1.0 SCOPE ... 1
1.1 Identification .. 1
1.2 Document Overview .. 2

2.0 REFERENCED DOCUMENTS .. 3
2.1 PIPS 3.0 Software Documentation .. 3
2.2 General Technical Documentation .. 3

3.0 PIPS 3.0 SOFTWARE SUMMARY .. 6

4.0 PIPS 3.0 SOFTWARE INVENTORY ... 6
4.1 PIPS 3.0 Components ... 6

4.1.1 PIPS 3.0 Modules .. 6
4.1.2 PIPS 3.0 Subroutines .. 6
4.1.3 PIPS 3.0 Input File Namelist Parameters .. 7

4.1.3.1 Ice Namelist (ice_nml) ... 7
4.1.3.2 Ice Fields Namelist (icefields_nml) .. 10

4.1.4 PIPS 3.0 Macros File ... 13
4.1.5 PIPS 3.0 Makefile ... 14

4.2 PIPS 3.0 Software Organization and Implementation .. 15
4.2.1 Logical Component Call Trees .. 15

4.2.1.1 Primary Tree (beginning at the program ‘icemodel’) .. 15
4.2.1.2 Detached Call Trees (for extraneous modules and subroutines) .. 30

4.2.2 Directory Structure .. 31
5.0 PIPS 3.0 DETAILED DESIGN .. 33

5.1 Constraints and Limitations .. 33
5.2 Logic and Basic Equations ... 33

5.2.1 Coupling with Other Climate Model Components ... 33
5.2.1.1 Atmosphere ... 34
5.2.1.2 Ocean .. 36

5.2.2 Model Components .. 37
5.2.2.1 Horizontal Transport ... 39

5.2.2.1.1 Reconstructing Area and Tracer Fields ... 41
5.2.2.1.2 Locating Departure Triangles .. 44
5.2.2.1.3 Integrating Fluxes .. 50
5.2.2.1.4 Updating State Variables .. 53

5.2.2.2 Transport in Thickness Space .. 53
5.2.2.3 Mechanical Redistribution .. 57
5.2.2.4 Dynamics ... 61
5.2.2.5 Thermodynamics ... 65

5.2.2.5.1 Thermodynamic Surface Forcing .. 66
5.2.2.5.2 New Temperatures ... 68
5.2.2.5.3 Growth and Melting .. 75

5.3.1 PIPS 3.0 Modules .. 79

iv

 PIPS 3.0 SDD

5.3.2 PIPS 3.0 Subroutines ... 85
6.0 PIPS 3.0 Primary Variables and Parameters ... 124

7.0 NOTES ... 137
7.1 Acronyms and Abbreviations... 137

Appendix A ... 139
Table of Namelist Options .. 139

v

 PIPS 3.0 SDD

TABLE OF FIGURES

TABLE 1: ICE NAMELIST PARAMETERS. ... 9
TABLE 2: ICE FIELD NAMELIST PARAMETERS. ... 13
TABLE 3: PIPS 3.0 MACROS FROM MACROS.AIX.TXT FILE. ... 14
FIGURE 1: IN INCREMENTAL REMAPPING, CONSERVED QUANTITIES ARE REMAPPED FROM THE SHADED DEPARTURE

REGIONS, WHICH IS A QUADRILATERAL FORMED BY JOINING THE BACKWARD TRAJECTROIES FROM THE FOUR
CELL CORNERS, TO GRID CELL H. THE REGION FLUXED OVER THE NORTH EDGE OF CELL H CONSISTS OF A
TRIANGLE (ABC) IN THE NW CELL AND A QUADRILATERAL (TWO TRIANGLES, ACD AND ADE) IN THE N CELL.. ... 45

FIGURE 2: THE 20 POSSIBLE TRIANGLES THAT CAN CONTRIBUTE flUXES ACROSS THE NORTH EDGE OF A GRID CELL. ... 46
TABLE 4: EVALUATION OF CONTRIBUTIONS FROM THE 20 TRIANGLES ACROSS THE NORTH CELL EDGE. THE

COORDINATES 1x , 2x , 1y , 2y , ay , AND by ARE DEfiNED IN THE TEXT. WE DEfiNE 1 1=y y IF 1 > 0x , ELSE

1 = ay y . SIMILARLY, 2 2=y y IF 2 < 0x ELSE 2 = by y 47
FIGURE 3: A GRID CELL ON THE SURFACE OF A SPHERE WITH UNEQUAL SIDES OF LENGTH N, S, E, AND W IS ESTIMATED

AS A QUADRILATERAL LYING IN THE TANGENT PLANE AT THE CELL CENTER. THE QUADRILATERAL VERTICES

ARE (N/2, E/2), (-N/2, W/2), (-S/2, -W/2), AND (S/2, -E/2). THE BASIS VECTORS (ˆ ˆ' 'i j,), LOCATED AT THE

NORTHEAST CELL CORNER, HAVE BEEN PROJECTED INTO THE CELL-CENTER COORDINATE SYSTEM AND VARY

FROM THE CELL-CENTER BASIS VECTORS (ˆ ˆi j,). THE ANGLES Nθ AND Eθ RELATING THE TWO BASES ARE

DEfiNED IN THE TEXT. .. 48
FIGURE 4: LINEAR APPROXIMATION OF THE THICKNESS DISTRIBUTION FUNCTION G(H) FOR AN ICE CATEGORY WITH

LEFT BOUNDARY HL =0, RIGHT BOUNDARY HR =1, FRACTIONAL AREA AN =1, AND MEAN ICE THICKNESS HN = 0.2,
0.4, 0.6, AND 0.8. .. 56

FIGURE 5: ALBEDO AS A FUNCTION OF ICE THICKNESS AND TEMPERATURE FOR THE TWO EXTREMA IN SNOW DEPTH.
MAXIMUM SNOW DEPTH IS CALCULATED BASED ON ARCHIMEDES’ PRINCIPLE FOR THE GIVEN ICE THICKNESS.
THESE CURVES SYMBOLIZE THE ENVELOPE OF POTENTIAL ALBEDO VALUES. .. 67

 PIPS 3.0 SDD

1.0 SCOPE

1.1 Identification

The software described in this document is identified as the Polar Ice Prediction System (PIPS)
Version 3.0. PIPS 3.0 is a dynamic sea-ice model that forecasts conditions in all sea-ice covered
areas in the northern hemisphere (down to 30° north in latitude). It has a horizontal resolution of
approximately 9 km. The vertical resolution in the model has been set at 45 levels so that Arctic
shelves, continental slopes and submarine ridges are accurately represented. This allows for 17
levels in the upper 300 m of the water column and a maximum layer thickness in the deep ocean
of 300 m. The array size is 1280x720. Currently the domain includes the Irminger, Labrador,
North and Baltic Seas on the Atlantic side and the Bering Sea, Sea of Japan and the Sea of
Okhotsk on the Pacific side.

PIPS 3.0 model bathymetry south of 64° N is derived from the ETOP05 database, Navy
Research Lab charts and Canadian Hydrographic Service charts. Bathymetry north of 64 N
comes from the 2.5 km resolution digital International Bathymetric Chart of the Arctic Ocean
(IBCAO).
The PIPS 3.0 system uses the Los Alamos ice model, CICE (version 3.1), containing improved
procedures for model thermodynamics, physics parameterizations and energy based ridging. It
has the ability to predict multi-category ice thickness. The CICE model is designed to run on
massively parallel computers [37,10,11]. The CICE model is presently being coupled (via file
transfer) to the operational, global Navy Coastal Ocean Model (NCOM), to predict ice thickness,
concentration, and drift in the Arctic Ocean. NCOM is a baroclinic, hydrostatic, Boussinesq,
free-surface ocean model that allows its vertical coordinate to consist of sigma coordinates for
the upper layers and z-levels below a user-specified depth [5],[34]. NCOM runs operationally at
NAVOCEANO at a resolution of 1/8° globally. PIPS 3.0 also forecasts surface ocean current
and temperature in the surrounding seas. It is currently being tested for success in coupling with
the next generation global HYbrid Coordinate Ocean Model (HYCOM). For more information
on HYCOM, visit the website at http://hycom.rsmas.miami.edu/hycom/.

PIPS 3.0 is driven by heat fluxes and surface winds from the Navy Operational Global
Atmospheric Prediction System (NOGAPS). Daily updates are accomplished through an
objective analysis of ice concentration data from the Special Sensor Microwave/Imager (SSM/I)
located on the Defense Meteorological Satellite Program (DMSP) satellite.

There are four primary components that work together to comprise the PIPS 3.0 model:

• a thermodynamic model that calculates snowfall as well as local growth rates of snow
and ice due to vertical conductive, radiative and turbulent fluxes;

• an ice dynamics model, which predicts the velocity field of the ice pack based on a
model of the material strength of the ice;

• a transport model that depicts advection of the aerial concentration, ice volumes and
other state variables;

• a ridging parameterization that transports ice among thickness categories based on

1

Manuscript approved October 3, 2008.

http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/arctic.html�
http://oceanmodeling.rsmas.miami.edu/hycom/�

2

 PIPS 3.0 SDD

energetic balances and rates of strain.

1.2 Document Overview

The purpose of this Software Design Description (SDD) is to describe the software design and
code of the Polar Ice Prediction System (PIPS) Version 3.0. Because the PIPS 3.0 model is
largely based on the CICE model, this document reflects the information found in the Los
Alamos Sea Ice (CICE) Software User’s Manual [1]. The SDD includes the mathematical
formulation and solution procedures for PIPS 3.0 as well as flow charts and descriptions of the
programs, modules, and subroutines. This document, along with a User’s Manual [2] and a
Validation Test Report [3], forms a comprehensive documentation package for the PIPS 3.0
model system.

Generally speaking, subroutine names are given in italic and file names are boldface in this
document. Symbols used in the code are typewritten, while corresponding symbols in this
document are in the math font which is similar to italic.

3

 PIPS 3.0 SDD

2.0 REFERENCED DOCUMENTS

2.1 PIPS 3.0 Software Documentation

[1] E. C. Hunke and W.H. Lipscomb, “CICE: the Los Alamos Sea Ice Model Documentation and

Software”, available at http://climate.lanl.gov/Models/CICE/.
[2] P.G. Posey, L.F. Smedstad, R.H. Preller, E.J. Metzger and S.N. Carroll. “User’s Manual for

the Polar Ice Prediction System (PIPS) Version 3.0”, NRL/MR/7320—08-9154, Ocean
Modeling Division, Naval Research Laboratory, Stennis Space Center, MS, 2008.

[3] P.G. Posey, L.F. Smedstad, R.H. Preller, E.J. Metzger and S.N. Carroll. “Validation Test
Report for the Polar Ice Prediction System (PIPS) Version 3.0”, PSI Technical Report
SSC-003-06, Ocean Modeling Division, Naval Research Laboratory, Stennis Space
Center, MS, 2008.

2.2 General Technical Documentation

[4] T.L Amundrud, H. Malling, and R.G. Ingram. Geometrical constraints on the evolution of

ridged sea ice. J. Geophys. Res., 109, 2004. C06005, doi:10.1029/2003JC002251.
[5] C.N. Barron, A.B. Kara, P.J. Martin, R.C. Rhodes, and L.F. Smedstad. Formulation,

implementation and examination of vertical coordinate choices in the Global Navy
Coastal Ocean Model (NCOM). Ocean Modelling, 11:347-375, 2006.

[6] C. M. Bitz, M. M. Holland, A. J. Weaver, and M. Eby. Simulating the ice-thickness
distribution in a coupled climate model. J. Geophys. Res.–Oceans, 106:2441–2463, 2001.

[7] C. M. Bitz and W. H. Lipscomb. An energy-conserving thermodynamic sea ice model for
climate study. J. Geophys. Res.–Oceans, 104:15669–15677, 1999.

[8] W. M. Connolley, J. M. Gregory, E. C. Hunke, and A. J. McLaren. On the consistent scaling
of terms in the sea ice dynamics equation. J. Phys. Oceanogr., 34(7), 1776-1780, 2004.

[9] J. K. Dukowicz and J. R. Baumgardner. Incremental remapping as a transport/advection
algorithm. J. Comput. Phys., 160:318–335, 2000.

[10] J. K. Dukowicz, R.D. Smith, and R.C. Malone. A reformulation and implementation of the
Bryan-Cox-Semtner ocean model on the connection machine. J. Atmos. Oceanic
Technol., 10:195-208, 1993.

[11] J.K Dukowicz, R.D. Smith, and R.C. Malone. Implicit free-surface method for the Bryan-
Cox-Semtner ocean model. J. Geophys. Res.-Oceans, 99:7991-8014, 1994.

[12] E. E. Ebert, J. L. Schramm, and J. A. Curry. Disposition of solar radiation in sea ice and
the upper ocean. J. Geophys. Res.–Oceans, 100:15965–15975, 1995.

[13] G. M. Flato and W. D. Hibler. Ridging and strength in modeling the thickness distribution
of Arctic sea ice. J. Geophys. Res.–Oceans, 100:18611–18626, 1995.

[14] C. A. Geiger, W. D. Hibler, and S. F. Ackley. Large-scale sea ice drift and deformation:
Comparison between models and observations in the western Weddell Sea during 1992.
J. Geophys. Res.–Oceans, 103:21893–21913, 1998.

[15] W. D. Hibler. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9:817–846,
1979.

[16] W. D. Hibler. Modeling a variable thickness sea ice cover. Mon. Wea. Rev., 108:1943–1973,
1980.

http://climate.lanl.gov/Models/CICE/�

4

 PIPS 3.0 SDD

[17] E. C. Hunke. Viscous-plastic sea ice dynamics with the EVP model: Linearization issues. J.
Comput. Phys., 170:18–38, 2001.

[18] E. C. Hunke and J. K. Dukowicz. An elastic-viscous-plastic model for sea ice dynamics. J.
Phys. Oceanogr., 27:1849–1867, 1997.

[19] E. C. Hunke and J. K. Dukowicz. The Elastic-Viscous-Plastic sea ice dynamics model in
general orthogonal curvilinear coordinates on a sphere—Effect of metric terms. Mon.
Wea. Rev., 130:1848– 1865, 2002.

[20] E. C. Hunke and J. K. Dukowicz. The sea ice momentum equation in the free drift regime.
Technical Report LA-UR-03-2219, Los Alamos National Laboratory, 2003.

[21] E. C. Hunke and Y. Zhang. A comparison of sea ice dynamics models at high resolution.
Mon. Wea. Rev., 127:396–408, 1999.

[22] R. E. Jordan, E. L. Andreas, and A. P. Makshtas. Heat budget of snow-covered sea ice at
North Pole 4. J. Geophys. Res.–Oceans, 104:7785–7806, 1999.

[23] B. G. Kauffman and W. G. Large. The CCSM coupler, version 5.0.1. Technical note,
National Center for Atmospheric Research, August 2002.
http://www.ccsm.ucar.edu/models/.

[24] W. H. Lipscomb. Modeling the Thickness Distribution of Arctic Sea Ice. PhD thesis, Dept.
of Atmospheric Sciences, Univ. of Washington, Seattle, 1998.

[25] W. H. Lipscomb. Remapping the thickness distribution in sea ice models. J. Geophys. Res.–
Oceans, 106:13989–14000, 2001.

[26] W. H. Lipscomb and E. C. Hunke. Modeling sea ice transport using incremental remapping.
Mon. Wea. Rev., 132:1341-1354, 2004.

[27] W.H. Lipscomb, E.C. Hunke, W. Maslowski, and J. Jakacki. Improving ridging schemes for
high resolution sea ice models. J. Geophys. Res.-Oceans, Vol. 112, 2007.

[28] G. A. Maykut. Large-scale heat exchange and ice production in the central Arctic. J.
Geophys. Res.– Oceans, 87:7971–7984, 1982.

[29] G. A. Maykut and M. G. McPhee. Solar heating of the Arctic mixed layer. J. Geophys.
Res.–Oceans, 100:24691–24703, 1995.

[30] G.A. Maykut and D.K. Perovich. The role of shortwave radiation in the summer decay of
sea ice cover. J. Geophys. Res., 92(C7):7032-7044, 1987.

[31] G. A. Maykut and N. Untersteiner. Some results from a time dependent thermodynamic
model of sea ice. J. Geophys. Res., 76:1550–1575, 1971.

[32] R.J. Murray. Explicit generation of orthogonal grids for ocean models. J Comput. Phys.,
120:251-273, 1996.

[33] N. Ono. Specific heat and heat of fusion of sea ice. In H. Oura, editor, Physics of Snow and
Ice, Volume 1, pages 599–610. Institute of Low Temperature Science, Hokkaido, Japan,
1967.

[34] R.C. Rhodes, H.E. Hurlburt, A.J. Wallcraft, C.N. Barron, P.J. Martin, E.J. Metzger, J.F.
Shriver, D.S. Ko, O.M. Smedstad, S.L. Cross and A.B. Kara. Navy Real-Time Global
Modeling Systems. Oceanography, 15(1): 29-44, 2002.

[35] D. A. Rothrock. The energetics of the plastic deformation of pack ice by ridging. J.
Geophys. Res., 80:4514–4519, 1975.

[36] W. Schwarzacher. Pack ice studies in the Arctic Ocean. J. Geophys. Res., 64:2357–2367,
1959.

5

 PIPS 3.0 SDD

[37] R. D. Smith, J. K. Dukowicz, and R. C. Malone. Parallel ocean general circulation
modeling. Physica D, 60:38–61, 1992.

[38] R. D. Smith, S. Kortas, and B. Meltz. Curvilinear coordinates for global ocean models.
Technical Report LA-UR-95-1146, Los Alamos National Laboratory, 1995.

[39] P. K. Smolarkiewicz. A fully multi-dimensional positive definite advection transport
algorithm with small implicit diffusion. J. Comput. Phys., 54:325–362, 1984.

[40] M. Steele. Sea ice melting and floe geometry in a simple ice-ocean model. J. Geophys. Res.,
97(C11):17729-17738, 1992.

[41] M. Steele, J. Zhang, D. Rothrock, and H. Stern. The force balance of sea ice in a numerical
model of the Arctic Ocean. J. Geophys. Res.–Oceans, 102:21061–21079, 1997.

[42] A. H. Stroud. Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood
Cliffs, New Jersey, 1971. 431 pp.

[43] A. S. Thorndike, D. A. Rothrock, G. A. Maykut, and R. Colony. The thickness distribution
of sea ice. J. Geophys. Res., 80:4501–4513, 1975.

[44] N. Untersteiner. Calculations of temperature regime and heat budget of sea ice in the
Central Arctic. J. Geophys. Res., 69:4755–4766, 1964.

6

 PIPS 3.0 SDD

3.0 PIPS 3.0 SOFTWARE SUMMARY

PIPS 3.0 is written in fixed-format FORTRAN90 and runs on UNIX host platforms, including
SGI Origin 3000 (<OS>

= IRIX64 below), SGI Altix (Linux), IBM Power4 (AIX) and Cray X1

(UNICOS). The code is parallelized through grid decomposition with MPI for message passing
between processors, with four processors allocated to each hemisphere. The code has been
optimized for vector architectures and tested on Fujitsu VPP 5000, Cray X1, and NEC platforms.
At NAVOCEANO, PIPS 3.0 is run using 32 processors on an IBM platform with a
ConsumableMemory of 500 mb. With respect to hardware resources, a one-day run of PIPS 3.0
at NAVOCEANO requires 0.85 Processor Hrs.

4.0 PIPS 3.0 SOFTWARE INVENTORY

4.1 PIPS 3.0 Components

A complete description of each PIPS 3.0 module and subsequent subroutines, including a
definition, purpose, relationship to other modules, etc. is found in Section 5.3. The PIPS 3.0
software is run through a series of modules, makefiles, input files, and scripts.

4.1.1 PIPS 3.0 Modules

CICE.f, ice_albedo.f, ice_atmo.f, ice_calendar.f, ice_constants.f, ice_coupling.f,
ice_diagnostics.f, ice_domain.f, ice_dyn_evp.f, ice_exit.f, ice_fileunits.f, ice_flux.f,
ice_flux_in.f, ice_grid.f, ice_history.f, ice_init.f, ice_itd.f, ice_itd_linear.f, ice_kinds_mod.f,
ice_mechred.f, ice_model_size.f, ice_mpi_internal.f, ice_ocean.f, ice_read_write.f, ice_scaling.f,
ice_state.f, ice_therm_itd.f, ice_therm_vertical.f, ice_timers.f, ice_transport_mpdata.f,
ice_transport_remap.f, ice_work.f

4.1.2 PIPS 3.0 Subroutines

abort_ice.f, absorbed_solar.f, add_new_ice.f, add_new_snow.f, aggregate.f, aggregate_area.f,
albedos.f, asum_ridging.f, atmo_boundary_layer.f, bound.f, bound_aggregate.f, bound_ijn.f,
bound_narr.f, bound_narr_ne.f, bound_state.f, bound_sw.f, calendar.f, check_monotonicity.f,
check_state.f, column_conservation_check.f, column_sum.f, columgrid.f,
complete_getflux_ocn.f, conductivity.f, conservation_check_vthermo.f, conserved_sums.f,
construct_fields.f, departure_points.f, dumpfile.f, end_run.f, evp.f, evp_finish.f, evp_prep.f,
exit_coupler.f, file_year.f, fit_line.f, flux_integrals.f, freeboard.f, from_coupler.f,
frzmlt_bottom_lateral.f, get_sum.f, getflux.f, global_conservation.f, global_gather.f,
global_scatter.f, ice_bcast_char.f, ice_bcast_iscalar.f, ice_bcast_logical.f, ice_bcast_rscalar.f,
ice_coupling_setup.f, ice_global_real_minmax.f, ice_open.f, ice_read.f, ice_strength.f,
ice_timer_clear(n).f, ice_timer_print(n).f, ice_timer_start(n).f, ice_timer_stop(n).f, ice_write.f,

7

 PIPS 3.0 SDD

ice_write_hist.f, icecdf.f, init_calendar.f, init_constants.f, init_cpl.f, init_diagnostics.f,
init_diags.f, init_evp.f, init_flux.f, init_flux_atm.f, init_flux_ocn.f, init_getflux.f, init_grid.f,
init_hist.f, init_itd.f, init_mass_diags.f, init_mechred.f, init_remap.f, init_state.f,
init_thermo_vars.f, init_thermo_vertical.f, init_vertical_profile.f, input_data.f, integer function
lenstr(label).f, interp_coeff.f, interp_coeff_monthly.f, interpolate_data.f, lateral_melt.f,
limited_gradient.f, linear_itd.f, load_tracers.f, local_max_min.f, locate_triangles.f,
make_masks.f, makemask.f, merge_fluxes.f, mixed_layer.f, mpdata(narrays,phi).f,
NCAR_bulk_dat.f, NCAR_files.f, pipsgrid.f, popgrid.f, prepare_forcing.f, principal_stress.f,
print_state.f, read_clim_data.f, read_data.f, real function ice_global_real_maxval.f, real function
ice_global_real_minval.f, real function ice_global_real_sum.f, rebin.f, rectgrid.f, reduce_area.f,
restartfile.f, ridge_ice.f, ridge_prep.f, ridge_shift.f, runtime_diags.f, scale_fluxes.f,
scale_hist_fluxes.f, setup_mpi.f, shift_ice.f, sss_clim.f, sss_sst_restore.f, sst_ic.f, stepu.f, stress.f,
surface_fluxes.f, t2ugrid.f, temperature_changes.f, thermo_itd.f, thermo_vertical.f,
thickness_changes.f, timers.f, Tlatlon.f, to_coupler.f, to_tgrid.f, to_ugrid.f, transport_mpdata.f,
transport_remap.f, triangle_coordinates.f, tridiag_solver.f, u2tgrid.f, unload_tracers.f,
update_fields.f, update_state_vthermo.f, zap_small_areas.f

4.1.3 PIPS 3.0 Input File Namelist Parameters

The ice_in.txt file is an input file of namelist parameters used in running the PIPS 3.0 model at
NAVOCEANO. The variables are described in the order they appear in the ice_in and with the
default values and directory paths used in execution at NAVOCEANO.

4.1.3.1 Ice Namelist (ice_nml)

Name Type/Options Description Default Values / Directory
Location

year_init yyyy The initial year, if not using
restart

= 0001

istep0 integer Initial time step number = 0

dt seconds Thermo/transport time step
length

= 2800.

ndte integer Number of EVP subcycles = 120

npt integer Total number of time steps
to take

= 70

diagfreq integer Frequency of diagnostic
output in dt
eg., 10 is once every 10
time steps

= 30

histfreq y, m, w, d, l Write history output once a
year, month, week, day, or
every time step

= 'h'

8

 PIPS 3.0 SDD

Name Type/Options Description Default Values / Directory
Location

dumpfreq y, m, d Write restart every
dumpfreq_n years, months,
days

= 'd'

dumpfreq_n integer Frequency restart data is
written

= 1

hist_avg true/false Write time-averaged data if
true
Write snapshots of data if
false

= .false.

restart true/false Initialize using restart file = .true.

print_points true/false Print diagnostic data for
two grid points

= .true.

print_global true/false Print diagnostic data, global
sums

= .true.

kitd 0 /1 If 0, delta function ITD
approx.
If 1, linear remapping ITD
approx.

= 1

kcatbound 0/1 If 0, original category
boundary formula
If 1, new category boundary
formula

= 1

kdyn 0 /1 If 0, EVP dynamics OFF
If 1, EVP dynamics ON

= 1

kstrength 0 /1 If 0, [15] ice strength
formulation
If 1, [35] ice strength
formulation

= 1

krdg_partic 0/1 If 0, old ridging
participation function
If 1, new ridging
participation function

= 1

krdg_redist 0/1 If 0, old ridging
redistribution function
If 1, new ridging
redistribution function

= 0

evp_damping true/false If true, damp elastic waves,
[17]

= .false.

advection remap, mpdata,
upwind

remap: Linear remapping
advection
mpdata: 2nd order

= 'remap'

9

 PIPS 3.0 SDD

Name Type/Options Description Default Values / Directory
Location

MPDATA
upwind: 1st order MPDATA

grid_type rectangular,
displaced_pole

rectangular: Defined in
rectgrid
displaced_pole: Read from
file in popgrid

= 'pips'

grid_file filename Name of grid file to be read = 'grid_cice_1280x720.r'

kmt_file filename Name of land mask file to
be read

= 'kmt'

dump_file filename prefix Output file for restart dump = 'iced'

restart_dir path/ path to restart directory = '/scr/posey/pips3c/'

pointer_file pointer filename Contains restart filename =
'/scr/posey/pips3c/ice.restart_file'

hist_dir path/ path to history output
directory

= '/scr/posey/pips3c/'

history_file filename prefix Output file for history = 'iceh'

diag_file filename Diagnostic output file = 'ice_diag.d'

oceanmixed_ice true/false Active ocean mixed layer
calculation

= .true.

albicev 0 < α < 1 Visible ice albedo for
thicker ice

= 0.65

albicei 0 < α < 1 Near infrared ice albedo for
thicker ice

= 0.65

albsnowv 0 < α < 1 Visible, cold snow albedo = 0.85

albsnowi 0 < α < 1 Near infrared, cold snow
albedo

= 0.85

ycycle integer No. of years in forcing data
cycle

= 1

fyear_init yyyy First year of atmospheric
forcing data

= 2008

atm_data_dir path/ Path to atm forcing data
directory

= '/scr/posey/pips3c/data_in/'

ocn_data_dir path/ Path to oceanic forcing data
directory

= '/scr/posey/pips3c/data_in/'

Table 1: Ice namelist parameters.

10

 PIPS 3.0 SDD

4.1.3.2 Ice Fields Namelist (icefields_nml)

Name Description Default Values
f_hi Ice thickness = .true.

f_hs Snow thickness = .true.

f_Tsfc Temperature of ice/snow
top surface (in category n)

= .false.

f_aice Ice concentration = .true.

f_uvel x-component of velocity = .true.

f_vvel y-component of velocity = .true.

f_fswdn Incoming shortwave
radiation down

= .false.

f_flwdn Incoming longwave
radiation down

= .fasle.

f_snow Snowfall rate = .false.

f_snow_ai Snowfall rate weighted by
aice

= .false.

f_rain Rainfall rate = .false.

f_rain_ai Rainfall rate weighted by
aice

= .false.

f_sst Sea surface temperature = .true.

f_sss Sea surface salinity = .true.

f_uocn Ocean current, x direction = .true.

f_vocn Ocean current, y direction = .true.

f_frzmlt Freezing/melting potential = .false.

f_fswabs Absorbed shortwave
radiation

= .false.

f_fswabs_ai Absorbed shortwave
radiation weighted by aice

= .false.

f_albsni Snow/ice broad band
albedo

= .false.

11

 PIPS 3.0 SDD

Name Description Default Values
f_alvdr = .false.

f_alidr = .false.

f_flat Latent heat flux = .false.

f_flat_ai Latent heat flux weighted
by aice

= .false.

f_fsens Sensible heat flux = .false.

f_fsens_ai Sensible heat flux weighted
by aice

= .false.

f_flwup Incoming longwave
radiation upward

= .false.

f_flwup_ai Incoming longwave
radiation upward weighted
by aice

= .false.

f_evap Evaporation water flux = .false.

f_evap_ai Evaporation water flux
weighted by aice

= .false.

f_Tref 2m atmospheric reference
temperature

= .false.

f_Qref 2 m atmospheric reference
specific humidity

= .false.

f_congel Basal ice growth = .false.

f_frazil Frazil ice growth = .false.

f_snoice Snow-ice formation = .false.

f_meltt Top ice melt = .false.

f_meltb Basal ice melt = .false.

f_meltl Lateral ice melt = .false.

f_fresh Fresh water flux to ocean = .false.

f_fresh_ai Fresh water flux to ocean
weighted by aice

= .false.

f_fsalt Net salt flux to ocean = .false.

f_fsalt_ai Net salt flux to ocean
weighted by aice

= .false.

12

 PIPS 3.0 SDD

Name Description Default Values
f_fhnet Net heat flux to ocean = .false.

f_fhnet_ai Net heat flux to ocean
weighted by aice

= .true.

f_fswthru Shortwave penetrating to
ocean

= .false.

f_fswthru_ai Shortwave penetration to
ocean weighted by aice

= .false.

f_strairx Stress on ice by air in the
x-direction (centered in U
cell)

= .true.

f_strairy Stress on ice by air in y-
direction (centered in T
cell)

= .true.

f_strtltx Surface stress due to sea
surface slope in x-direction

= .false.

f_strtlty Surface stress due to sea
surface slope in y-direction

= .false.

f_strcorx Coriolis stress (x) = .false.

f_strcory Coriolis stress (y) = .false.

f_strocnx Ice-ocean stress, x dir. (U
cell)

= .true.

f_strocny Ice-ocean stress, y-dir. (T
cell)

= .true.

f_strintx Divergence of internal ice
stress, x-direction

= .true.

f_strinty Divergence of internal ice
stress, y-direction

= .true.

f_strength Ice strength (pressure) = .true.

f_opening Lead area opening rate = .true.

f_divu Strain rate I component,
velocity divergence

= .false.

f_shear Strain rate II component = .false.

f_sig1 Principal stress
components (diagnostic)

= .false.

13

 PIPS 3.0 SDD

Name Description Default Values
f_sig2 Principal stress

components (diagnostic)
= .false.

f_dvidtt Ice volume tendency due to
thermodynamics

= .false.

f_dvidtd Ice volume tendency due to
dynamics/transport

= .false.

f_daidtt Ice area tendency due to
thermodynamics

= .false.

f_daidtd Ice area tendency due to
dynamics/transport

= .false.

f_mlt_onset Day of year that surface
melt begins

= .false.

f_frz_onset Day of year that freezing
begins

= .false.

f_dardg1dt Ice area ridging rate = .false.

f_dardg2dt Ridge area formation rate = .false.

f_dvirdgdt Ice volume ridging rate = .false.

f_hisnap Ice volume snapshot = .false.

f_aisnap Ice area snapshot = .false.

f_aice1 (through
5)

Ice concentration in grid
cell in categories 1 through
5

= .true.

f_aice6 (through
10)

Ice concentration in grid
cell in categories 6 through
10

= .false.

f_vice1 (through
5)

Volume per unit area of ice
in categories 1 through 5

= .true.

f_vice6
(through 10)

Volume per unit area of ice
in categories 6 through 10

= .false.

Table 2: Ice field namelist parameters.

4.1.4 PIPS 3.0 Macros File

Macros.AIX.txt is a file containing macros necessary for compiling the PIPS 3.0 code on the
NAVOCEANO IBM platform “Babbage”. A detailed description of the macro is provided in the
PIPS 3.0 User’s Manual [2]. The primary macros utilized in this file are summarized below.

14

 PIPS 3.0 SDD

Macro Description

-lmass IBM - tuned intrinsic library
-qsmp=noauto enables SMP directives, but does not add any
-qstrict don't turn divides into multiplies, etc
-qhot higher-order -transformations (eg. loop padding)
-qalias=noaryoverlp assume no array overlap with respect to equivalence, etc
-qmaxmem=1 memory available to compiler during optimization
-qipa=level=2 InterProcedure Analysis (eg. inlining) => slow compiles
-p –pg enable profiling (use in both FFLAGS and LDFLAGS)
-qreport for smp/omp only
-bmaxdata:0x80000000 use maximum allowed data segment size
-g always leave it on because overhead is minimal
-qflttrap=... enable default sigtrap (core dump)
-C runtime array bounds checking (runs slow)
-qinitauto=... initializes automatic variables

Table 3: PIPS 3.0 macros from Macros.AIX.txt file.

4.1.5 PIPS 3.0 Makefile

A makefile is used in the execution of PIPS 3.0 at NAVOCEANO. A comprehensive description
of the makefile is provided in the PIPS 3.0 User’s Manual [2]. The command line variables and
usage examples are defined below.

Command-line variables:

1. MACFILE=<file> ~ The macros definition file to use/include in a run.
2. EXEC=<name> ~ The name given to an executable. The default is a.out.
3. VPATH=<vpath> ~ VPATH, default is . (cwd only).
4. SRCS=<files> ~ A list of source files. The default is all .c .F .F90 files in VPATH.
5. VPFILE=<file> ~ A file with a list of directories. It is used to create VPATH.
6. SRCFILE=<file> ~ A file with a list of source files. It is used to create SRCS.
7. DEPGEN=<exec> ~ A dependency generator utility, with a default of makdep.
8. <macro defns> ~ Any macro definitions found in this file or the included MACFILE will

be over-ridden by command line macro definitions.
9. MODEL=<model> ~ A standard macro definition, often found in the included

MACFILE. It is used to trigger special compilation flags.

Usage examples:
 % gmake MACFILE=Macros.AIX VPFILE=Filepath MODEL=ccm3 EXEC=atm
 % gmake MACFILE=Macros.AIX VPFILE=Filepath SRCFILE=Srclist EXEC=pop

15

 PIPS 3.0 SDD

 % gmake MACFILE=Macros.C90 VPATH="dir1 dir2" SRCS="file1.c file2.F90"
 % gmake MACFILE=Macros.SUN SRCS="test.F"

4.2 PIPS 3.0 Software Organization and Implementation

4.2.1 Logical Component Call Trees

4.2.1.1 Primary Tree (beginning at the program ‘icemodel’)

icemodel
|
+-ice_albedo-+-ice_kinds_mod
| |
| +-ice_domain-+-ice_kinds_mod
| |
| +-ice_model_size--ice_kinds_mod
|
+-ice_calendar--ice_constants-+-ice_kinds_mod
| |
| +-ice_domain
|
+-ice_coupling-+-ice_kinds_mod
| |
| +-ice_model_size
| |
| +-ice_constants
| |
| +-ice_calendar
| |
| +-ice_state-+-ice_kinds_mod
| | |
| | +-ice_model_size
| | |
| | +-ice_domain
| |
| +-ice_flux-+-ice_kinds_mod
| | |
| | +-ice_domain
| | |
| | +-ice_constants
| |
| +-ice_albedo
| |
| +-ice_mpi_internal-+-ice_kinds_mod
| | |
| | +-ice_domain
| |
| +-ice_timers-+-ice_kinds_mod
| | |
| | +-ice_constants
| |
| +-ice_fileunits--ice_kinds_mod
| |
| +-ice_work-+-ice_kinds_mod
| |
| +-ice_domain
|
+-ice_diagnostics-+-ice_domain
| |
| +-ice_constants
| |
| +-ice_calendar

16

 PIPS 3.0 SDD

| |
| +-ice_fileunits
| |
| +-ice_work
|
+-ice_domain
|
+-ice_dyn_evp-+-ice_kinds_mod
| |
| +-ice_domain
| |
| +-ice_constants
| |
| +-ice_state
| |
| +-ice_work
|
+-ice_fileunits
|
+-ice_flux_in-+-ice_kinds_mod
| |
| +-ice_domain
| |
| +-ice_constants
| |
| +-ice_flux
| |
| +-ice_calendar
| |
| +-ice_read_write-+-ice_model_size
| | |
| | +-ice_domain
| | |
| | +-ice_mpi_internal
| | |
| | +-ice_fileunits
| | |
| | +-ice_work
| |
| +-ice_fileunits
|
+-ice_grid-+-ice_kinds_mod
| |
| +-ice_constants
| |
| +-ice_domain
| |
| +-ice_fileunits
| |
| +-ice_mpi_internal
| |
| +-ice_work
|
+-ice_history-+-ice_kinds_mod
| |
| +-ice_domain
| |
| +-ice_read_write
| |
| +-ice_fileunits
| |
| +-ice_work
|
+-ice_init--ice_domain
|
+-ice_itd-+-ice_kinds_mod
| |
| +-ice_model_size
| |

17

 PIPS 3.0 SDD

| +-ice_constants
| |
| +-ice_state
| |
| +-ice_fileunits
|
+-ice_itd_linear-+-ice_model_size
| |
| +-ice_kinds_mod
| |
| +-ice_domain
| |
| +-ice_constants
| |
| +-ice_state
| |
| +-ice_itd
| |
| +-ice_calendar
| |
| +-ice_fileunits
|
+-ice_kinds_mod
|
+-ice_mechred-+-ice_model_size
| |
| +-ice_constants
| |
| +-ice_state
| |
| +-ice_itd
| |
| +-ice_grid
| |
| +-ice_fileunits
| |
| +-ice_domain
| |
| +-ice_calendar
| |

| +-ice_work
|
+-ice_mpi_internal
|
+-ice_ocean-+-ice_kinds_mod
| |
| +-ice_constants
|
+-ice_scaling-+-ice_domain
| |
| +-ice_kinds_mod
| |
| +-ice_constants
| |
| +-ice_state
| |
| +-ice_flux
| |
| +-ice_grid
|
+-ice_therm_vertical-+-ice_model_size
| |
| +-ice_kinds_mod
| |
| +-ice_domain
| |
| +-ice_fileunits
| |

18

 PIPS 3.0 SDD

| +-ice_constants
| |
| +-ice_calendar
| |
| +-ice_grid
| |
| +-ice_state
| |
| +-ice_flux
| |
| +-ice_itd
| |
| +-ice_diagnostics
|
+-ice_therm_itd-+-ice_kinds_mod
| |
| +-ice_model_size
| |
| +-ice_constants
| |
| +-ice_domain
| |
| +-ice_state
| |
| +-ice_flux
| |
| +-ice_diagnostics
| |
| +-ice_calendar
| |
| +-ice_grid
| |
| +-ice_itd
|
+-ice_timers
|
+-ice_transport_mpdata-+-ice_model_size
| |
| +-ice_domain
| |
| +-ice_constants
| |
| +-ice_grid
| |
| +-ice_fileunits
| |
| +-ice_init
| |
| +-ice_work
|
+-ice_transport_remap-+-ice_model_size
| |
| +-ice_kinds_mod
| |
| +-ice_domain
| |
| +-ice_constants
| |
| +-ice_grid
| |
| +-ice_fileunits
| |
| +-ice_calendar
| |
| +-ice_state
| |
| +-ice_timers
| |
| +-ice_itd

19

 PIPS 3.0 SDD

| |
| +-ice_work
|
+-(shr_msg_stdio)
|
+-setup_mpi-+-ice_mpi_internal
| |
| +-ice_coupling
| |
| +-ice_coupling_setup-+-(cpl_interface_init)
| | |
| | +-(shr_sys_flush)
| |
| +-(mpi_init)
| |
| +-(mpi_comm_dup)
| |
| +-(mpi_comm_size)

| |
| +-(mpi_comm_rank)
| |
| +-(abort_ice)
| |
| +-(mpi_type_vector)
| |
| +-(mpi_type_commit)
|
+-ice_timer_clear
|
+-ice_timer_start--timers-+-(mpi_wtime)
| |
| +-(irtc_rate)
| |
| +-(rtc)
|
+-init_constants
|
+-input_data-+-ice_albedo
| |
| +-ice_diagnostics
| |
| +-ice_history
| |
| +-ice_calendar
| |
| +-ice_dyn_evp
| |
| +-ice_flux_in
| |
| +-ice_coupling
| |
| +-ice_bcast_iscalar--(mpi_bcast)
| |
| +-(abort_ice)
| |
| +-ice_bcast_rscalar--(mpi_bcast)
| |
| +-ice_bcast_char--(mpi_bcast)
| |
| +-ice_bcast_logical--(mpi_bcast)
|
+-init_grid
| |
| +-global_scatter-+-ice_model_size
| | |
| | +-ice_constants
| | |
| | +-(mpi_irecv)

20

 PIPS 3.0 SDD

| | |
| | +-(mpi_isend)(mpi_sendrecv)
| | |

| | +-(mpi_irecv)
| | |
| | +-(mpi_isend)
| | |
| | +-(mpi_wait)
| |
| +-popgrid-+-ice_read_write
| | |
| | +-ice_open
| | |
| | +-ice_read-+-global_scatter
| | |
| | +-ice_bcast_logical
| |
| +-pipsgrid-+-ice_read_write
| | |
| | +-ice_open
| | |
| | +-ice_read
| |
| +-columngrid-+-global_scatter
| | |
| | +-ice_model_size
| | |
| | +-(abort_ice)
| |
| +-rectgrid-+-global_scatter
| | |
| | +-ice_model_size
| |
| +-bound--bound_ijn-+-ice_timers
| | |
| | +-ice_timer_start
| | |
| | +-+-ice_timer_stop--timers
| |
| +-(abort_ice)
| |
| +-tlatlon-+-global_gather-+-ice_model_size
| | | |
| | | +-ice_constants
| | | |
| | | +-(mpi_irecv)
| | | |
| | | +-(mpi_barrier)
| | | |
| | | +-(mpi_isend)
| | | |
| | | +-(mpi_wait)
| | | |
| | | +-(mpi_waitall)
| | |
| | +-global_scatter
| | |
| | +-ice_model_size
| | |
| | +-bound
| |
| +-makemask--bound
|
+-init_remap-+-bound
| |
| +-(abort_ice)
|
+-init_calendar

21

 PIPS 3.0 SDD

|
+-init_hist-+-ice_bcast_iscalar
| |
| +-ice_bcast_logical
| |
| +-ice_constants
| |
| +-ice_calendar
| |
| +-ice_flux
| |
| +-(abort_ice)
| |
| +-(shr_sys_flush)
|
+-init_evp-+-ice_calendar
| |
| +-ice_fileunits
| |
| +-ice_flux
| |
| +-(ulat)
| |
| +-(bound)
|
+-init_flux-+-ice_constants
| |
| +-ice_flux
| |
| +-init_flux_atm--ice_state
| |
| +-init_flux_ocn
|
+-init_thermo_vertical--ice_itd
|
+-init_mechred
|
+-init_itd--(abort_ice)
|
+-calendar--ice_fileunits
|
+-init_cpl
| |
| +-calendar
| |
| +-ice_bcast_iscalar
| |
| +-ice_bcast_rscalar
| |
| +-(shr_sys_flush)
| |
| +-(tlon)
| |
| +-(tlat)
| |
| +-(tarea)
| |
| +-(hm)
| |
| +-(cpl_interface_contractinit)
| |
| +-(cpl_interface_ibufrecv)
| |
| +-to_coupler
| |
| +-get_sum--ice_global_real_sum--(mpi_allreduce)
| |
| +-ice_timer_start
| |

22

 PIPS 3.0 SDD

| +-ice_timer_stop
| |
| +-(anglet)
| |
| +-(tmask)
| |
| +-(shr_sys_flush)
| |
| +-(cpl_interface_contractsend)
| |
| +-(tarea)
| |
| +-(bound)
|
+-init_getflux-+-ncar_files--file_year
| |
| +-sss_clim-+-ice_work
| | |
| | +-ice_open
| | |
| | +-ice_read
| | |
| | +-complete_getflux_ocn
| |
| +-sst_ic-+-ice_open
| |
| +-ice_read
|
+-init_state-+-ice_model_size
| |
| +-ice_constants
| |
| +-ice_flux
| |
| +-ice_grid
| |
| +-ice_state
| |
| +-bound
| |
| +-(hin_max)
| |
| +-(ilyr1)
| |
| +-(tmlt)
| |
| +-(aggregate)
| |
| +-(bound_aggregate)
|
+-restartfile-+-ice_model_size
| |
| +-ice_mpi_internal
| |
| +-ice_open
| |
| +-ice_bcast_iscalar
| |
| +-ice_bcast_rscalar
| |
| +-ice_read
| |
| +-ice_flux
| |
| +-ice_grid
| |
| +-ice_calendar
| |
| +-ice_state

23

 PIPS 3.0 SDD

| |
| +-ice_dyn_evp
| |
| +-ice_coupling
| |
| +-lenstr
| |
| +-(bound_state)
| |
| +-bound
| |
| +-(aggregate)
| |
| +-(bound_aggregate)
|
+-albedos-+-ice_constants
| |
| +-ice_state
| |
| +-(tmask)
|
+-init_diags-+-ice_mpi_internal
| |
| +-global_gather
| |
| +-(tlat_g)
| |
| +-(tlon_g)
|
+-init_diagnostics--ice_state
|
+-from_coupler-+-get_sum
| |
| +-ice_timer_start
| |
| +-ice_timer_stop
| |
| +-(cpl_interface_contractrecv)
| |
| +-(tarea)
| |
| +-(hm)
| |
| +-(bound)
| |
| +-(anglet)
| |
| +-(t2ugrid)
|
+-getflux-+-sss_sst_restore-+-interp_coeff_monthly
| | |
| | +-read_clim_data-+-ice_open
| | | |
| | | +-ice_read
| | | |
| | | +-ice_diagnostics
| | |
| | +-interpolate_data
| | |
| | +-complete_getflux_ocn
| |
| +-ncar_bulk_dat-+-interp_coeff_monthly
| | |
| | +-read_clim_data
| | |

| | +-interpolate_data
| | |
| | +-interp_coeff

24

 PIPS 3.0 SDD

| | |
| | +-read_data-+-ice_open
| | |
| | +-ice_read
| | |
| | +-ice_diagnostics
| | |
| | +-file_year
| |
| +-prepare_forcing--ice_state
|
+-init_mass_diags-+-ice_mpi_internal
| |
| +-ice_state
| |
| +-get_sum
| |
| +-global_gather
|
+-mixed_layer-+-ice_flux
| |
| +-ice_calendar
| |
| +-ice_grid
| |
| +-ice_state
| |
| +-ice_albedo
| |
| +-(atmo_boundary_layer)
|
+-thermo_vertical
| |
| +-ice_work
| |
| +-init_flux_atm
| |
| +-init_diagnostics
| |
| +-merge_fluxes--ice_state
| |
| +-ice_timers
| |
| +-ice_ocean
| |
| +-ice_timer_start
| |
| +-frzmlt_bottom_lateral
| |
| +-init_thermo_vars
| |
| +-(atmo_boundary_layer)
| |
| +-init_vertical_profile-+-print_state-+-ice_model_size
| | | |
| | | +-ice_kinds_mod
| | | |
| | | +-ice_state
| | | |
| | | +-ice_flux
| | | |
| | | +-(ilyr1)
| | |
| | +-(abort_ice)
| |
| +-temperature_changes-+-print_state
| | |
| | +-conductivity
| | |

25

 PIPS 3.0 SDD

| | +-absorbed_solar--ice_albedo
| | |
| | +-surface_fluxes
| | |
| | +-tridiag_solver
| | |
| | +-(abort_ice)
| |
| +-thickness_changes
| |
| +-conservation_check_vthermo-+-print_state
| | |
| | +-(abort_ice)
| |
| +-add_new_snow
| |
| +-update_state_vthermo
| |
| +-ice_timer_stop
|
+-scale_fluxes--ice_albedo
|
+-to_coupler
|
+-thermo_itd-+-aggregate-+-ice_domain
| | |
| | +-ice_flux
| | |
| | +-ice_grid
| |
| +-init_flux_ocn
| |
| +-reduce_area--ice_grid
| |
| +-rebin (44)-+-ice_grid
| | |
| | +-shift_ice-+-ice_flux
| | |
| | +-ice_work
| | |
| | +-(abort_ice)
| |
| +-zap_small_areas-+-ice_flux
| | |
| | +-ice_calendar
| | |
| | +-(abort_ice)
| |
| +-ice_timers
| |
| +-ice_itd_linear
| |
| +-ice_therm_vertical
| |
| +-ice_timer_start
| |
| +-ice_timer_stop
| |
| +-linear_itd-+-aggregate_area--(abort_ice)
| | |
| | +-column_sum
| | |
| | +-column_conservation_check--(abort_ice)
| | |
| | +-shift_ice
| | |
| | +-fit_line
| |
| +-add_new_ice-+-column_sum

26

 PIPS 3.0 SDD

| | |
| | +-column_conservation_check
| |
| +-lateral_melt
| |
| +-freeboard
|
+-evp-+-ice_timers
| |
| +-ice_timer_start
| |
| +-evp_prep-+-ice_flux
| | |
| | +-ice_calendar
| | |
| | +-(bound)
| | |
| | +-(tmask)
| | |
| | +-(t2ugrid)
| | |
| | +-(to_ugrid)
| | |
| | +-(iceumask)
| | |
| | +-(ice_strength)
| | |
| | +-(icetmask)
| | |
| | +-(umask)
| |
| +-stress-+-(cyp)
| | |
| | +-(dyt)
| | |
| | +-(cxp)
| | |
| | +-(dxt)
| | |
| | +-(cym)
| | |
| | +-(cxm)
| | |

| | +-(tarear)
| | |
| | +-(tinyarea)
| |
| +-stepu-+-ice_flux
| | |
| | +-(dxt2)
| | |
| | +-(dyt2)
| | |
| | +-(dyt4)
| | |
| | +-(dxhy)
| | |
| | +-(dyhx)
| | |
| | +-(dxt4)
| | |
| | +-(bound_narr_ne)
| | |
| | +-(iceumask)
| | |
| | +-(uarear)
| |
| +-(bound_sw)

27

 PIPS 3.0 SDD

| |
| +-evp_finish-+-ice_flux
| | |
| | +-(iceumask)
| | |
| | +-(u2tgrid)
| |
| +-ice_timer_stop
|
+-transport_remap-+-bound
| |
| +-bound_sw--bound_ijn
| |
| +-bound_state-+-ice_grid
| | |
| | +-bound_narr--bound_ijn
| |
| +-bound_narr
| |
| +-ice_timer_start
| |
| +-ice_timer_stop
| |
| +-departure_points
| |
| +-locate_triangles
| |
| +-triangle_coordinates
| |
| +-make_masks
| |
| +-conserved_sums-+-ice_mpi_internal
| | |
| | +-ice_global_real_sum
| |
| +-construct_fields--limited_gradient
| |
| +-flux_integrals
| |
| +-update_fields--(abort_ice)
| |
| +-global_conservation--(abort_ice)
| |
| +-load_tracers
| |
| +-local_max_min--bound
| |
| +-check_monotonicity--(abort_ice)
| |
| +-unload_tracers
|
+-transport_mpdata-+-bound_narr
| |
| +-ice_flux
| |
| +-ice_timers
| |
| +-ice_state
| |
| +-ice_itd
| |
| +-ice_timer_start
| |
| +-check_state--ice_flux
| |
| +-mpdata-+-bound
| | |
| | +-bound_narr
| | |

28

 PIPS 3.0 SDD

| | +-ice_calendar
| | |
| | +-ice_state
| | |
| | +-(abort_ice)
| |
| +-ice_timer_stop
|
+-ridge_ice-+-ice_timers
| |
| +-ice_flux
| |
| +-ice_timer_start
| |
| +-ridge_prep--asum_ridging

| |
| +-ridge_shift-+-column_sum
| | |
| | +-column_conservation_check
| | |
| | +-(abort_ice)
| |
| +-asum_ridging
| |
| +-(abort_ice)
| |
| +-ice_timer_stop
|
+-zap_small_areas
|
+-rebin
|
+-aggregate
|
+-scale_hist_fluxes
|
+-runtime_diags-+-ice_model_size
| |
| +-ice_flux
| |
| +-ice_albedo
| |
| +-ice_mpi_internal
| |
| +-ice_state
| |
| +-(mask_n)
| |
| +-(mask_s)
| |
| +-ice_global_real_maxval--(mpi_allreduce)
| |
| +-get_sum
| |
| +-(ulat)
| |
| +-(ulon)
| |
| +-(opening)
| |
| +-(dardg1dt)
| |
| +-(strintx)
| |
| +-(strinty)
| |
| +-(athorn)
| |

29

 PIPS 3.0 SDD

| +-ice_global_real_sum
| |
| +-global_gather
| |
| +-(shr_sys_flush)
|
+-ice_write_hist-+-ice_flux
| |
| +-ice_albedo
| |
| +-ice_grid
| |
| +-ice_calendar
| |
| +-ice_state
| |
| +-ice_dyn_evp
| |
| +-ice_constants
| |
| +-(opening)

| |
| +-(dardg1dt)
| |
| +-(dardg2dt)
| |
| +-(dvirdgdt)
| |
| +-principal_stress
| |
| +-icecdf-+-global_gather
| |
| +-ice_model_size
| |
| +-ice_mpi_internal
| |
| +-ice_constants
| |
| +-ice_grid
| |
| +-ice_calendar
| |
| +-lenstr
| |
| +-(nf_create)
| |
| +-(nf_def_dim)
| |
| +-(nf_def_var)
| |
| +-(nf_put_att_text)
| |
| +-(nf_put_att_real)
| |
| +-(nf_enddef)
| |
| +-(nf_inq_varid)
| |
| +-(nf_put_var_real)
| |
| +-(nf_put_vara_real)
| |
| +-(nf_close)
|
+-dumpfile-+-ice_model_size
| |
| +-ice_open
| |

30

 PIPS 3.0 SDD

| +-ice_write--global_gather
| |
| +-ice_flux
| |
| +-ice_grid
| |
| +-ice_calendar
| |
| +-ice_state
| |
| +-ice_dyn_evp
| |
| +-ice_coupling
| |
| +-lenstr
|
+-ice_timer_stop
|
+-ice_timer_print-+-ice_domain
| |
| +-ice_mpi_internal
| |
| +-ice_fileunits
| |
| +-ice_global_real_minval--(mpi_allreduce)
| |
| +-ice_global_real_maxval
|
+-end_run--(mpi_finalize)
|
+-exit_coupler-+-(mpi_abort)
 |
 +-(cpl_interface_finalize)

4.2.1.2 Detached Call Trees (for extraneous modules and subroutines)

1. ice_exit--ice_kinds_mod

2. atmo_boundary_layer--ice_grid

3. ice_global_real_minmax-+-ice_fileunits
 |
 +-ice_global_real_minval
 |
 +-ice_global_real_maxval

4. bound_aggregate-+-ice_grid
 |
 +-bound

5. bound_narr_ne--bound_ijn

6. u2tgrid-+-bound
 |
 +-to_tgrid

7. ice_atmo-+-ice_domain
 |
 +-ice_constants
 |
 +-ice_flux
 |
 +-ice_state

31

 PIPS 3.0 SDD

8. debug_ice-+-ice_kinds_mod
 |
 +-ice_itd
 |
 +-ice_diagnostics
 |
 +-ice_mpi_internal
 |
 +-ice_grid
 |
 +-print_state

9. ice_strength--ridge_prep

10. t2ugrid-+-bound
 |
 +-to_ugrid

11. abort_ice-+-ice_domain
 |
 +-ice_fileunits
 |
 +-ice_mpi_internal
 |
 +-(shr_sys_abort)
 |
 +-end_run

4.2.2 Directory Structure

The present PIPS 3.0 code distribution includes makefiles, input files and scripts. The primary
directory is pips3/, and a run directory (rundir) is created upon the initial run of the comp_ice
script.

+-pips3/ - primary directory
 +-README_V3.1 - basic information
 +-bld/ - makefiles
 +-Macros.<OS> - macro definitions for the given operating system, used by

Makefile.<OS>
 +-Makefile.<OS> - primary makefile for a given operating system
 (<std> works for most systems)
 +-makedep.c - perl script that determines module dependencies
 +-clean_ice - script that removes files from the compile directory
 +-comp_ice - script that sets up the run directory and compiles the code
 +-doc/ - documentation
 +-PIPS_SDD.doc- software design description
 +-PIPS_UM.doc- user’s manual
 +-PIPS_VTR.doc- validation test report
 +-cicedoc.pdf - CICE: the Los Alamos Sea Ice Model Doc and User's Manual
 +-PDF/ - PDF documents of several publications related to CICE
 +-ice.log.<OS> - sample diagnostic output files
 +-source/ - PIPS 3.0 source code.

32

 PIPS 3.0 SDD

 +-PIPS.F - main program
 +-PIPS.F_debug- debugging version of PIPS.F
 +-ice_albedo.F - albedo parameterization
 +-ice_atmo.F - stability-based parameterization for calculation of turbulent ice-atm fluxes
 +-ice_calendar.F - keeps track of what time it is
 +-ice_constants.F - physical and numerical constants and parameters
 +-ice_coupling.F - interface with the flux coupler
 +-ice_diagnostics.F - miscellaneous diagnostic and debugging routines
 +-ice_domain.F - MPI subdomain sizes and related parallel processing info
 +-ice_dyn_evp.F - elastic-viscous-plastic dynamics component
 +-ice_exit.F - aborts the model, printing an error message
 +-ice_fileunits.F - unit numbers for I/O
 +-ice_flux.F -fluxes needed/produced by the model
 +-ice_flux_in.F - Reads and interpolates forcing data for stand-alone ice model runs
 +-ice_grid.F - grid and land masks
 +-ice_history.F - netCDF output routines and restart read/write
 +-ice_init.F - namelist and initializations
 +-ice_itd.F - utilities for managing ice thickness distribution
 +-ice_itd_linear.F - linear remapping for transport in thickness space
 +-ice_kinds_mod.F - basic defnitions of reals, integers, etc.
 +-ice_mechred.F - mechanical redistribution component (ridging)
 +-ice_model_size.F - grid size and number of thickness categories and vertical layers

+-ice_model_size.F.gx1- specific ice_model_size.F for use by scripts with < 1 >o grid
 +-ice_model_size.Fgx3- specific ice_model_size.F for use by scripts with < 3 >o grid
 +-ice_mpi_internal.F - utilities for internal MPI parallelization
 +-ice_ocean.F - mixed layer ocean model
 +-ice_read_write.F - utilities for reading and writing files
 +-ice_scaling.F - ice-area scaling of variables for the coupler
 +-ice_state.F - essential arrays to describe the state of the ice
 +-ice_therm_itd.F - thermodynamic changes related to ice thickness distribution (post-

coupling)
 +-ice_therm_vertical.F - vertical growth rates and fluxes (pre-coupling thermodynamics)
 +-ice_timers.F - timing routines
 +-ice_transport_mpdata.F - horizontal advection via MPDATA or upwind
 +-ice_transport_remap.F - horizontal advection via incremental remapping
 +-ice_work.F - globally accessible work arrays
 +-rundir/ - execution or "run" directory generated when the code is compiled
 using the comp_ice script
 +-cice - code executable
 +-compile/ - directory containing object files, etc.
 +-grid - horizontal grid file from pips/input_templates/
 +-ice.log.[ID] - diagnostic output file
 +-ice_in - namelist input data from pips/input_templates
 +-hist/iceh_mavg.[timeID].nc - monthly average output history file
 +-kmt - land mask file from pips/input_templates/

33

 PIPS 3.0 SDD

 +-run_ice - batch run script file from pips/input_templates/

5.0 PIPS 3.0 DETAILED DESIGN

The following sections give a detailed description of the purpose, variables, logic, and constraints
for the software elements in the model.

5.1 Constraints and Limitations

1. Fluxes sent to the coupler could have incorrect values in grid cells that transform from an
ice-free state to having ice during the given time step, or vice versa, due to scaling by the
ice area. The flux coupler must have area scaling so that the ice and land models are
treated reliably in the coupler (but note that the land area does not suddenly become zero
in a grid cell, as does the ice area).

2. A significant fraction (more than 10%) of the total shortwave radiation is absorbed at the
surface. It should, however, be penetrating into the ice interior instead. This is due to use
of the aggregated, effective albedo rather than the bare ice albedo when snowpatch <
1. Repairing the problem will require more albedo arrays to be added to the code.

3. The date-of-onset diagnostic variables, melt_onset and frz_onset, are not
included in the restart file. These could therefore be incorrect for the current year if the
run is restarted after Jan 1. Also, these variables were created with the Arctic in mind and
may be incorrect for the Antarctic.

4. Timers are architecture dependent.
5. Local domains are not padded for uneven division of the global domain.

5.2 Logic and Basic Equations

5.2.1 Coupling with Ocean Model Components

PIPS 3.0 exchanges information with the NCOM ocean model via local file transfer. The fluxes
and state variables passed between the PIPS 3.0 model and the ocean model are: ice
concentration, SST, heat flux ice to ocean, and the ocean/ice stresses. The state variables passed
between the ocean model and PIPS 3.0 are: ocean SST and ocean currents.
By convention, directional fluxes are positive downward.

The ice fraction ai (aice; see Section 6.0 for a description of all typewritten equivalents)

is the

total fractional ice coverage of a grid cell. That is, in each cell,

= 0 if there is noice
= 1 if there is noopen water

0 < < 1 if thereare both iceand open water

i

i

i

a
a

a

34

 PIPS 3.0 SDD

where ai is the sum of fractional ice areas for each category of ice. The ice fraction is employed
by the flux coupler to merge fluxes from PIPS 3.0 with fluxes from the other components. For
instance, the penetrating shortwave radiation flux, weighted by ai, is combined with the net
shortwave radiation flux through ice-free leads, weighted by (1 − ai), to get the net shortwave
flux into the ocean over the entire grid cell. The flux coupler requires the fluxes to be divided by
the total ice area so that the ice and land models are managed identically (land also may occupy
less than 100% of an atmospheric grid cell). These fluxes are “per unit ice area” rather than “per
unit grid cell area.”

5.2.1.1 Atmosphere

Wind velocity, air density, specific humidity and potential temperature at the given level height
zo are used to calculate transfer coefficients in formulas for the surface wind stress and turbulent
heat fluxes aτ , sF and lF , as described below. Wind is quite possibly the main forcing mechanism
for the ice motion, although the ice–ocean stress, Coriolis force, and slope of the ocean surface
are also important [41]. The sensible and latent heat fluxes, Fs and Fl, along with shortwave and
longwave radiation, swF ↓ , LF ↓ and LF ↑ , are included in the flux balance that establishes the ice or
snow surface temperature. As described in Section 5.2.2.5, these fluxes rely nonlinearly on the
ice surface temperature Tsfc. The balance equation is iterated until convergence, and the resulting
fluxes and Tsfc are then passed to the flux coupler. The flux of water evaporated to the atmosphere
is given in terms of the latent heat, Fevap = Fl/ (Lvap + Lice), where Lvap and Lice are latent heats of
vaporization and fusion.

The snowfall precipitation rate (specified as liquid water equivalent and converted by PIPS 3.0 to
snow depth) also contributes to the heat and water mass budgets of the ice layer. Although melt
ponds usually develop on the ice surface in the Arctic and refreeze later in the autumn, reducing
the total amount of fresh water that reaches the ocean and altering the heat budget of the ice,
there currently is no melt pond parameterization. Rain and all melted snow end up in the ocean.

Wind stress and transfer coefficients for the turbulent heat fluxes are computed in subroutine
atmo_boundary_layer following [23]. For clarity, the equations are replicated here in the present
notation. The wind stress and turbulent heat flux calculation accounts for both stable and unstable
atmosphere-ice boundary layers. Define the “stability” as

()
* *

*2= ,
1 0.606 1/ 0.606a a a

gz Q
u Q Q
κ ⎛ ⎞Θ

ϒ +⎜ ⎟⎜ ⎟Θ + +⎝ ⎠

where κ is the von Karman constant, g is gravitational acceleration, and u∗, Θ∗ and Q∗ are
turbulent scales for velocity, temperature and humidity, respectively:

35

 PIPS 3.0 SDD

 ()
()

*

*

*

=

=

= ,

u a

a sfc

q a sfc

u c U

c T

Q c Q Q

θΘ Θ −

−

 (1)

where the wind speed has a minimum value of 1 m/s. Ice motion is ignored in *u , and Tsfc and
Qsfc represent the surface temperature and specific humidity, respectively. The latter is calculated
by assuming a saturated surface temperature Tsfc, as described in Section 5.2.2.5.1.

The exchange coefficients cu, cθ and cq are initialized as

ln(/)

ref icez z
κ

and updated during a short iteration, as they depend on the turbulent scales. Here, zref is a
reference height of 10 m and zice represents the roughness length scale for the given sea ice
category. ϒ is constrained to have a magnitude less than 10. Further, defining χ = (1 − 16ϒ)0.25
and χ ≥ 1, the “integrated flux profiles” for momentum and stability in the unstable (ϒ < 0) case
are given by

[] 2 1

2

= 2ln 0.5(1) ln 0.5(1) 2tan
2

= 2ln 0.5(1) .

m

s

πψ χ χ χ

ψ χ

−⎡ ⎤+ + + − +⎣ ⎦

⎡ ⎤+⎣ ⎦

Aside from the parameterization used in [23], profiles are used for the stable case from [22],

() ()= = 0.7 0.75 14.3 exp 0.35 10.7 .m sψ ψ − ϒ+ ϒ − − ϒ +⎡ ⎤⎣ ⎦

The coefficients are then updated as

()

()

=
1 /

=
1 /

=

' u
u

u m

'

s

' '
q

cc
c

cc
c

c c

θ
θ

θ

θ

λ ψ κ

λ ψ κ

+ −

+ −

where λ = ln(zo /zref). The first iteration is completed with new turbulent scales from equation
(1). After five iterations the latent and sensible heat flux coefficients are computed, along with
the wind stress:

36

 PIPS 3.0 SDD

() *

* *

*2

=

= 1,

= ,
| |

l a vap ice q

s a p

a a
a

a

C L L u c

C c u c

u U
U

θ

ρ

ρ

ρτ

+

+

where ρa is the density of air and cp is its specific heat. Using [22] again, a constant has been
added to the sensible heat flux coefficient to allow some heat to pass between the atmosphere and
the ice surface in calm, stable conditions. The atmospheric reference temperature ref

aT

is
computed from Ta and Tsfc using the coefficients cu, cθ and cq. Although PIPS 3.0 does not use
this quantity, it is quite convenient for the ice model to execute this calculation. The atmospheric
reference temperature is returned to the flux coupler as a climate diagnostic. The same holds true
for the reference humidity, ref

aQ .

Additional details about the latent and sensible heat fluxes and other quantities referred to here
can be found in Section 5.2.2.5.1.

5.2.1.2 Ocean

New sea ice grows when the ocean temperature drops below its freezing temperature, Tf = -µS,
where S is the seawater salinity and µ =0.054 is the ratio of the freezing temperature of brine to
its salinity. The ocean models, either NCOM or HYCOM, perform this calculation; if the
freezing/melting potential Ffrzmlt is positive; its value is a certain quantity of frazil ice that has
formed in one or more layers of the ocean and floated to the surface. (The ocean models assume
that the quantity of new ice implied by the freezing potential actually forms.) Generally, this ice
is added to the thinnest ice category. The new ice is created in the open water area of the grid cell
to a specified minimum thickness. Therefore, if the open water area is nearly zero or if there is
more new ice than will fit into the thinnest ice category, the new ice is then spread uniformly
over the entire grid cell.

If Ffrzmlt is negative, it is used to heat existing ice from below. Specifically, the sea surface
temperature and salinity are used to compute an oceanic heat flux wF (w frzmltF F≤) which is
applied at the bottom of the ice. The fraction of the melting potential actually used to melt ice is
returned to the coupler in Fhnet. The ocean models adjust their own heat budgets with this
quantity, assuming that the rest of the flux stayed in the ocean.

In addition to runoff from rain and melted snow, the fresh water flux Fwater includes ice
meltwater from the top surface of the ice and water melted or frozen (a negative flux) at the
bottom surface. This flux is computed as the net change of fresh water in the ice and snow
volume over the coupling time step, prohibiting frazil ice formation and newly accumulated

37

 PIPS 3.0 SDD

snow.

There is a flux of salt into the sea under melting conditions, and a (negative) flux when ocean
water is freezing. However, melting sea ice ultimately freshens the top layer of the ocean, since it
is much more saline than the ice. The PIPS 3.0 model passes the net flux of salt, Fsalt, to the flux
coupler, based on the net exchange in salt for ice in every category. In the present configuration,
ice_ref_salinity is used in computing the salt flux, although the ice salinity utilized in the
thermodynamic calculation has differing values in the ice layers.

A fraction of the incoming shortwave swF ⇓ penetrates the snow and ice layers and passes into the
ocean, as described in Section 5.2.2.5.1.

Many ice models compute the sea surface slope H∇ from geostrophic ocean currents supplied
by an ocean model or other data source. In this case, the sea surface height H is a prognostic
variable in the NCOM and HYCOM models. The flux coupler provides the surface slope
directly, instead of inferring it from the currents (The option of computing surface slope from the
currents is provided in subroutine evp_prep.). The PIPS 3.0 model uses the surface layer currents

wU to derive the stress between the ocean and the ice, and subsequently the ice velocityu . This
stress, in relation to the ice,

() ()ˆ= cos sinw w w w w wc U u U u k U uτ ρ θ θ⎡ ⎤− − + × −⎣ ⎦

is then transferred to the flux coupler (relative to the ocean) for use by the ocean model. Here, θ
is the turning angle between geostrophic and surface currents, wc is the ocean drag coefficient,

wρ is the density of seawater (dragw= w wc ρ), and k̂ represents the vertical unit vector. The
turning angle is necessary if the top ocean model layers cannot resolve the Ekman spiral in the
boundary layer. If the top layer is sufficiently thin compared to the typical depth of the Ekman
spiral, then θ =0 is a good approximation. Here it is assumed that the top layer is sufficiently
thin.

5.2.2 Model Components

The Arctic and Antarctic sea ice packs are comprised of combinations of open water, thin first-
year ice, thicker multi-year ice, and thick pressure ridges. The thermodynamic and dynamic
characteristics of the ice pack depend on the amount of ice lying in each thickness range. Thus
the basic challenge in sea ice modeling is to describe the evolution of the ice thickness
distribution (ITD) in both time and space.

The fundamental equation solved by PIPS 3.0 is from [43]:

38

 PIPS 3.0 SDD

 (2)

where u is the horizontal ice velocity, = (,)
x y
∂ ∂

∇
∂ ∂

, f is the rate of thermodynamic ice growth,

ψ is a ridging redistribution function, and g represents the ice thickness distribution function.
We define (, ,)g x h t dh as the fractional area covered by ice in the thickness range (,)h h dh+ at a
given time and location.

Equation (2) is solved by sectioning the ice pack at each grid point into discrete thickness
categories. The number of categories is set by the user, with a default value NC =5. (Five
categories, plus open water, are sufficient to simulate the yearly cycles of ice thickness, ice
strength, and surface fluxes [6], [25]. Each category n has lower thickness bound 1nH − and
upper bound Hn. The lower bound of the thinnest ice category, H0, is set to zero. The other
boundaries are selected with greater resolution for small h, since the properties of the ice pack
are particularly sensitive to the amount of thin ice [28]. The continuous function ()g h is
replaced by the discrete variable ain, defined as the fractional area covered by ice in the thickness
range (1,n nH H−). The fractional area of open water is denoted by 0ia , giving

=0
= 1NC

inn
a∑ by

definition.

Category boundaries are calculated in init_itd using one of two formulas. The old formula, from
[26], assigns lower boundaries (in meters) of (0.0, 0.64, 1.39, 2.47, and 4.57) for categories 1 to
5 when N_C = 5. A new formula has been created for boundaries that are round numbers. This
formula gives boundaries (0.0, 0.60, 1.40, 2.40, and 3.60) for N_C = 5. The old formula
(kcatbound = 0 in the namelist) is the default. A user may substitute his or her own preferred
boundaries in init_itd.

Besides the fractional ice area, ain, the following state variables for each category n are defined
as:

• vin, the ice volume, equal to the product of ain and the ice thickness hin.

• vsn, the snow volume, equal to the product of ain and the snow thickness hsn.

• eink, the internal ice energy in layer k, equal to the product of the ice layer volume, vin/Ni,

and the ice layer enthalpy, qink. Here Ni is the total number of ice layers, with a default
value Ni =4, and qink is the negative of the energy needed to melt a unit volume of ice and
raise its temperature to 0◦C. This is discussed in Section 5.2.2.5. (NOTE: In the current
code, < 0ie and < 0iq with =i i ie v q .)

• esn, the snow energy, equal to the product of vsn and the snow enthalpy, qsn. At this

= (u) () ,g g fg
t h

ψ∂ ∂
−∇ ⋅ − +

∂ ∂

39

 PIPS 3.0 SDD

writing there is only one snow layer, but future versions of PIPS 3.0 will allow for
multiple snow layers. (Similarly, es < 0 in the code.)

• Tsfn, the surface temperature.

Because the fractional area is unitless, the volume variables have units of meters (i.e., m

3
of ice

or snow per m
2 of grid cell area), and the energy variables have units of J/m

2
.

The three terms on the right-hand side of equation (2) illustrate three kinds of sea ice transport:

(1) horizontal transport in (x, y) space;
(2) transport in thickness space h due to thermodynamic growth and melting; and
(3) transport in thickness space h due to ridging and other mechanical processes.

The equation is solved by operator splitting in three stages, with two out of three terms on the
right set to zero in each stage. Horizontal transport is computed using the incremental remapping
scheme of [9] as adapted for sea ice by [26]. This scheme is discussed in Section 5.2.2.1. Ice is
carried in thickness space through the remapping scheme of [25], as described in Section 5.2.2.2.
The mechanical redistribution scheme, based on [43], [35], [16], [13], and [27] is outlined in
Section 5.2.2.3. To solve the horizontal transport and ridging equations, we need the ice velocity
u. To calculate transport in thickness space, ice growth rate f must be known in each thickness
category. The elastic-viscous-plastic (EVP) ice dynamics scheme of [18] is used, as modified by
[17], [19] and [20] to find the velocity, described in Section 5.2.2.4. Finally, the thermodynamic
model of [7], discussed in Section 5.2.2.5, is used to compute f.

5.2.2.1 Horizontal Transport

Solving the continuity or transport equation,

 () = 0,in
in

a a u
t

∂
+∇⋅

∂
 (3)

for the fractional ice area in each thickness category n. Equation (3) describes the conservation of
ice area in horizontal transport. It is taken from Equation (2) by discretizing g and ignoring the
second and third terms on the right-hand side, which are handled separately (see Sections 5.2.2.2
and 5.2.2.3).

There are comparable conservation equations for ice volume, snow volume, ice energy, snow
energy, and area-weighted surface temperature:

40

 PIPS 3.0 SDD

()

() = 0, (4)

() = 0, (5)

() = 0, (6)

() = 0, (7)

() = 0. (8)

in
in

sn
sn

ink
ink

sn
sn

in sfn
in sfn

v v
t

v v
t

e e
t

e e
t
a T

a T
t

∂
+∇ ⋅

∂
∂

+∇ ⋅
∂
∂

+∇ ⋅
∂
∂

+∇⋅
∂
∂

+∇ ⋅
∂

u

u

u

u

u

For simplicity, ice and snow are assumed to have constant densities, so that volume conservation
is equal to mass conservation. Also transported is the fractional area of open water, using
equation (3) with n =0. Including = 5CN and = 4iN there are 46 transport equations to be
solved.

Three transport schemes are available, upwind, MPDATA [39] and the incremental remapping
scheme of [9] as modified for sea ice by [26]. Because several fields are transported, the transport
module is quite computationally expensive (almost half the total computer time) in runs using
MPDATA. Although a cheaper first-order upwind scheme is available as an MPDATA option
(see Section 4.1.3.1), it is advised that the incremental remapping method be used instead. This
scheme has many desirable features:

• It conserves the quantity being transported (area, volume, or energy).
• It is non-oscillatory, meaning it does not create spurious ripples in the transported fields.
• It preserves tracer monotonicity, meaning it does not create new extrema in the thickness

and enthalpy fields. The values at time m +1 are bounded by the values at time m.
• It is second-order accurate in space and therefore is a great deal less diffusive than first-

order schemes. The accuracy can be decreased locally to first order to preserve
monotonicity.

• It is efficient for large amounts of categories or tracers. Much of the work is geometrical
and is executed only once per grid cell instead of being repeated for each quantity being
transported.

The time step is limited by the requirement that trajectories projected backward from grid cell
corners are confined to the four surrounding cells, thus defining incremental remapping as
opposed to general remapping. This requirement leads to a CFL-like condition,

max | | 1.t
x

Δ
≤

Δ
u

41

 PIPS 3.0 SDD

For greatly divergent velocity fields the maximum time step must be decreased by a factor of two
to ensure that trajectories do not cross. Then again, ice velocity fields in climate models typically
have small divergences per time step relative to the grid size.

The remapping algorithm may be summarized as follows:

1. Given mean values of the ice area and tracer fields in each grid cell, generate linear
approximations of these fields. Limit the field gradients to conserve monotonicity.

2. Given ice velocities at grid cell corners, identify departure regions for the fluxes across
each cell edge. Divide these departure regions into triangles and compute the coordinates
of the triangle vertices.

3. Integrate these fields across the departure triangles to obtain the area, volume, and energy
fluxes across each cell edge.

4. Transfer the fluxes over cell edges and update the state variables.

Because all scalar fields are transported by the same velocity field, step (2) is performed only
once per time step. The other three steps are repeated for each field in each thickness category.
These steps are described below.

5.2.2.1.1 Reconstructing Area and Tracer Fields

Firstly, using the known values of the state variables, the ice area and tracer fields are
reconstructed in every grid cell as linear functions of x and y. For each field the value at the cell
center is computed (i.e., at the origin of a 2D Cartesian coordinate system defined for that grid
cell), along with gradients in the x and y directions. The gradients are limited to conserve
monotonicity. When integrated over a grid cell, the reconstructed fields must have mean values
equal to the known state variables, given by a for fractional area, h for thickness, and q̂ for
enthalpy. The mean values are typically not equal to the values at the cell center. For instance,
the mean ice area must equal the value at the centroid, which may not be at the cell center.

First consider the fractional ice area, the analog to fluid density ρ in [9]. For each thickness
category a field a(r) is constructed whose mean is a , where r =(x, y) is the position vector
relative to the cell center. That is, we require

= , (9)
A
adA a A∫

where =

A
A dA∫ is the grid cell area. Equation (9) is satisfied if a(r) takes the form

() = < > (), (10)aa a aα+ ∇ ⋅ −r r r

where < >a∇ is the centered estimate of the area gradient in the cell, aα is a limiting coefficient
that implements monotonicity, and r is the cell centroid:

42

 PIPS 3.0 SDD

1= .
A

dA
A ∫r r

It follows from (10) that the ice area at the cell center (r =0) is

= ,c x ya a a x a y− −

where = (/)x aa a xα ∂ ∂ and = (/)y aa a yα ∂ ∂ are the limited gradients in the x and y directions,

respectively, and the components of r , = /
A

x xdA A∫ and = /
A

y ydA A∫ are tested using the

triangle integration formulas described in Section 5.2.2.1.3. These means, combined with higher
order means such as 2x , xy , and 2y , are computed once and stored.

Next consider the snow and ice thickness and enthalpy fields. Thickness is analogous to the
tracer concentration T in [9] but there is no analog in their study to the enthalpy. The
reconstructed ice or snow thickness h(r) and enthalpy q(r) must satisfy

= , (11)

ˆ= . (12)
A

A

ahdA ah A

ahqdA ahq A

∫
∫

Equations (11) and (12) are satisfied when h(r) and q(r) are denoted by

() = < > (), (13)hh h hα+ ∇ ⋅ −r r r

ˆˆ() = < > (), (14)qq q qα+ ∇ ⋅ −r r r

where hα and qα are limiting coefficients, r is the center of ice area,

1= ,
A
a dA

a A ∫r r

and r is the center of ice or snow volume,

1ˆ = .
A
ah dA

ah A ∫r r

Evaluating the integrals, we find that the components of r are given by

43

 PIPS 3.0 SDD

2

= ,c x ya x a x a xy
x

a
+ +

2

= ,c x ya y a xy a y
y

a
+ +

and the components of r are

2 3 2 2
1 2 3 4 5 6ˆ = ,c x c x c xy c x c x y c xyx

a h
+ + + + +

2 2 2 3
1 2 3 4 5 6ˆ = ,c y c xy c y c x y c xy c yy

a h
+ + + + +

where

1

2

3

4

5

6

,
,
,

,
,

.

c c

c x x c

c y y c

x x

x y y x

y y

c a h
c a h a h
c a h a h

c a h
c a h a h

c a h

≡
≡ +
≡ +

≡
≡ +

≡

From equations (13) and (14), the thickness and enthalpy at the cell center are denoted by

= ,c x yh h h x h y− −
ˆ ˆ ˆ= ,c x yq q q x q y− −

where hx, hy, qx and qy are the limited gradients of thickness and enthalpy. The surface
temperature is dealt with the same way as ice or snow thickness, but it has no associated
enthalpy.

Monotonicity is preserved by van Leer limiting. If (,)i jφ is the mean value of some field in
grid cell (i, j), centered gradients of φ in the x and y directions are computed. They are also
checked to see that the gradients provide values of φ within cell (i, j) that lie outside the range of
φ in the grid cell and its eight neighbors. Let maxφ and minφ be the maximum and minimum
values of φ over the cell and its neighbors, and let maxφ and minφ be the maximum and minimum
values of the reconstructed φ within the cell. Since the reconstruction is linear, maxφ and minφ are

44

 PIPS 3.0 SDD

located at cell corners. If max max>φ φ or min min<φ φ , the unlimited gradient is multiplied by

max min= min(,)α α α , where

max max max= ()/(),α φ φ φ φ− −

min min min= ()/().α φ φ φ φ− −

Otherwise the gradient does not need to be limited.

5.2.2.1.2 Locating Departure Triangles

The technique for locating departure triangles is discussed in detail by [9]. The basic idea is seen
in Figure 1, which illustrates a shaded quadrilateral departure region whose contents are carried
to the target or home grid cell, labeled H. The neighboring grid cells are tagged by compass
directions: NW, N, NE, W, and E. The four vectors point along the velocity field at the cell
corners, and the departure region is formed by joining the starting points of the vectors. Rather
than integrating across the entire departure region, we compute fluxes across cell edges.
Departure regions are selected for the north and east edges of each cell, which are also the south
and west edges of neighboring cells. Consider the north edge of the home cell, over which there
are fluxes from the neighboring NW and N cells. The contributing region from the NW cell is a
triangle with vertices abc, and that region from the N cell is a quadrilateral that can be divided
into two triangles with vertices acd and ade. Focusing on triangle abc, the coordinates of vertices
b and c with respect to to the cell corner (vertex a) are determined first, using Euclidean
geometry, to find vertex c. Then these three vertices are translated to a coordinate system located
in the NW cell center. This translation is necessary for integrating fields (Section 5.2.2.1.3) in the
coordinate system where they have been reconstructed (Section 5.2.2.1.1). Repeating this process
for the north and east edges of each grid cell, we compute the vertices of all the departure
triangles associated with each cell edge.

45

 PIPS 3.0 SDD

Figure 1: In incremental remapping, conserved quantities are remapped from the shaded
departure region, which is a quadrilateral formed by joining the backward trajectories
from the four cell corners, to grid cell H. The region fluxed over the north edge of cell H
consists of a triangle (abc) in the NW cell and a quadrilateral (two triangles, acd and ade) in
the N cell.

Figure 2, reproduced from [9], shows all possible triangles that can contribute fluxes across the
north edge of a grid cell. There are 20 triangles, which may be divided into five groups of four
mutually exclusive triangles, as shown in Table 2. In this table, (x1,y1) and (x2,y2) are the
Cartesian coordinates of the departure points relative to the NW and NE cell corners,
respectively. The departure points are connected by a straight line that intersects the west edge at
(0,)ay relative to the NW corner and intersects the east edge at (0,)by relative to the NE corner.
This line intersects the N edge at (,0)ax relative to the NW corner and (,0)bx relative to the NE
corner.

46

 PIPS 3.0 SDD

Figure 2: The 20 possible triangles that can contribute fluxes across the north edge of a grid
cell.

From Cartesian geometry it can be shown that

1 2 1 1 2

2 1

2 2 1 1 2

2 1

()= ,

()= ,

= ,

= ,

a

b

a
a

a b

b
b

a b

y x x y x yy
x x x

y x x y x yy
x x x

y xx
y y
y xx

y y

Δ + −
Δ + −

Δ + −
Δ + −
Δ
−
Δ
−

where Δx represents the length of the N edge. The east cell triangles and selecting conditions are
alike except for a rotation through 90 degrees.

47

 PIPS 3.0 SDD

Triangle Group Triangle Label Selecting Logical Condition
1 NW > 0ay and 1 0y ≥ and 1 < 0x
 NW1 < 0ay and 1 0y ≥ and 1 < 0x
 W < 0ay and 1 < 0y and 1 < 0x
 W2 > 0ay and 1 < 0y and 1 < 0x
2 NE > 0by and 2 0y ≥ and 2 > 0x
 NE1 < 0by and 2 0y ≥ and 2 > 0x
 E < 0by and 2 < 0y and 2 > 0x
 E2 > 0by and 2 < 0y and 2 > 0x
3 W1 < 0ay and 1 0y ≥ and 1 < 0x
 NW2 > 0ay and 1 < 0y and 1 < 0x
 E1 < 0by and 2 0y ≥ and 2 > 0x
 NE2 > 0by and 2 < 0y and 2 > 0x
4 H1a 0a by y ≥ and < 0a by y+
 N1a 0a by y ≥ and > 0a by y+
 H1b < 0a by y and 1 < 0y
 N1b < 0a by y and 1 > 0y
5 H2a 0a by y ≥ and < 0a by y+
 N2a 0a by y ≥ and > 0a by y+
 H2b < 0a by y and 2 < 0y
 N2b < 0a by y and 2 > 0y

Table 4: Evaluation of contributions from the 20 triangles across the north cell edge. The
coordinates 1x , 2x , 1y , 2y , ay , and by are defined in the text. We define 1 1=y y if 1 > 0x ,
else 1 = ay y . Similarly, 2 2=y y if 2 < 0x else 2 = by y .

This scheme was created for rectangular grids. Grid cells in PIPS 3.0 essentially lie on the
surface of a sphere and must be projected onto a plane. Many projections are possible. The
projection used in PIPS 3.0, illustrated in Figure 3, approximates spherical grid cells as
quadrilaterals in the plane tangent to the sphere at a point inside the cell. The quadrilateral
vertices are (N/2, E/2), (-N/2, W/2), (-S/2, -W/2), and (S/2, -E/2), where N, S, E, and W are the
lengths of the cell edges on the spherical grid. The quadrilateral area, (N + S)(E + W)/4, is an
apt approximation to the true spherical area. But cell edges in this projection are not orthogonal
(i.e., they do not converge at right angles) as they do on the spherical grid. Therefore, when
vectors are translated from cell corners to cell centers, the departure points in the cell-center
coordinate system must be inside the grid cell contributing the flux. Otherwise, monotonicity
may be violated, because van Leer limiting does not apply outside the grid cell.

48

 PIPS 3.0 SDD

Figure 3: A grid cell on the surface of a sphere with unequal sides of length N, S, E, and W
is estimated as a quadrilateral lying in the tangent plane at the cell center. The
quadrilateral vertices are (N/2, E/2), (-N/2, W/2), (-S/2, -W/2), and (S/2, -E/2). The basis
vectors (ˆ ˆ' 'i j,), located at the northeast cell corner, have been projected into the cell-center
coordinate system and vary from the cell-center basis vectors (ˆ ˆi j,). The angles Nθ and Eθ
relating the two bases are defined in the text.

Figure 3 demonstrates the difficulty. At the cell center orthogonal basis vectors î and ĵ that
point to the midpoints of the cell edges are defined. Similarly, at each cell corner is defined a
coordinate system whose basis vectors, '̂i and ˆ'j point along cell edges. The vectors '̂i and ˆ'j
are orthogonal in the cell-corner reference frame, but not when projected into the reference frame
of the bordering cell center. Because of this, a simple transformation is used to preserve
monotonicity when vectors are translated from corners to centers. Consider a vector ˆ ˆ()' ' ' 'x i y j+
in the cell-corner basis. An assumption is made that this vector has the same coordinates when '̂i
and ˆ'j are non-orthogonal projections of the cell-corner basis vectors into the cell-center tangent
plane, as in Figure 3. Thus a transformation follows from the (ˆ ˆ,' 'i j) basis to the (ˆ ˆ,i j) basis. In
the cell-center coordinate system, '̂i is obtained by a rotation of î through an angle Nθ , where

= arctan . (15)
2N

E W
N

θ −⎛ ⎞
⎜ ⎟
⎝ ⎠

Similarly, ˆ'j is obtained by a rotation of ĵ through Eθ , where

49

 PIPS 3.0 SDD

= arctan . (16)
2E

S N
E

θ −⎛ ⎞
⎜ ⎟
⎝ ⎠

Vectors are transformed between basis sets using

cos sin
= , (17)

sin cos

'
N E

'
N E

x x
y y

θ θ
θ θ

− ⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

which may be verified by inspection, alternately setting = 0'x and = 0'y . Similar
transformations are used at the three other cell corners. These transformations guarantee that the
grid cell in which a given departure point is positioned does not change under a modification in
coordinate systems.

Most grids cells are fairly rectangular, unlike the distorted cell shown in Figure 3. On the 1°
displaced-pole grid frequently used for PIPS 3.0 runs, the maximum angle in equations (15) and
(16) is about 1°. Vector transformations could therefore be left out on most grids with little loss
of accuracy. They have been retained, however, because they assure precise monotonicity at little
added cost.

Another change should be noted in the scheme of [9] for locating triangles. In that paper,
departure points are defined by projecting cell corner velocities directly backward. That is,

= , (18)' ' t− ΔDx u

where '

Dx is the location of the departure point relative to the cell corner. The primes represent
vectors defined in the cell-corner basis. This approximation is accurate only for first-order. The
accuracy may be raised to second-order by rectifying the velocity with a midpoint approximation
before finding the departure point.

First, the midpoint of the backward trajectory is estimated using = /2' '

M Dx x , then an equation like
equation (17) is used to transform '

Mx to the appropriate cell-center coordinate system. Next, a
bilinear interpolation is employed to estimate the velocity at Mx . In a square 2 x 2 grid cell with
corners = (1, 1)− −1x , = (1, 1)−2x , = (1,1)3x , and = (1,1)−4x , the values of any scalar field φ
can be paired up at the cell corners with the following bilinear approximation:

1 2 3 4
1(,) = [(1)(1) (1)(1) (1)(1) (1)(1)], (19)
4

x y x y x y x y x yφ φ φ φ φ− − − + − + + + − − +

50

 PIPS 3.0 SDD

where 1φ , 2φ , 3φ , and 4φ are the corner values. To use equation (19), Mx must be transformed
from cell-center coordinates (,)x y into the simpler (,)x y coordinate system. Substituting x and
y for φ in equation (19), we get

1 2 3 4

1 2 3 4

1(,) = [(1)(1) (1)(1) (1)(1) (1)(1)],
4
1(,) = [(1)(1) (1)(1) (1)(1) (1)(1)].
4

x x y x x y x x y x x y x x y

y x y y x y y x y y x y y x y

− − − + − + + + − − +

− − − + − + + + − − +

Recalling that the corner coordinates are = (/2, /2)S W− −1x , = (/2, /2)S E−2x = (/2, /2)N E3x ,
and = (/2, /2)N W−4x , expressions are derived for x and y :

2= , (20)
(2)

2= , (21)
(2)

x Yx
X Y X y x y Y

y Xy
X Y Y x x y X

δ δ

δ δ

Δ
Δ Δ + −

Δ
Δ Δ + −

where = ()/2X N SΔ + , = ()/2Y E WΔ + , = ()/2X N Sδ − , and = ()/2Y E Wδ − . These
equations are nonlinear, since x and y emerge on the right-hand side, but are easily iterated to
convergence. Given the (,)x y coordinates of the midpoint, we relate equation (19) to the
components of u at the cell corners to estimate the velocity at the midpoint. The midpoint
velocity is changed back to cell-corner coordinates using the inverse of equation (17), and then
the corrected velocity in equation (18) is applied to find the departure point. With this correction,
departure points for a velocity field varying linearly in space are nearly precise.

5.2.2.1.3 Integrating Fluxes

In the next step, the reconstructed fields are integrated over the departure triangles to find the
total fluxes of area, volume, and energy across each cell edge. Area fluxes are simple to compute
since the area is linear in x and y. Given a triangle with vertices = (,)i ix yix , {1, 2,3}i∈ , the
triangle area is

2 1 3 1 2 1 3 1
1= ()() ()() . (22)
2TA x x y y y y x x− − − − −

The integral 1I of any linear function ()f r over a triangle is given by

1 = (), (23)TI A f 0x

51

 PIPS 3.0 SDD

where 0 0 0= (,)x yx represents the triangle midpoint,

3

0
=1

1= . (24)
3 i

i
∑x x

To compute the area flux, the area is evaluated at the midpoint,

0 0 0() = , (25)c x ya a a x a y+ +x

and multiplied by TA . By convention, northward and eastward fluxes are positive, while
southward and westward fluxes are negative.

Equation (23) cannot be used for volume fluxes, since the reconstructed volumes are quadratic
functions of position. (They are products of two linear functions, area and thickness.) The
integral of a quadratic polynomial over a triangle necessitates function evaluations at three
points,

()
3

2
=1

= , (26)
3

'T
i

i

AI f∑ x

where 0= ()/2'

i i+x x x are points lying halfway between the midpoint and the three vertices. The
authors of [9] use this formula to calculate fluxes of the product ρT, which is equivalent to ice
volume. Equation (26) does not work for ice and snow energies, which are cubic functions-
products of area, thickness, and enthalpy. Integrals of a cubic polynomial over a triangle can be
evaluated using a four-point formula [42]:

3

3 0
=1

9 25= () () (27)
16 48

''
T i

i

I A f f⎡ ⎤− +⎢ ⎥⎣ ⎦
∑x x

where 0= (3 2)/5''

i+ix x x .

To evaluate functions at specific points, products of the form () ()a x h x and () () ()a x h x q x must
be computed, where each term in the product is the sum of a cell-center value and two
displacement terms. This calculation may be sped up by storing some sums that are used
repeatedly. First, weighted ice areas are computed at the four points of the integral formula (27):

0 0 0
9= (),

16 c x ya a a x a y− + +

 25= (), {1,2,3},
48i c x i y ia a a x a y i+ + ∈

52

 PIPS 3.0 SDD

where the double primes have been dropped from the ix . Defined next is

3

=0
3

=0

3

=0

= ,

= ,

= ,

a i
i

ax i i
i

ay i i
i

a

a x

a y

σ

σ

σ

∑

∑

∑

which is used to compute the volume fluxes:

= .ah a c ax x ay yh h hσ σ σ σ+ +

Notice that aσ , axσ , and ayσ are used in three different flux computations: ice volume, snow
volume, and area-weighted surface temperature. Defined next are

3
2

=0

3

=0

3
2

=0

= ,

= ,

= ,

= ,

= .

axx i i
i

axy i i i
i

ayy i i
i

axh ax c axx x axy y

ayh ay c axy x ayy y

a x

a x y

a y

h h h

h h h

σ

σ

σ

σ σ σ σ

σ σ σ σ

+ +

+ +

∑

∑

∑

The sums axhσ and ayhσ are calculated separately for ice and snow, whereas the first three sums
are independent of the material being transported. Each sum is utilized repeatedly if there are
multiple enthalpy layers. From these sums the energy fluxes are computed:

= ,ahq ah c axh x ayh yq q qσ σ σ σ+ +

thus finishing the flux integrals for a given triangle. To compute the total flux across a cell edge
the contributions from each triangle are added.

53

 PIPS 3.0 SDD

5.2.2.1.4 Updating State Variables

Finally, these fluxes are used to compute new values of the state variables in every ice category
and grid cell. The new fractional ice areas (,)'

ina i j are given by

(1,) (,) (, 1) (,)(,) = (,) (28)
(,)

' Ea Ea Na Na
in in

F i j F i j F i j F i ja i j a i j
A i j

− − + − −
+

where (,)EaF i j and (,)NaF i j are area fluxes across the east and north edges, respectively, of cell
(,)i j . (,)A i j is the grid cell area. All fluxes added to one cell are subtracted from a neighboring
cell; thus equation (28) conserves total ice area.

The new ice volumes and energies are calculated analogously. New thicknesses are provided by
the ratio of volume to area, and enthalpies by the ratio of energy to volume. Tracer monotonicity
is guaranteed because

= ,' A

A

ahdA
h

adA
∫
∫

= ,' A

A

ahqdA
q

ah dA
∫
∫

where h΄ and q΄ are the new-time thickness and enthalpy, achieved by integrating the old-time
ice area, volume, and energy over a Lagrangian departure region with area A. In other words, the
new-time thickness and enthalpy are weighted averages over old-time values, with non-negative
weights a and ah. Therefore the new-time values must lie between the maximum and minimum
of the old-time values.

5.2.2.2 Transport in Thickness Space

Now the equation for ice transport in thickness space due to thermodynamic growth and melt is
solved by,

() = 0, (29)g fg
t h

∂ ∂
+

∂ ∂

which is obtained from equation (2) by ignoring the first and third terms on the right-hand side.
The remapping method of [25] is used, in which thickness categories are represented as
Lagrangian grid cells with boundaries that are projected ahead in time. The thickness distribution
function g is estimated as a linear function of h in each displaced category and is then remapped
onto the initial thickness categories. This method is numerically smooth (unlike schemes that

54

 PIPS 3.0 SDD

treat g(h) like a set of delta functions) and is not overly diffusive. It can be seen as a 1D
simplification of the 2D incremental remapping scheme described above.

The first computation is the displacement of category boundaries in thickness space. Assume that
at time m the ice areas m

na and mean ice thicknesses m
nh are known for each thickness category.

(For now the subscript i that distinguishes ice from snow must be omitted.) A thermodynamic
model (Section 5.2.2.5) is used to calculate the new mean thicknesses 1m

nh + at time m +1. The
time step must be small enough that trajectories do not cross; i.e., 1 1

1<m m
n nh h+ +

+ for each pair of
adjacent categories. The growth rate at h = hn is given by 1= ()/m m

n n nf h h t+ − Δ . By linear
interpolation growth rate Fn is estimated at the upper category boundary Hn:

1

1

= ().n n
n n n n

n n

f fF f H h
h h

+

+

−
+ −

−

If na or 1 = 0na + , nF is set to the growth rate in the nonzero category, and if an = an+1 =0, we set
Fn =0. The temporary displaced boundaries for n =1 to N - 1 are given by

* = .n n nH H F t+ Δ

The boundaries cannot be displaced by more than one category to the left or right; in other
words, *

1 1< <n n nH H H− + is required. Without this requirement there would need to be a general
remapping rather than an incremental remapping, at the cost of added complexity.

Next g(h) is constructed in the displaced thickness categories. The ice areas in the displaced
categories are 1 =m m

n na a+ , because area is conserved following the motion in thickness space (i.e.,
during vertical ice growth or melting). The new ice volumes are 1 1 1= () =m m m m

n n n n nv a h a h+ + + . For
brevity, define *

1=L nH H − and *=R nH H and drop the time index m +1. A continuous function
g(h) is built in to each category so that the total area and volume at time m +1 are an and vn,
respectively:

= , (30)R
nHL

H gdh a∫

= . (31)R
nHL

H hgdh v∫

The simplest polynomial that can satisfy both equations is a line. It is easy to change coordinates,
writing 1 0() =g g gη η + , where = Lh Hη − and the coefficients 0g and 1g are to be determined.
Then equations (30) and (31) may be written as

55

 PIPS 3.0 SDD

2

1 0 = ,
2
R

R ng g aη η+

3 2

1 0 = ,
3 2
R R

n ng g aη η η+

where =R R LH Hη − and =n n Lh Hη − . The solution to these equations is

0 2

6 2= , (32)
3

n R
n

R

ag η η
η

⎛ ⎞−⎜ ⎟
⎝ ⎠

1 3

12= . (33)
2

n R
n

R

ag ηη
η

⎛ ⎞−⎜ ⎟
⎝ ⎠

Since g is linear, its minimum and maximum values lie at the boundaries, = 0η and Rη :

02

6 2(0) = = , (34)
3

n R
n

R

ag gη η
η

⎛ ⎞−⎜ ⎟
⎝ ⎠

2

6() = . (35)
3

n R
R n

R

ag ηη η
η

⎛ ⎞−⎜ ⎟
⎝ ⎠

Equation (34) implies that (0) < 0g when > 2 /3n Rη η , i.e., when nh sits in the right third of the
thickness range (HL,HR). Similarly, equation (35) means that () < 0Rg η when < /3n Rη η , i.e.,
when hn is in the left third of the range. Because negative values of g are unphysical, a different
solution is used when hn lies outside the central third of the thickness range. If hn is in the left
third of the range, a cutoff thickness is identified as HC =3hn - 2HL, and sets g =0 between HC and
HR. Equations (32) and (33) are then valid with Rη redefined as HC - HL. And if hn is in the right
third of the range, define HC =3hn - 2HR and set g =0 between HL and HC. In this case, equations
(32) and (33) apply with =R R CH Hη − and =n n Ch Hη − .

Figure 4 demonstrates the linear reconstruction of g for the simple cases HL =0, HR =1, an =1,
and hn = 0.2, 0.4, 0.6, and 0.8. Note that g slopes downward (g1 < 0) when hn is less than the
midpoint thickness, (HL + HR)/2=1/2, and upward when hn surpasses the midpoint thickness. For
hn =0.2 and 0.8, g =0 over part of the range.

56

 PIPS 3.0 SDD

Figure 4: Linear approximation of the thickness distribution function g(h) for an ice
category with left boundary HL =0, right boundary HR =1, fractional area an =1, and mean
ice thickness hn = 0.2, 0.4, 0.6, and 0.8.

Finally, the thickness distribution is remapped to the original boundaries by transferring area and
volume between categories. The ice area Δan and volume Δvn are calculated between each
original boundary Hn and displaced boundary *

nH . If, * >n nH H , ice changes from category n to n
+1. The area and volume transferred are

*

= , (36)n
n Hn

Ha gdhΔ ∫

*

= . (37)n
n Hn

Hv hgdhΔ ∫

If * <n NH H , ice area and volume are shifted from category n +1 to n using equations (36) and
(37) with the limits of integration reversed. To evaluate the integrals, coordinates are changed
from h to η = h

- HL, where HL is the left limit of the range over which g > 0, and write g(η) using

equations (32) and (33). This is how the new areas an and volumes vn are acquired between the
original boundaries Hn-1 and Hn in each category. The new thicknesses, = /n n nh v a , are
guaranteed to be within the range (Hn-1, Hn). If g =0 in the area of a category that is remapped to
a neighboring category, no ice is transferred.

Other conserved quantities are transported in proportion to the ice volume Δvin. (Now using the
subscripts i and s to distinguish ice from snow.) For example, the transferred snow volume is
Δvsn = vsn(Δvin/vin), and the transferred ice energy in layer k is Δeink = eink(Δvin/vin).

57

 PIPS 3.0 SDD

The left and right boundaries of the domain necessitate special treatment. If ice is accumulating
in open water at a rate F0, the left boundary H0 is shifted right by F0Δt before g is constructed in
category 1, then reset to zero after the remapping is finished. Then new ice is added to the grid
cell, conserving area, volume, and energy. If ice cannot grow in open water (if the sea water is
too warm or the net surface energy flux is downward), H0 is fixed at zero, and the growth rate at
the left boundary is approximated as F0 = f1. If F0 < 0, the area of ice thinner than Δh0 = -F0Δt is
added to the open water area a0, allowing the ice and snow volume and energy to remain
unchanged. The area of new open water is

0
0 0

= .
h

a gdh
Δ

Δ ∫

The right boundary HN is not fixed but varies with hN, the mean ice thickness in the thickest
category. Given hN, set HN =3hN - 2HN-1, which guarantees that g(h) > 0 for HN-1 < h < HN and
g(h)=0 for h ≥ HN . No ice crosses the right boundary.

If the ice growth or melt rates in a given grid cell are too big, the thickness remapping scheme
will not function. Instead, the thickness categories in that grid cell are treated as delta functions
following [6], and categories outside their set boundaries are merged with neighboring categories
as needed. For time steps of less than a day and category thickness ranges of 10 cm or more, this
simplification is rarely needed, if ever.

5.2.2.3 Mechanical Redistribution

The last term on the right-hand side of equation (2) is ψ, which defines the redistribution of ice in
thickness space due to ridging and other mechanical processes. The mechanical redistribution
scheme in PIPS 3.0 is based on [43], [35], [16], [27] and [13]. This scheme transforms thinner
ice to thicker ice and is applied after horizontal transport. When the ice is converging, enough ice
ridges to guarantee that the ice area does not surpass the grid cell area.

First specify the participation function: the thickness distribution () = () ()Pa h b h g h of the ice
participating in ridging. (“Ridging” is used here as shorthand for all modes of mechanical
redistribution.) The weighting function b(h) prefers ridging of thin ice and closing of open water
to ridging of thicker ice. There are two options for the form of ()b h . If = 0partickrdg in the
namelist, then following [43], we set

*
* *

2 ()(1) () <
() = (38)

0

G h ifG h G
b h G G

otherwise

⎧ −⎪
⎨
⎪⎩

58

 PIPS 3.0 SDD

where G(h) is the fractional area covered by ice thinner than h, and G∗ is an empirical constant.
Integrating ()Pa h between category boundaries Hn-1 and Hn, the mean value of Pa in category n
is obtained by

1
1* *

2= () 1 , (39)
2

n n
Pn n n

G Ga G G
G G

−
−

+⎛ ⎞− −⎜ ⎟
⎝ ⎠

where Pna is the ratio of the ice area ridging (or open water area closing) in category n to the
total area ridging and closing, and Gn is the total fractional ice area in categories 0 to N. Equation
(39) applies to categories with Gn < G∗. If Gn-1 < G∗ <Gn, equation (39) is valid with G∗
replacing Gn, and if Gn-1 > G∗, then Pna =0. If the open water fraction a0 >G∗, no ice will ridge,

because “ridging” simply reduces the area of open water. As in [43], G∗ is set to =0.15.

If the spatial resolution is too fine for a given time step tΔ , the weighting function (38) can
support numerical instability. For = 1hourtΔ , resolutions finer than 10kmxΔ ∼ are usually
unstable. The instability comes from feedback between the ridging scheme and the dynamics
through the ice strength. If the strength changes considerably on time scales less than tΔ , the
EVP solution becomes inaccurate and sometimes oscillatory. Consequently, the fields of ice
area, thickness, velocity, strength, divergence, and shear can become noisy and unphysical.

A more stable weighting function was suggested by [27]:

*

* *

exp[()/]() = (40)
[1 exp(1/)]

G h ab h
a a

−
− −

When integrated between category boundaries, equation (40) implies

* *
1

*

exp(/) exp(/)= (41)
1 exp(1/)
n n

Pn
G a G aa

a
−− − −

− −

This weighting function is applied if = 1partickrdg in the namelist. From equation (40), the

mean value of G for ice involved in ridging is *a , as compared to */3G for equation (38). For
standard ice thickness distributions, setting * = 0.05a with = 1partickrdg generates

participation fractions similar to those given by * = 0.15G with = 0partickrdg . See [27] for a
detailed comparison of these two participation functions.

Thin ice is converted to thick ridged ice in a way that diminishes the total ice area while
conserving ice volume and energy. There are two namelist options for redistributing ice among
thickness categories. If = 0redistkrdg , ridging ice of thickness hn creates ridges whose area is

59

 PIPS 3.0 SDD

distributed uniformly between min = 2 nH h and *
max = 2 nH H h , as in [16]. The default value of

H∗ is 25 m. Observations suggest that * = 50H m gives a better fit to first-year ridges [4],
although the lower value may be appropriate for multiyear ridges [13]. The ratio of the mean
ridge thickness to the thickness of ridging ice is min max= ()/(2)n nk H H h+ . If the area of category
n is reduced by ridging at the rate rn, the area of thicker categories matures simultaneously at the
rate rn/kn. Thus the net rate of area loss due to ridging of ice in category n is rn(1 - 1/kn). The
ridged ice area and volume are allocated amid categories in the thickness range min max(,)H H . The
fraction of the new ridge area going to category m is

area

max min

= , (42)R L
m

H Hf
H H

−
−

where 1 min= max(,)L mH H H− and max= min(,)R mH H H . The fraction of the ridge volume going
to category m is

2 2
vol

2 2
max min

() ()= . (43)
() ()

R L
m

H Hf
H H

−
−

This uniform redistribution function has a tendency to not produce enough ice in the 3--5 m
range and too much ice thicker than 10 m [4]. Observational data show that the ITD of ridges is
better approximated by a negative exponential. Setting = 1redistkrdg gives ridges with an
exponential ITD [27]:

min() exp[()/] (44)Rg h h H λ∝ − −

for min>=h H , with () = 0Rg h for min<h H . Here, the variable λ is an empirical e-folding scale
and min = 2 nH h (where nh represents the thickness of ridging ice). It is assumed that 1/2= nhλ μ ,
where μ is a tunable parameter with units of m1/2 . Therefore the mean ridge thickness increases
in proportion to 1/2

nh , as in [16]. The default value = 4.0μ m1/2 assigns λ in the range 1--4 m for
most ridged ice. Ice strengths with = 4.0μ m1/2 and = 1redistkrdg are nearly comparable to the
strengths with * = 50H and = 0redistkrdg .

From equation (44) it can be shown that the fractional area going to category m as a result of
ridging is

area
1 min min= exp[()/] exp[()/]. (45)m m mf H H H Hλ λ−− − − − −

The fractional volume available to category m is

60

 PIPS 3.0 SDD

vol 1 1 min min() exp[()/] () exp[()/]= . (46)m m m m
m

min

H H H H H Hf
H

λ λ λ λ
λ

− −+ − − − + − −
+

Equations (45) and (46) replace equations (42) and (43) when = 1redistkrdg .

Internal ice energy is moved between categories in proportion to ice volume. Snow volume and
energy are moved in the same way, except that a fraction of the snow could be deposited in the
ocean instead of added to the new ridge.

The net area removed through ridging and closing is a function of the strain rates. Let netR equal
the net rate of area loss for the ice pack (i.e., the rate of open water area closing, in addition to
the net rate of ice area loss due to ridging). Following [13], netR is given by

net = (| |) min(,0), (47)
2

s
D D

CR D DΔ− −

where sC is the fraction of shear dissipation energy that contributes to ridge-building, DD
represents the divergence, and Δ is a function of the divergence and shear. These strain rates are
calculated by the dynamics scheme. The default value of sC is 0.25.

Define tot =0

= N
nn

R r∑ . This rate is related to netR by

()net 0 tot
=1

= 1 1 . (48)
N

P Pn n
n

R a a k R⎡ ⎤+ −⎢ ⎥⎣ ⎦
∑

Given netR from equation (47), equation (48) is used to compute totR . Next the area ridged in
category n is shown by =rn na r tΔ , where tot=n Pnr a R . The area of new ridges is /rn na k , and rn na h
represents the volume of new ridges (because volume is conserved during ridging). The ridging
ice from category n is removed and we use equations (42) and (43) or equations (45) and (46) to
redistribute the ice amid thicker categories.

In some instances the ridging rate in a given thickness category n may be substantial enough to
ridge the total area in that category during a time interval less than Δt. In this instance Rtot is
reduced to the value that accurately ridges an area an during Δt. Following each ridging iteration,
the total fractional ice area ai is computed. If ai > 1, the ridging is repeated with a value of Rnet
sufficient to yield ai =1.

The ice strength P may be computed in either of two ways. If the namelist parameter

= 0redistkrdg , the strength is given by [15]:

61

 PIPS 3.0 SDD

*= exp[(1)], (49)iP P h C a− −

where P∗ = 27, 500 N/m and C = 20 are empirical constants and h is the mean ice thickness.
Alternatively, setting = 1redistkrdg provides an ice strength closely related to the ridging
scheme. Following [35], the strength is known to be proportional to the change in ice potential
energy ΔEp per unit area of compressive deformation. Given the uniform ridge ITDs
(= 0redistkrdg), notice that

max 3 min 3
2

max min
=1

() ()= , (50)
3()

NC
Pn n n

f p Pn n
n n n n

a H HP C C a h
k H H

β
⎡ ⎤⎛ ⎞−
− +⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦

∑

where = (/2)(/)()P i w w iC g ρ ρ ρ ρ− , tot net= / > 1R Rβ from equation (48), and Cf represents an
empirical parameter that accounts for frictional energy dissipation. Following [13], we set Cf =
17. The primary term in the summation is the potential energy of ridging ice, and the second,
greater term is the potential energy of the resulting ridges. The factor of β is included since aPn is
normalized with respect to the total area of ice ridging, not the net area removed. Remember that
more than one unit area of ice must be ridged to reduce the net ice area by one unit. For
exponential ridge ITDs (= 1redistkrdg), the ridge potential energy is adapted:

 ()2 2 2
min min

=1

= 2 2 (51)
NC

Pn
f p Pn n

n n

aP C C a h H H
k

β λ λ
⎡ ⎤
− + + +⎢ ⎥
⎣ ⎦

∑

The energy-based ice strength given by equations (50) or (51) is more physically realistic

than the strength produced by equation (49). But the use of equation (49) is less likely to permit
numerical instability at a given resolution and time step. See [27] for more details.

5.2.2.4 Dynamics

The elastic-viscous-plastic (EVP) model represents an alteration of the standard viscous-plastic
(VP) model for sea ice dynamics by [15]. It reduces to the VP model at temporal scales
associated with the wind forcing, while at shorter time scales the modification process takes
place by a numerically more efficient elastic wave mechanism. While retaining the basic physics,
this elastic wave version leads to a fully explicit numerical scheme that greatly enhances the
model’s computational efficiency.

The EVP sea ice dynamics model is well documented in [18], [17], [19] and [20]. Simulation
results and performance of the EVP model have been evaluated against the VP model in realistic
simulations of the Arctic [21]. The equations are summarized below but it is recommended that

62

 PIPS 3.0 SDD

the reader refer back to the above references for details. The numerical implementation in this
code release is that of [19], [20].

The force balance per unit area in the ice pack is set by a two-dimensional momentum equation
[15], obtained by integrating the 3D equation through the thickness of the ice in the vertical
direction:

ˆ= , (52)a w
um k mfu mg H
t

σ τ τ∂
∇ ⋅ + + − × − ∇

∂

where m is the combined mass of ice and snow per unit area and aτ and wτ represent wind and
ocean stresses, respectively. The strength of the ice is given by the internal stress tensor ijσ , and
the other two terms on the right side are stresses due to Coriolis effects and the sea surface slope.
The parameterization for the wind and ice-ocean stress terms must have the ice concentration as
a multiplicative factor to be consistent with the formal theory of free drift in low ice
concentration areas. A thorough explanation of the issue and its continuum solution is given in
[20] and [8].

For simplicity the stress tensor σ is formulated in terms of 1 11 22=σ σ σ+ , 2 11 22=σ σ σ− and the
divergence, DD. The stress tensor is also formulated in terms of the horizontal tension and
shearing strain rates, DT and DS respectively. The internal stress tensor is determined from a
standardized version of the VP constitutive law,

1 1

2 2

12 12

1 = , (53)
2 2

1 = , (54)
2

1 1= , (55)
2 2

D

T

S

P D
E t

D
E t

D
E t

σ σ
ζ ζ

σ σ
η

σ σ
η

∂
+ +

∂
∂

+
∂
∂

+
∂

where

63

 PIPS 3.0 SDD

()

11 22

11 22

12

2

1/22 2 2 2

= , (56)
= , (57)
= 2 , (58)

1= ,
2

= ,
2

= ,
2

= 1 ,

D

T

S

ji
ij

j i ij

D T S

D
D
D

uu
x x

P

P
e

D e D D

ε ε
ε ε
ε

ε

ζ

η

+
−

⎛ ⎞∂∂⎜ ⎟+
⎜ ⎟∂ ∂⎝ ⎠

Δ

Δ

⎡ ⎤Δ + +⎣ ⎦

and P is a function of the ice thickness and concentration, explained in Section 5.2.2.3. The
dynamics component utilizes a “replacement pressure” (see [14], for example), which functions
to prevent residual ice motion due to spatial variations of P when the rates of strain are exactly
zero.

Many adjustments have been made to the EVP model since its original release. In the previous
version, the viscosities were held fixed while the stress and momentum equations were subcycled
with the smaller time step dte. The reason for applying the EVP model in this way was to
reproduce the results of the original VP model as closely as possible. When solved with time
steps of several hours or more, the VP model goes through a linearization error associated with
the viscosities, which are lagged over the time step [17]. This led to principal stress states that
were widely spread outside the elliptical yield curve in both models [21]. This problem has been
addressed by updating the viscosities during the subcycling, so that the complete dynamics
component is subcycled within the time step. Taken alone, this modification would require an
increased number of operations to compute the viscosities.

Nonetheless, the new dynamics component is roughly as efficient as the earlier version due to a
change in the definition of the elastic parameter E. E is now described in terms of a damping
timescale T for elastic waves, < <et T tΔ Δ , as

= ,E
T
ζ

where =T E tΔ and E (eyc) is a tunable parameter less than one, as before. The stress
equations (53-55) become

64

 PIPS 3.0 SDD

1 1

2
2 2

2
12 12

= ,
2 2 2

= ,
2 2

= .
2 4

D

T

S

P P D
t T T T

e P D
t T T

e P D
t T T

σ σ

σ σ

σ σ

∂
+ +

∂ Δ
∂

+
∂ Δ
∂

+
∂ Δ

All coefficients on the left side are constant with the exception of P, which changes only on the
longer time step Δt. This alteration compensates for the diminished efficiency of including the
viscosity terms in the subcycling. (Note that the viscosities do not appear explicitly.) Choices of
the parameters used to describe E, T and Δte are discussed in the PIPS 3.0 User’s Manual [2].

A different discretization of the stress terms /ij jxσ∂ ∂ in the momentum equation is now used,
which allows the discrete equations to be derived from the continuous equations written in
curvilinear coordinates. In this way, metric terms associated with the curvature of the grid were
integrated into the discretization explicitly. No longer in use is the “triangle discretization,” in
which the strain rates and stresses were constant over each of four subtriangles in each grid cell,
and instead a bilinear approximation for the velocities and stresses is used. Details pertaining to
the spatial discretization are given in [19].

The momentum equation is discretized in time as follows. First, to clarify, the two components
of equation (52) are

() ()

() ()

1

2

= cos sin ,

= sin cos .

j
ax i w w w w w

j j

j
ay i w w w w w

j j

Hum a c U u U u V v mfv mg
t x x

Hvm a c U u U u V v mfu mg
t x y

σ
τ ρ θ θ

σ
τ ρ θ θ

∂∂
∂ + + − − − − + −⎡ ⎤⎣ ⎦∂ ∂

∂ ∂∂
+ + − − − − − −⎡ ⎤⎣ ⎦∂ ∂

In the code, = k

i w w wvrel a c U uρ − , where k denotes the subcycling step. The following
equations show the time discretization and illustrate some of the other variables used in the code.

() ()
1

11 1vrelcos vrelsin = vrel cos sin ,
k
jk k k

ax w w
j waterxccb

forcexcca strintx

Hm mu mf v mg U V u
t x x t

σ
θ θ τ θ θ

+
+ + ∂ ∂⎛ ⎞+ − + + − + − +⎜ ⎟Δ ∂ Δ⎝ ⎠

() ()
1

21 1vrelsin vrelcos = vrel sin cos ,
k

jk k k
ay w w

j wateryccb
forceycca strinty

Hm mmf u v mg U V v
t x x t

σ
θ θ τ θ θ

+
+ + ∂ ∂⎛ ⎞+ + + + − + + +⎜ ⎟Δ ∂ Δ⎝ ⎠

and

65

 PIPS 3.0 SDD

vrel·waterx(y) = taux(y). This system of equations is solved analytically for 1ku + and
1kv + . When the subcycling is complete for each (thermodynamic) time step, the ice-ocean stress

must be constructed from taux(y) and the terms containing vrel on the left side of the
equations. This is done in subroutine evp_ finish.

5.2.2.5 Thermodynamics

The thermodynamic sea ice model is based on [31] and [7], and is described more fully in [24].
For each thickness category the model calculates changes in the ice and snow thickness and
vertical temperature profile resulting from radiative, turbulent, and conductive heat fluxes. The
ice has a temperature-dependent specific heat to reproduce the effect of brine pocket melting and
freezing.

Each thickness category n in each grid cell is handled as a horizontally uniform column with ice
thickness hin = vin/ain and snow thickness hsn = vsn/ain. (Henceforth the category index n is
omitted.) Each column is divided into Ni ice layers of thickness Δhi = hi/Ni and, if snow is
present, a single snow layer. (Allowing for multiple snow layers is possible in future versions of
PIPS 3.0.) The surface temperature (i.e., the temperature of ice or snow at the interface with the
atmosphere) is Tsf, which cannot exceed 0°C. The temperature at the midpoint of the snow layer
is Ts, and the midpoint ice layer temperatures are Tik, where k ranges from 1 to Ni. The
temperature at the ice bottom is held at Tf, the freezing temperature of the ocean mixed layer. All
temperatures are in degrees Celsius unless otherwise noted.

The vertical salinity profile is set and is unchanging in time. The snow is assumed to be fresh,
and the midpoint salinity Sik in each ice layer is given by

()

max
1= [1 cos()], (59)
2

a
z b

ikS S zπ +−

where (1/2)/ iz k N≡ − , max = 3.2S psu. The variables a =0.407 and b =0.573 are determined from
a least-squares fit to the salinity profile seen in multiyear sea ice by [36]. This profile varies from
S =0 at the top surface (z =0) to S = Smax at the bottom surface (z =1) and is similar to that used
by [31]. Equation (59) is quite accurate for ice that has drained at the top surface due to summer
melting. It is not a good approximation for cold first-year ice, though, which has a more
vertically uniform salinity since it has not yet drained. However, the effects of salinity on heat
capacity are negligible for temperatures well below freezing, so the salinity error does not lead to
significant temperature errors.

Each ice layer has an enthalpy qik, defined as the negative of the energy necessary to melt a unit
volume of ice and raise its temperature to 0°C. Due to internal melting and freezing in brine
pockets, the enthalpy of the ice depends on the brine pocket volume and is a function of
temperature and salinity. Since the salinity is prescribed, there is a one-to-one relationship

66

 PIPS 3.0 SDD

between temperature and enthalpy. Snow enthalpy qs is also defined, which depends on
temperature alone. Enthalpy equations are derived in Section 5.2.2.5.3.

Given surface forcing at the atmosphere-ice and ice-ocean interfaces in addition to the ice and
snow thicknesses and temperatures/enthalpies at time m, the thermodynamic model advances
these quantities to time m +1. The computation proceeds in two steps. First to be solved is a set
of equations for the new temperatures, as discussed in Section 5.2.2.5.2. Next is the calculation
of the melting, if any, of ice or snow at the top surface, and the growth or melting of ice at the
bottom surface, as described in Section 5.2.2.5.3. We begin by defining the surface forcing
parameterizations, which are closely related to the ice and snow surface temperatures.

5.2.2.5.1 Thermodynamic Surface Forcing

The net energy flux from atmosphere to ice (with all fluxes defined as positive downward) is

0 0= (1)(1) ,s l swL LF F F F F i Fα↓ ↑+ + + + − −

where Fs is the sensible heat flux, Fl is the latent heat flux, FL↓ is the incoming longwave flux, FL↑
is the outgoing longwave flux, Fsw is the incoming shortwave flux, α represents the shortwave
albedo, and i0 is the fraction of absorbed shortwave flux that penetrates the ice.

The albedo depends on the thickness and temperature of ice and snow and on the spectral
distribution of the incoming solar radiation. Albedo parameters have been selected to fit
observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment. For
Tsf < -1◦C and hi > 0.5m, the bare ice albedo is 0.78 for visible wavelengths (< 700 nm) and
0.36 for near IR wavelengths (> 700 nm). As hi decreases from 0.5 m to zero, the ice albedo
decreases efficiently (through use of an arctangent function) to the ocean albedo, 0.06. The ice
albedo in both spectral bands drops by 0.075 as Tsf rises from -1°C to 0°C. The albedo of cold
snow (Tsf < -1°C) is 0.98 for visible wavelengths and 0.70 for near IR wavelengths. The visible
snow albedo falls by 0.10 and the near IR albedo by 0.15 as Tsf increases from -1°C to 0°C. The
total albedo is an area-weighted average of the ice and snow albedos, where the fractional snow-
covered area is

= ,s
snow

s snowpatch

hf
h h+

and hsnowpatch =0.02 m. The envelope of albedo values is shown in Figure 5.

67

 PIPS 3.0 SDD

Figure 5: Albedo as a function of ice thickness and temperature for the two extrema in
snow depth. Maximum snow depth is calculated based on Archimedes’ Principle for the
given ice thickness. These curves symbolize the envelope of potential albedo values.

The net absorbed shortwave flux is = (1)swabs j sw jF Fα ↓−∑ , where the summation spans four
radiative groups (direct and diffuse visible, direct and diffuse near IR). The flux penetrating the
ice is given by 0 0= swabsI i F , where i0 =0.70 (1 - fsnow) for visible radiation and i0 =0 for near IR.
Radiation penetrating the ice is attenuated according to Beer’s Law:

0() = exp(), (60)iI z I zκ−

where I(z) is the shortwave flux that extends to depth z beneath the surface without being
absorbed, and κi is the bulk extinction coefficient for solar radiation in ice, set at 1.4 m-1

for
visible wavelengths [12]. A fraction exp (-κihi) of the penetrating solar radiation passes through
the ice to the ocean (swF ⇓). Although incoming shortwave and longwave radiation are received
from the atmosphere, outgoing long-wave radiation and the turbulent heat fluxes are derived
quantities. Outgoing longwave assumes the standard blackbody form, ()4

= K
sfLF Tεσ↑ , where

= 0.95ε is the emissivity of snow or ice, σ is the Stefan-Boltzmann constant and K
sfT

is the

surface temperature in Kelvin.

The sensible heat flux is relative to the difference between air potential temperature and the
surface temperature of the snow or snow-free ice,

()= .K
s s a sfF C TΘ −

68

 PIPS 3.0 SDD

Cs and Cl (below) are nonlinear turbulent heat transfer coefficients described in Section 5.2.1.1.
Likewise, the latent heat flux is proportional to the difference between Qa and the surface
saturation specific humidity Qsf :

()
1 2

= ,

= (/)exp(/),
l l a sf

K
sf a sf

F C Q Q

Q q q Tρ

−

−

where q1 =1.16378 x

10

7
kg/m

3
, q2 = 5897.8K, K

sfT is the surface temperature in Kelvin, and ρa is
the surface air density. The net downward heat flux from the ice to the ocean is provided by [29]:

*= (), (61)bot w w h w fF c c u T Tρ− −

where ρw is the density of seawater, cw is the specific heat of seawater, ch =0.006 represents a
heat transfer coefficient, * = /w wu τ ρ is the friction velocity, and Tw is the sea surface

temperature. The minimum value of *u depends on if the model is run coupled; lack of currents
in uncoupled runs means there was insufficient heat available to melt ice in the standard
formulation. In this release we have 3

*min = 5 10u −× for coupled runs and 25 10−× for uncoupled
runs.

5.2.2.5.2 New Temperatures

Given the temperatures m

sfT , m
sT and m

ikT

at time m, we solve a series of finite-difference equations

to obtain the new temperatures at time m +1. Each temperature is coupled to the temperatures of
the layers directly above and below by heat conduction terms that are treated implicitly. For
example, the rate of change of Tik depends on the new temperatures in layers k-1, k, and k +1.
Therefore, we have a set of equations of the form

x , (62)A = b

where A is a tridiagonal matrix, x is a column vector whose components are the unknown new
temperatures, and b represents another column vector. Given A and b, x can be computed with a
standard tridiagonal solver.

There are four general cases:
(1) Tsf < 0°C, snow present;
(2) Tsf =0°C, snow present;
(3) Tsf < 0°C, snow absent; and

69

 PIPS 3.0 SDD

(4) Tsf =0°C, snow absent.

Case 1 has one equation (the top row of the matrix) for the new surface temperature, one
equation (the second row) for the new snow temperature, and Ni equations (the remaining rows)
for the new ice temperatures. For cases 2 and 4 the equation for the surface temperature is
omitted, which is held at 0°C, and for cases 3 and 4 the snow temperature equation is omitted.

The rate of temperature change in the ice interior is given by [31]:

0= [exp()], (63)i i
i i i i

T Tc k I z
t z z z

ρ κ∂ ∂∂ ∂⎛ ⎞ − −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

where ρi = 917 kg/m

3
represents the sea ice density (assumed to be uniform), ci(T,S) is the

specific heat of sea ice, ki(T,S) is the thermal conductivity of sea ice, I0 is the flux of penetrating
solar radiation, attenuated with extinction coefficient iκ (see previous section), and z represents
the vertical coordinate, set to be positive downward with z =0 at the top surface. The specific
heat of sea ice is given to an excellent approximation by [33],

0
0 2(,) = , (64)i

L Sc T S c
T
μ

+

where c0 = 2106 J/kg/deg is the specific heat of fresh ice at 0°C, L0 =3.34 x

10

5
J/kg is the latent

heat of fusion of fresh ice at 0°C, and µ =0.054 deg/psu represents the ratio between freezing
temperature and the salinity of brine. Following [44], the thermal conductivity is shown by

0(,) = , (65)i
Sk T S k

T
β

+

where k0 =2.03 W/m/deg is the conductivity of fresh ice and β =0.13 W/m/psu is an empirical
constant. The analogous equation for the temperature change in snow is

= , (66)s s
s s s

T Tc k
t z z

ρ ∂ ∂∂ ⎛ ⎞
⎜ ⎟∂ ∂ ∂⎝ ⎠

where ρs = 330 kg/m

3
is the snow density (also assumed uniform), cs = c0 is the specific heat of

snow, and ks = 0.30 W/m/deg denotes the thermal conductivity of snow. Penetrating solar
radiation is neglected in equation (66) because the majority of the incoming sunlight is absorbed
near the top surface when snow exists.

Now Equations (63) and (66) are converted to finite-difference form. The resulting equations are
second-order accurate in space (except maybe at material boundaries) and first-order accurate in
time. Before writing the equations in full the finite-difference expressions are provided for some
of the terms.

70

 PIPS 3.0 SDD

First consider the terms on the left-hand side of equations (63) and (66). The time derivatives are
written as

1

= ,
m mT T T

t t

+∂ −
∂ Δ

where T is the temperature of either ice or snow. The specific heat of ice layer k is approximated
as

0
0 1= , (67)ik

ik m m
ik ik

L Sc c
T T

μ
++

which guarantees that energy is conserved during a change in temperature. This can be shown by
using equation (64) to integrate ci dT from m

ikT to 1m
ikT + ; the result is 1()m m

ik ik ikc T T+ − , where cik is
given by equation (67). Unfortunately, the specific heat is a nonlinear function of 1m

ikT + , the
unknown new temperature. A set of linear equations is retained, however, by initially guessing

1 =m m
ik ikT T+ and then iterating the solution, updating 1m

ikT + in equation (67) with each iteration until
the solution converges.

Next to consider is the heat diffusion term, the first term on the right side of equation (63). In the
ice interior (layers 2 to Ni - 1) this term is discretized as

1 1 1 1
, , 1 , 1 , 1() ()1= , (68)

m m m m
i k i k ik i k ik i ki

i
i i i

k T T k T TTk
z z h h h

+ + + +
− + +⎡ ⎤− −∂∂ ⎛ ⎞ −⎢ ⎥⎜ ⎟∂ ∂ Δ Δ Δ⎝ ⎠ ⎣ ⎦

where kik represents the thermal conductivity at the upper boundary of layer k. The
approximation in equation (68) is spatially centered and second-order accurate. Similar
expressions can be written for heat diffusion in the top and bottom ice layers and the snow layer,
as shown below. Note that the conduction terms are handled implicitly; that is, they depend on
the temperatures at the new time m+1. The resulting scheme is first-order accurate in time and
unconditionally stable.

Using equation (65), kik is approximated in the ice interior (at the upper boundary of layers 2 to
Ni) as

, 1
0

, 1

()
= .i k ik

ik m m
i k ik

S S
k k

T T
β −

−

+
+

+

71

 PIPS 3.0 SDD

Because the conductivity does not depend as much on temperature as does the specific heat, kik is
defined in terms of the ice temperatures at time m. Thus the conductivity does not need to be
updated with each iteration. At the bottom surface there is

max
0,

= .1i Ni f

Sk k
T

β
++

The conductivity at the top ice surface, 1ik , depends on whether snow exists. If there is no snow,
we set

1
1 0

1

= .i
i m

i

Sk k
T
β

+

(Defining 1ik in terms of Tsf is avoided since then it would be undefined for Tsf =0.) If snow is
present, a continuous heat flux across the ice-snow interface is assumed:

1
1 = ,

/2 /2

m m m m
i int int s

i s
i s

T T T Tk k
h h
− −

Δ

where Tint is the interface temperature. Solving for m

intT , it is evident that this heat flux is
equivalent to

1 ,
()/2

m m
i s

int
i s

T Tk
h h
−

Δ +

where kint , the equivalent conductivity at the interface, is defined as

1

1

()= .i s i s
int

s i i s

k k h hk
h k h k

Δ +
+ Δ

Finally, the second term on the right in equation (63) is taken into account. From equation (60),
the fraction of the penetrating solar radiation I0 transmitted through layer k without being
absorbed is

= exp().k i ik hτ κ− Δ

Thus the flux absorbed in layer k is

0 1= ().k k kQ I τ τ− −

The flux absorbed per unit ice thickness is Qk/Δhi, the desired finite-difference approximation to

72

 PIPS 3.0 SDD

0[exp()].iI z
z

κ∂
− −
∂

Now a system of equations for the new temperatures is constructed. (The reader uninterested in
algebraic details may want to go to the next section.) Beginning at the surface and working down
for case 1 (Tsf < 0◦C and snow present), we require

0 = , (69)ctF F

where Fct is the conductive flux from the top surface to the ice interior, and both fluxes are
evaluated at time m +1. Although F0 is a nonlinear function of Tsf, there is the linear
approximation

*

1 * 1 *0
0 0= (),m m

sf sf
sf

dFF F T T
dT

+ +
⎛ ⎞

+ −⎜ ⎟⎜ ⎟
⎝ ⎠

where *
sfT is the surface temperature from the most recent iteration, and *

0F and *
0(/)sfdF dT are

functions of *
sfT . We initialize * = m

sf sfT T and update it with each iteration. Thus we rewrite
equation (69) as

*

* 1 * 1 10
0 () = (),m m m

sf sf s sf s
sf

dFF T T K T T
dT

+ + +
⎛ ⎞

+ − −⎜ ⎟⎜ ⎟
⎝ ⎠

where 2 /s s sK k h≡ . Rearranging terms, we get

* *

1 1 * *0 0
0= , (70)m m

s sf s s sf
sf sf

dF dFK T K T T F
dT dT

+ +
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥− + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

the first equation in the set of equations (62).

Continuing with case 1, we write the equation for the change in Ts:

1
1 1 1 1

1
() 1= [() ()] (71)

m m
m m m ms s

s s s sf s int s i
s

T Tc K T T K T T
t h

ρ
+

+ + + +−
− − −

Δ

where 2 /()int int i sK k h h≡ Δ + . In tridiagonal matrix form equation (71) becomes

1 1 1
1[1 ()] = , (72)m m m m

s s sf s int s s s int i sK T K K T K T Tη η η+ + +− + + + −

73

 PIPS 3.0 SDD

where /()s s s st c hη ρ≡ Δ .

The ice equations for the top layer, the interior layers (2 to Ni - 1), and the bottom layer,
respectively, are

1
1 1 1 11 1

1 1 2 1 2 1

1
1 1 1 1

, 1 , 1 , 1

1
1 1

, 1

, 1

() 1= [() ()],

() 1= [() ()],

() 1= { ()

[

m m
m m m mi i

i i int s i i i i
i

m m
m m m mik ik

i ik ik i k ik i k ik i k k
i

m m
m miN iN

i iN iN i N iN
i

i N

T Tc K T T K T T Q
t h

T Tc K T T K T T Q
t h

T Tc K T T
t h

K

ρ

ρ

ρ

+
+ + + +

+
+ + + +
− + +

+
+ +
−

+

−
− − − +

Δ Δ

−
− − − +

Δ Δ

−
− −

Δ Δ
1 1

1 2 , 1 1() ()] },m m
iN f i N fT T T T Qγ γ+ +

−− + − +

where /ik ik iK k h≡ Δ and iN N≡ . The coefficients γ1 =3 and γ2 = -1/3 provide one-sided second-
order spatial accuracy at the bottom surface; they are derived from a Taylor series expansion of
dT/dz at z = hi. Rearranging terms, we have

1 1 1
1 1 2 1 1 2 2 1 1 1[1 ()] = , (73)m m m m

i int s i int i i i i i i iK T K K T K T T Qη η η η+ + +− + + + − +

1 1 1
, 1 , 1 , 1 , 1[1 ()] = , (74)m m m m

ik ik i k ik ik i k ik ik i k i k ik ik kK T K K T K T T Qη η η η+ + +
− + + +− + + + − +

1 1

, 2 , 1 , 1 1 , 1

, 1 1 2

() [1 ()] =
(75)

() ,

m m
iN i N i N i N iN iN i N iN

m
iN i N f iN iN N

K K T K K T

K T T Q

η γ η γ

η γ γ η

+ +
+ − +

+

− − + + +

+ + +

where /()ik i ik it c hη ρ≡ Δ Δ .

Next consider case 2 (Tsf =0°C and snow present). Since Tsf is fixed, there is no surface flux
equation. The new snow temperature is given by equation (71), but with the unknown

1m
sfT + replaced by Tsf =0°C. In matrix form we have

1 1

1[1 ()] = . (76)m m m
s int s s s int i s s sf sK K T K T K T Tη η η+ ++ + − +

The ice equations for case 2 are the same as for case 1: (73), (74), and (75).

For case 3 (Tsf < 0°C and snow absent) the surface temperature equation is like equation (69), but
we use a second-order accurate expression for dT/dz at z =0:

74

 PIPS 3.0 SDD

*

* 1 * 1 1 1 10
0 1 1 1 2 2() = [() ()].m m m m m

sf sf i sf i sf i
sf

dFF T T K T T T T
dT

γ γ+ + + + +
⎛ ⎞

+ − − + −⎜ ⎟⎜ ⎟
⎝ ⎠

This gives the matrix equation

* *

1 1 1 * *0 0
1 1 2 1 1 2 1 2 0() = . (77)m m m

i sf i s i i sf
sf sf

dF dFK T K T K T T F
dT dT

γ γ γ γ+ + +
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥− + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

The equation for 1iT ty’in case 3 is

1
1 1 1 1 1 11 1

1 1 1 1 2 2 2 1 2 1
() 1= [() ()] () .

m m
m m m m m mi i

i i i sf i sf i i i i
i

T Tc K T T T T K T T Q
t h

ρ γ γ
+

+ + + + + +−
− + − − − +

Δ Δ

Rearranging terms, we find

1 1 1
1 1 1 2 1 2 1 1 1 1 2 2 1 2 1 1 1() [1 ()] () = . (78)m m m m

i i sf i i i i i i i i i iK T K K T K K T T Qη γ γ η γ η γ η+ + +− + + + + − − +

Equation (77) includes 1
2
m

iT + and therefore provides an unwanted matrix term two places to the
right of the main diagonal. This term is eliminated by making the substitution

1 2 1 1 2 ,R c R c R→ −

where R1 is the first matrix row, R2 is the second row, and 1 2 1= ic Kγ and 2 1 2 2 1= ()i i ic K Kη γ− −
are the coefficients multiplying 1

2
m

iT +

in rows 1 and 2, respectively. The other ice layer equations

for case 3 are equations (74) and (75).

Finally, for case 4 (Tsf =0°C and snow absent) we have the top ice layer equation

1
1 1 1 11 1

1 1 1 1 2 2 2 1 2 1
() 1= [() ()] () .

m m
m m m mi i

i i i sf i sf i i i i
i

T Tc K T T T T K T T Q
t h

ρ γ γ
+

+ + + +−
− + − − − +

Δ Δ

which can be rewritten as

1 1
1 1 1 2 1 1 2 1 2 2 1 1 1 2 1 1 1[1 ()] () = () . (79)m m m

i i i i i i i i i i sf i iK K T K K T K T T Qη γ η γ η γ γ η+ ++ + + − + + +

The remaining ice layer equations are (74) and (75), as with the other three cases.

75

 PIPS 3.0 SDD

This completes the specification of the matrix equations for the four cases. The new temperatures
are computed using a tridiagonal solver. After each iteration there is a check to see whether the
following conditions hold:

1. 0 CsfT ≤

2. The change in Tsf since the previous iteration is less than a prescribed limit, ΔTmax.

3. 0 ctF F≥ . (If 0 < ctF F , ice would be growing at the top surface, which is not allowed.)

4. The rate at which energy is added to the ice by the external fluxes equals the rate at which
the internal ice energy is changing, to within a prescribed limit ΔFmax.

The convergence rate of Tsf is also checked. If Tsf is oscillating and failing to converge,
temperatures from successive iterations are averaged to improve convergence. When all these
conditions are satisfied, typically within two to four iterations for max 0.01 CTΔ ≈ and

20.01 W/mmaxFΔ ≈ , the computation is complete.

5.2.2.5.3 Growth and Melting

First the expressions are derived for the enthalpy q. The enthalpy of snow (or fresh ice) is given
by

0 0() = ().s sq T c T Lρ− − +

Sea ice enthalpy is more complex, due to brine pockets whose salinity varies inversely with
temperature. The specific heat of sea ice, shown by equation (64), includes the energy needed to
warm or cool ice as well as the energy used to freeze or melt ice adjacent to brine pockets.
Equation (64) can be integrated to give the energy δe required to raise the temperature of a unit
mass of sea ice of salinity S from T to 'T :

0 0
1 1(,) = () .' '

'e T T c T T L S
T T

δ μ ⎛ ⎞− + −⎜ ⎟
⎝ ⎠

If we let ='

mT T Sμ≡ − , the temperature at which the ice is completely melted, we have

0 0(,) = () 1 .m
m m

Te T T c T T L
T

δ ⎛ ⎞− + −⎜ ⎟
⎝ ⎠

Multiplying by ρi to transform the units from J/kg to J/m

3
and adding a term for the energy

required to raise the meltwater temperature to 0°C, we get the sea ice enthalpy:

76

 PIPS 3.0 SDD

0 0(,) = () 1 . (80)m
i i m w m

Tq T S c T T L c T
T

ρ ⎡ ⎤⎛ ⎞− − + − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Note that equation (80) is a quadratic equation in T. Given the layer enthalpies, the temperatures
can be computed using the quadratic formula:

2 4= ,
2

b b acT
a

− − −

where

0

0 0

0

= ,

= () ,

= .

i
w m

i

m

a c
qb c c T L

c L T
ρ

− − −

The other root is unphysical.

Melting at the top surface is demonstrated by

0 0() >
= (81)

0
ct ctF F t ifF F

q h
otherwise

δ
− Δ⎧

⎨
⎩

where q is the enthalpy of the surface ice or snow layer (recall that q < 0) and δh is the change in
thickness. If the layer melts completely, the residual flux is used to melt the layers below. Any
energy remaining when the ice and snow have melted is added to the ocean mixed layer. Ice
cannot grow at the top surface, but new snow can fall. Snowfall is added at the end of the
thermodynamic time step.

Growth and melting at the bottom ice surface are given by

= () , (82)cb botq h F F tδ − Δ

where Fbot is given by equation (61) and Fcb is the conductive heat flux at the bottom surface:

, 1
1 2 , 1= [() ()].i N

cb iN f i N f
i

k
F T T T T

h
γ γ+

−− + −
Δ

If ice is melting at the bottom surface, then q in equation (82) is the enthalpy of the bottom ice
layer. If ice is growing, q is the enthalpy of new ice with temperature Tf and salinity Smax. This
ice is added to the bottom layer.

77

 PIPS 3.0 SDD

If the latent heat flux is negative (i.e., latent heat is transferred from the ice to the atmosphere),
snow or snow-free ice sublimates at the top surface. If the latent heat flux is positive,
atmospheric vapor is deposited at the surface as snow or ice. The thickness change of the surface
layer is given by

() = , (83)v lL q h F tρ δ− Δ

where ρ is the density of the surface material (snow or ice), and 6= 2.501 10 J/kgvL × is the latent
heat of vaporization of liquid water at 0°C. Notice that ρLv is close to an order of magnitude
larger than typical values of q. For positive latent heat fluxes, the deposited snow or ice is
assumed to have the same enthalpy as the existing surface layer.

After growth and melting, the various ice layers no longer have the same thicknesses. Therefore
the layer interfaces are adjusted, conserving energy, so as to re-establish layers of equal thickness
Δhi = hi/Ni. This is accomplished by computing the overlap ηkm of each new layer k with each old
layer m:

1 1= min(,) max(,),km m k m kz z z zη − −−

where zm and zk are the vertical coordinates of the old and new layers, respectively. The
enthalpies of the new layers are

=1

1= .
Ni

k km m
mi

q q
h

η
Δ ∑

At the end of the time step there is a check of whether the snow is deep enough to be partially
below freeboard (i.e., below the surface of the ocean). Using Archimedes’ principle, the base of
the snow is at freeboard when

= .i i s s w ih h hρ ρ ρ+

So then the snow base is below freeboard when

* () > 0.w i i
s

s

hh h ρ ρ
ρ
−

≡ −

In this case the snow base is raised to freeboard by converting some snow to ice:

*

*

= ,

= .

i
s

w

s
i

w

hh

hh

ρδ
ρ

ρδ
ρ

−

78

 PIPS 3.0 SDD

In exceptional cases this process may increase the ice thickness substantially. Therefore we
postpone snow-ice conversions until after the remapping in thickness space (Section 5.2.2.2),
which assumes that ice growth during a single time step is quite small. Lateral melting is
accomplished by multiplying the state variables by 1-rside, where rside is the fraction of ice melted
laterally, and adjusting the ice energy and fluxes as appropriate.

79

 PIPS 3.0 SDD

5.3 Primary PIPS 3.0 FORTRAN Routines

5.3.1 PIPS 3.0 Modules
Module Description

ice_albedo Snow and ice albedo parameterization and aggregation.
I/O: None
Calls: ice_kinds_mod, ice_domain
Called by: icemodel, ice_coupling, input_data, mixed_layer, absorbed_solar,
scale_fluxes, runtime_diags, ice_write_hist
I/O Parameters: None

ice_atmo Atmospheric boundary interface (stability based flux calculations).
I/O: None
Calls: ice_domain, ice_constants, ice_flux, ice_state
Called by: None
I/O Parameters: None

ice_calendar Calendar routines for managing time.
I/O: None
Calls: ice_constants
Called by: evp_prep, dumpfile, icecdf, icemodel, ice_coupling, ice_diagnostics,
ice_flux_in, ice_itd_linear, ice_mechred, ice_therm_vertical, ice_therm_itd,
ice_transport_remap, ice_write_hist, init_hist, input_data, init_evp, mixed_layer,
mpdata, restartfile, zap_small_areas
I/O Parameters: None

ice_constants This module defines a variety of physical and numerical constants used
throughout the ice model.
I/O: None
Calls: If coupled, shr_const_mod. Otherwise, ice_kinds_mod, ice_domain
Called by: albedos, global_gather, global_scatter, ice_atmo, icecdf, ice_calendar,
ice_coupling, ice_diagnostics, ice_dyn_evp, ice_flux, ice_flux_in, ice_grid,
ice_itd, ice_itd_linear, ice_mechred, ice_ocean, ice_scaling, ice_therm_itd,
ice_therm_vertical, ice_timers, ice_transport_mpdata, ice_transport_remap,
ice_write_hist, init_flux, init_hist, init_state
I/O Parameters: None

ice_coupling Message passing to and from the coupler.
I/O: None
Calls: ice_kinds_mod, ice_model_size, ice_constants, ice_grid, ice_state,
ice_flux, ice_albedo, ice_mpi_internal, ice_timers, ice_fileunits, ice_work (only:
worka, work_l1). If coupled, shr_sys_mod (only: shr_sys_flush),
cpl_contract_mod, cpl_interface_mod, cpl_fields_mod
Called by: icemodel, dumpfile, input_data, restartfile, setup_mpi
I/O Parameters: None

ice_diagnostics Diagnostic information output during a model run.
I/O: None
Calls: ice_domain, ice_constants, ice_calendar, ice_fileunits, ice_work (only:
work_g2, work_11, work 12, worka, workb)

80

 PIPS 3.0 SDD

Module Description
Called by: icemodel, debug_ice, ice_therm_itd, ice_therm_vertical, input_data,
read_clim_data, read_data
I/O Parameters: None

ice_domain Sets array sizes for the local subdomain and related parallel processing
information. This code was originally based on domain.F in the POP model.
I/O: None
Calls: ice_kinds_mod, ice_model_size
Called by: abort_ice, aggregate, icemodel, ice_atmo, ice_dyn_evp, ice_flux_in,
ice_grid, ice_history, ice_init, ice_itd_linear, ice_mechred, ice_read_write,
ice_scaling, ice_therm_itd, ice_therm_vertical, ice_timer_print,
ice_transport_mpdata, ice_transport_remap
I/O Parameters: None

ice_dyn_evp This is the elastic-viscous-plastic sea ice dynamics model. It computes ice
velocity and deformation.
References:
[18], [17], [19] and [20].
I/O: None
Calls: ice_kinds_mod, ice_domain, ice_grid, ice_constants, ice_state, ice_work
(only: worka, workb)
Called by: icemodel, dumpfile, ice_write_hist, input_data, restartfile
I/O Parameters: None

ice_exit Exits the model. Logically, this routine should be used for "normal" exit of the
ice model, but there would be only one such call, and creating a subroutine here
to accomplish that causes circular dependencies due to the coupler exit strategy.
I/O: None
Calls: ice_kinds_mod
Called by: None
I/O Parameters: None

ice_fileunits Defines unit numbers for files opened for reading or writing.
I/O: None
Calls: ice_kinds_mod
Called by: abort_ice, calendar, icemodel, ice_coupling, ice_diagnostics,
ice_flux_in, ice_global_real_minmax, ice_grid, ice_history, ice_itd,
ice_itd_linear, ice_mechred, ice_read_write, ice_therm_vertical, ice_timer_print,
ice_transport_mpdata, ice_transport_remap, init_evp
I/O Parameters: None

ice_flux Flux variable declarations. These include fields sent from the coupler ("in"), sent
to the coupler ("out"), written to diagnostic history files ("diagnostic"), and used
internally ("internal").
I/O: None
Calls: ice_kinds_mod, ice_domain, ice_constants
Called by: aggregate, check_state, dumpfile, evp_finish, evp_prep, ice_atmo,
ice_coupling, ice_flux_in, ice_scaling, ice_therm_itd, ice_therm_vertical,
ice_write_hist, init_evp, init_flux, init_hist, init_state, mixed_layer, print_state,

81

 PIPS 3.0 SDD

Module Description
ridge_ice, runtime_diags, shift_ice, stepu, transport_mpdata, zap_small_areas
I/O Parameters: None

ice_flux_in Reads and interpolates forcing data for atmospheric and oceanic quantities.
I/O: None
Calls: ice_kinds_mod, ice_domain, ice_constants, ice_flux, ice_calendar
ice_read_write, ice_fileunits
Called by: icemodel, input_data
I/O Parameters: None

ice_grid This module contains spatial grids, masks, and boundary conditions.
I/O: None
Calls: ice_kinds_mod, ice_constants, ice_domain, ice_fileunits,
ice_mpi_internal, ice_work (only: work_g1, work_g2, work_11, worka)
Called by: aggregate, atmo_boundary_layer, bound_aggregate, bound_state,
icemodel, debug_ice, dumpfile, icecdf, ice_mechred, ice_scaling, ice_therm_itd,
ice_therm_vertical, ice_transport_mpdata, ice_transport_remap, ice_write_hist,
init_state, mixed_layer, rebin, reduce_area, restartfile
I/O Parameters: None

ice_history Reads/Writes ice model history and restart files. Output files include netCDF
data and Fortran unformatted dumps.
I/O: None
Calls: ice_kinds_mod, ice_domain, ice_read_write, ice_fileunits, ice_work
(only: work_g1, work_gr, worka)
Called by: icemodel, input_data
I/O Parameters: None

ice_init Parameter and variable initializations.
I/O: None
Calls: ice_domain
Called by: icemodel, ice_transport_mpdata
I/O Parameters: None

ice_itd Initializes and redistributes ice in the ITD. Ice_itd contains routines to initialize
the ice thickness distribution and utilities to redistribute ice among categories.
These routines are not specific to a particular numerical implementation.
References: [7], [6].
I/O: None
Calls: abort_ice, ice_kinds_mod, ice_model_size, ice_constants, ice_state,
ice_fileunits,
Called by: icemodel, debug_ice, ice_itd_linear, ice_mechred, ice_therm_itd,
ice_therm_vertical, ice_transport_remap, init_thermo_vertical, thermo_itd,
transport_mpdata
I/O Parameters: None

ice_itd_linear Linear remapping scheme for the ITD.
I/O: None
Calls: ice_model_size ice_kinds_mod, ice_domain, ice_constants ice_state,
ice_itd, ice_calendar, ice_fileunits

82

 PIPS 3.0 SDD

Module Description
Called by: icemodel, thermo_itd
I/O Parameters: None

ice_kinds_mod Defines variable precision for all common data types.
I/O: None
Calls: None
Called by: icemodel, debug_ice, ice_albedo, ice_constants, ice_coupling,
ice_domain, ice_exit, ice_dyn_evp, ice_fileunits, ice_flux, ice_flux_in, ice_grid,
ice_history, ice_itd, ice_itd_linear, ice_mpi_internal, ice_ocean, ice_scaling,
ice_state, ice_therm_itd, ice_therm_vertical, ice_timers, ice_transport_remap,
ice_work, print_state
I/O Parameters: None

ice_mechred Ice mechanical redistribution (ridging) and strength computations.
I/O: None
Calls: ice_model_size, ice_constants, ice_state, ice_itd, ice_grid, ice_fileunits,
ice_domain, ice_calendar, ice_work (only: worka, workb)
Called by: icemodel
I/O Parameters: None

icemodel Main driver routine for PIPS 3.0. Initializes and steps through the model.
I/O: None
Calls: ice_albedo, ice_calendar, ice_coupling, ice_diagnostics, ice_domain,
ice_dyn_evp, ice_fileunits, ice_flux_in, ice_grid, ice_history, ice_init, ice_itd,
ice_itd_linear, ice_kinds_mod, ice_mechred, ice_mpi_internal, ice_ocean,
ice_scaling, ice_therm_vertical, ice_therm_itd, ice_timers, ice_transport_mpdata,
ice_transport_remap
Called by: None
I/O Parameters: None

ice_model_size Defines the global domain size and number of categories and layers.
The code is based on model_size.F in the POP model.
I/O: None
Calls: ice_kinds_mod
Called by: columngrid, dumpfile, global_gather, global_scatter, icecdf,
ice_coupling, ice_domain, ice_itd, ice_itd_linear, ice_mechred ice_read_write,
ice_state, ice_therm_itd, ice_therm_vertical, ice_transport_mpdata,
ice_transport_remap, init_state, print_state, rectgrid, restartfile, runtime_diags,
tlatlon
I/O Parameters: None

ice_mpi_internal Parameters and common blocks for MPI parallelization internal to the ice model.
I/O: None
Calls: ice_kinds_mod, ice_domain
Called by: abort_ice, conserved_sums, debug_ice, icecdf, icemodel,
ice_coupling, ice_grid, ice_read_write, ice_timer_print, init_diags,
init_mass_diags, restartfile, runtime_diags, setup_mpi
I/O Parameters: None

ice_ocean Ocean mixed layer calculation (internal to sea ice model). It allows heat storage

83

 PIPS 3.0 SDD

Module Description
in the ocean for uncoupled runs.
I/O: None
Calls: ice_kinds_mod, ice_constants
Called by: icemodel, thermo_vertical
I/O Parameters: None

ice_read_write Routines for opening, reading and writing external files.
I/O: None
Calls: ice_model_size, ice_domain, ice_mpi_internal, ice_fileunits, ice_work
(only: work_g1, work_gr)
Called by: ice_flux_in, ice_history, pipsgrid, popgrid
I/O Parameters: None

ice_scaling Scales ice fluxes by ice area.
I/O: None
Calls: ice_domain, ice_kinds_mod, ice_constants, ice_state, ice_flux, ice_grid
(only: tmask)
Called by: icemodel
I/O Parameters: None

ice_state Primary state variables in various configurations.

The primary state variable names are:
For Each Category Aggregated Over Units Categories
aicen(i,j,n) aice(i,j) ---
vicen(i,j,n) vice(i,j) m
vsnon(i,j,n) vsno(i,j) m
eicen(i,j,k) eice(i,j) J/m2
esnon(i,j,n) esno(i,j) J/m2
Tsfcn(i,j,n) Tsfc(i,j) deg

Area is dimensionless because aice is the fractional area (normalized so that the
sum over all categories, including open water, is 1.0). That explains why
vice/vsno has units of m instead of m3, and eice/esno have units of J/m2 instead of
J.

I/O: None
Calls: ice_kinds_mod, ice_model_size, ice_domain
Called by: albedos, dumpfile, ice_atmo, ice_coupling, ice_dyn_evp, ice_itd,
ice_itd_linear, ice_mechred, ice_scaling, ice_therm_vertical, ice_therm_itd,
ice_transport_remap, ice_write_hist, init_diagnostics, init_flux_atm,
init_mass_diags, init_state, merge_fluxes, mixed_layer, mpdata, prepare_forcing,
print_state, restartfile, runtime_diags, transport_mpdata
I/O Parameters: None

ice_therm_itd Thermodynamic calculations after call to coupler, mostly related to ITD: ice
thickness redistribution, lateral growth and melting, and freeboard adjustment.

84

 PIPS 3.0 SDD

Module Description
NOTE: The thermodynamic calculation is split in two for load balancing.
First ice_therm_vertical computes vertical growth rates and coupler fluxes. Then
ice_therm_itd does thermodynamic calculations not needed for coupling.
I/O: None
Calls: ice_kinds_mod, ice_model_size, ice_constants, ice_domain, ice_state,
ice_flux, ice_diagnostics, ice_calendar, ice_grid, ice_itd
Called by: icemodel
I/O Parameters: real hicen- ice thickness (m)

ice_therm_vertical Thermodynamic calculations before calls to the coupler. This module updates the
ice and snow internal temperatures and computes thermodynamic growth rates
and atmospheric fluxes.
References: [7]
NOTE: The thermodynamic calculation is split in two for load balancing.
First ice_therm_vertical computes vertical growth rates and coupler fluxes. Then
ice_therm_itd does thermodynamic calculations not needed for coupling.
I/O: None
Calls: ice_model_size, ice_kinds_mod, ice_domain, ice_fileunits,
ice_constants, ice_calendar, ice_grid, ice_state, ice_flux, ice_itd, ice_diagnostics
(only: print_state)
Called by: icemodel, thermo_itd
I/O Parameters: None

ice_timers Timing routines for the PIPS 3.0 model.
I/O: None
Calls: ice_kinds_mod, ice_constants
Called by: bound_ijn, evp, icemodel, ice_coupling, ice_transport_remap,
ridge_ice, thermo_itd, thermo_vertical, transport_mpdata
I/O Parameters: None

ice_transport_mpdata Calculates horizontal advection using MPDATA (Multidimensional
Positive Definite Advection Transport Algorithm).
I/O: None
Calls: ice_model_size, ice_domain, ice constants, ice_grid, ice_fileunits, ice_init
(only: advection), ice_work (only: work_l1, work_l2)
Called by: icemodel
I/O Parameters: None

ice_transport_remap Transports quantities using the second-order conservative remapping scheme
developed by John Dukowicz and John Baumgardner (DB) and modified for sea
ice by William Lipscomb and Elizabeth Hunke.
I/O: None
Calls: ice_calendar, ice_constants, ice_domain, ice_fileunits, ice_grid, ice_itd,
ice_kinds_mod, ice_model_size, ice_state, ice_timers, ice_work (only: work_l1)
Called by: icemodel
I/O Parameters: None

ice_work The intent of this subroutine is to have one global work array available all the
time, and another available that can be allocated when necessary. Globally

85

 PIPS 3.0 SDD

Module Description
accessible, local (i.e., on-processor) work arrays are also available to conserve
memory. These arrays should be used only within a single subroutine.
I/O: None
Calls: ice_kinds_mod, ice_domain
Called by: ice_coupling, ice_diagnostics, ice_dyn_evp, ice_grid, ice_history,
ice_mechred, ice_read_write, ice_transport_mpdata, ice_transport_remap,
sss_clim, thermo_vertical, shift_ice
I/O Parameters: None

5.3.2 PIPS 3.0 Subroutines

Subroutine Description
abort_ice This routine aborts the ice model and prints an error

message.
I/O: stdout
Calls: ice_domain, ice_fileunits, ice_mpi_internal. If
coupled, shr_sys_mod
Called by: aggregate_area, check_monotonicity,
columngrid, column_conservation_check,
conservation_check_vthermo, global_conservation,
init_grid, init_hist, init_itd, init_remap, init_vertical_profile,
input_data, mpdata, ridge_ice, ridge_shift, setup_mpi
shift_ice, temperature_changes, update_fields,
zap_small_areas
I/O Parameters: character error_message (input)

absorbed_solar Computes solar radiation absorbed in ice and penetrating to
the ocean.
I/O: None
Calls: ice_albedo
Called by: temperature_changes
I/O Parameters: integer n- thickness category index
integer icells- no. of cells with aicen > puny
integer indxi, indxj- compressed indices for cells with aicen
> puny
real hlyr- ice layer thickness
real hsn- snow thickness (m)
real fswsfc- SW absorbed at ice/snow surface (W/m2)
real fswint- SW absorbed in ice interior, below surface
(W/m2)

86

 PIPS 3.0 SDD

Subroutine Description
real fswthrun- SW through ice to ocean (W/m2)
real Iabs- SW absorbed in particular layer (W/m2)

add_new_ice Given the volume of new ice grown in open water, this
subroutine computes its area and thickness and adds it to the
appropriate category or categories.

NOTE: Usually all the new ice is added to category 1. An
exception is made if there is no open water or if the new ice
is too thick for category 1, in which case ice is distributed
evenly over the entire cell. Subroutine rebin should be
called in case the ice thickness lies outside category bounds
after new ice formation.
I/O: None
Calls: column_conservation_check, column_sum
Called by: thermo_itd
I/O Parameters: None

add_new_snow Adds new snow at top surface.
I/O: None
Calls: None
Called by: thermo_vertical
I/O Parameters: integer n - thickness category index
integer icells- number of cells with aicen > puny
integer indxi, indxj- compressed indices for cells with aicen
> puny
real Tsf- ice/snow surface temperature, Tsfcn
real hsn- snow thickness (m)
real qsn- snow enthalpy
real hsn_new- thickness of new snow (m)

aggregate Aggregates ice state variables over thickness categories.
I/O: None
Calls: ice_domain, ice_flux (only: Tf), ice_grid
Called by: icemodel, init_state, restartfile, thermo_itd
I/O Parameters: None

aggregate_area Aggregates ice area (but not other state variables) over
thickness categories.
I/O: stdout
Calls: abort_ice
Called by: linear_itd
I/O Parameters: None

87

 PIPS 3.0 SDD

Subroutine Description
albedos Computes snow/ice albedos and aggregate. Ice albedo is zero

if no ice is present.
Calls: ice_constants, ice_grid, ice_state
Called by: icemodel
I/O Parameters: None

asum_ridging Finds the total area of ice plus open water in each grid cell.
This is similar to the aggregate_area subroutine except that
the total area can be greater than 1, so the open water area is
included in the sum instead of being computed as a residual.
I/O: None
Calls: None
Called by: ridge_ice, ridge_prep
I/O Parameters: None

atmo_boundary_layer Computes coefficients for atmosphere-ice fluxes, stress and
2 meter reference temperature.
NOTE:
(1) all fluxes are positive downward.
(2) net heat flux = fswabs + flwup + (1-emissivity)flwdn +
fsh + flh.
(3) here, tstar = (WT)/U*, and qstar = (WQ)/U*.
(4) wind speeds should all be above a minimum speed (eg.
1.0 m/s).
I/O: None
Calls: ice_grid
Called by: mixed_layer, thermo_vertical
Assumptions: The saturation humidity of air at T(K):
qsat(T) (kg/m3).
I/O Parameters: integer n- thickness category index
character sfctype- ice or ocean
real Tsf- surface temp of ice or ocean
real strx- x surface stress
real stry- y surface stress
real Trf- reference height temp (K)
real Qrf- reference height specific humidity (kg/kg)
real delt- potential T difference (K)
real delq- humidity difference (kg/kg)

88

 PIPS 3.0 SDD

Subroutine Description
bound Fills ghost cells with boundary information.

I/O: None
Calls: bound_ijn
Called by: bound_aggregate, evp_prep, from_coupler,
init_evp, init_grid, init_remap, init_state, local_max_min,
makemask, mpdata, restartfile, transport_remap, t2ugrid,
tlatlon, to_coupler, u2tgrid
I/O Parameters: real work1

bound_aggregate Bound calls for aggregate ice state. Gets ghost cell values
for aggregate ice state variables.
NOTE: This subroutine is called only at initialization.
I/O: None
Calls: ice_grid, bound
Called by: init_state, restartfile
I/O Parameters: None

bound_ijn Periodic/Neumann conditions for global domain boundaries.
Assumptions: A “single” row of ghost cells (num-ghost-
cells=1); work1 array has form (i-index,j-index,number-
arrays).
I/O: None
Calls: ice_timers
Called by: bound, bound_narr, bound_narr_ne, bound_sw
I/O Parameters: integer nd, real work1, logical north, south,
east, west

bound_narr Fills neighboring ghost cells with boundary information and
fills several arrays at once (for performance).
I/O: None
Calls: bound_ijn
Called by: bound_state, mpdata, transport_remap,
transport_mpdata
I/O Parameters: integer narrays, real work1

bound_narr_ne Fills north and east ghost cells with boundary information
and fills several arrays at once (for performance).
I/O: None
Calls: bound_ijn
Called by: stepu
I/O Parameters: integer narrays, real work1

89

 PIPS 3.0 SDD

Subroutine Description
bound_state Bound calls for ice state variables. Gets ghost cell values for

ice state variables in each thickness category.
I/O: None
Calls: ice_grid, bound_narr
Called by: restartfile, transport_remap
I/O Parameters: None

bound_sw Fills south and west ghost cells with boundary information.
I/O: None
Calls: bound_ijn
Called by: evp, transport_remap
I/O Parameters: real work1

calendar Determines the date at the end of the time step.
I/O: stdout
Calls: ice_fileunits
Called by: icemodel, init_cpl
I/O Parameters: real ttime- time variable

check_monotonicity At each grid point, this subroutine assures that the new tracer
values fall between the local maximum and minimum values
before transport.
I/O: stdout
Calls: abort_ice
Called by: transport_remap
I/O Parameters: real aim- new ice area
real trm- new tracers
real tmin- local min tracer
real tmax- local max tracer

check_state This subroutine requires certain fields to be monotone.
NOTE: This should not be necessary if all is well, but it is
best to keep going. The model will not conserve energy and
water if fields are zeroed here.
I/O: None
Calls: ice_flux
Called by: transport_mpdata
I/O Parameters: None

90

 PIPS 3.0 SDD

Subroutine Description
column_conservation_check For each physical grid cell, the routine checks that initial and

final values of a conserved field are equal to within a small
value.
I/O: stdout
Calls: abort_ice
Called by: add_new_ice, linear_itd, ridge_shift
I/O Parameters: real x1- initial field
real x2- final field
real max_err- max allowed error
character fielded- field identifier

column_sum For each grid cell, the subroutine sums the field over all ice
categories.
I/O: None
Calls: None
Called by: add_new_ice, linear_itd, ridge_shift
I/O Parameters: integer nsum- no. of categories/layers
real xin- input field
real xout- output field

columngrid Constructs column grid and mask.
I/O: stdout
Calls: global_scatter, ice_model_size, abort_ice
Called by: init_grid
I/O Parameters: None

complete_getflux_ocn Computes remaining ocean forcing fields.
I/O: None
Calls: None
Called by: sss_clim, sss_sst_restore
I/O Parameters: None

91

 PIPS 3.0 SDD

Subroutine Description
conductivity Computes thermal conductivity at interfaces (held fixed

during the subsequent iteration).
NOTE: Ice conductivity must be >= kimin
I/O: None
Calls: None
Called by: temperature_changes
I/O Parameters: integer icells- no. of cells with aicen >
puny
integer indxi, indxj- compressed indices for cells with aicen
> puny
real hlyr- ice layer thickness
real hsn- snow layer thickness
real Tbot- ice bottom surface temp (°C)
real Tin- internal ice layer temperatures
real khi- ki/hlyr
real khs- ksno/hsn

conservation_check_vthermo Checks for energy conservation by comparing the change in
energy to the net energy input.
I/O: stdout
Calls: print_state, abort_ice
Called by: thermo_vertical
I/O Parameters: integer n- thickness category index
(diagnostic only)
integer icells- number of cells with aicen > puny
integer indxi, indxj- compressed indices for cells with aicen
> puny
real fsurf - net flux to top surface, not including fcondtop
real flatn - surface downward latent heat (W/m2)
real fhnetn- fbot, corrected for any surplus energy
real fswint- SW absorbed in ice interior, below surface
(W/m2)
real einit - initial energy of melting (J/m2)
real efinal- final energy of melting (J/m2)

92

 PIPS 3.0 SDD

Subroutine Description
conserved_sums Computes global sums of conserved variables over the

physical grid.
I/O: None
Calls: ice_mpi_internal, ice_global_real_sum
Called by: transport_remap
I/O Parameters: real aim- mean ice area
real asum- global sum of area
real trm- mean tracer
real atsum- global sum of area*tracer

construct_fields Constructs fields of ice area and tracers.
I/O: None
Calls: limited_gradient
Called by: transport_remap
I/O Parameters: real aim- mean ice area
real aimask- = 1. if ice is present, = 0. otherwise
real trm- mean tracer
real trmask- = 1. if tracer is present, =0. otherwise.
real aic- ice area at geometric center of cell
real aix, aiy- limited derivative of ice area with respect to x
and y
real trc- tracer at geometric center of cell
real trx, try- limited derivative of tracer with respect to x and
y

debug_ice Wrapper for the print_state debugging routine. It is useful
for debugging in the main driver.
I/O: None
Calls: ice_kinds_mod, ice_itd, ice_diagnostics,
ice_mpi_internal, ice_grid, print_state
Called by: None
I/O Parameters: character (char_len), intent(in) :: plabeld

departure_points Given velocity fields on cell corners, this subroutine
computes departure points of trajectories using a midpoint
approximation.
I/O: stdout
Calls: None
Called by: transport_remap
I/O Parameters: real dpx, dpy- x and y coordinates of
departure points at cell corners

93

 PIPS 3.0 SDD

Subroutine Description
dumpfile Dumps all values needed for a restart.

I/O: stdout, write filename, nu_dump
Calls: ice_model_size, ice_flux, ice_grid, ice_calendar
ice_state, ice_dyn_evp, ice_ocean (only: oceanmixed_ice),
ice_open, ice_coupling (only: l_coupled), ice_write
Called by: icemodel
I/O Parameters: None

end_run Ends run by calling mpi_finalize.
I/O: None
Calls: mpi_finalize
Called by: icemodel, abort_ice
I/O Parameters: None

evp Elastic-viscous-plastic dynamics driver.
I/O: None
Calls: ice-timers, ice_timer_start, evp_prep, stepu, stress,
bound_sw, evp_finish, ice_timer_stop
Called by: icemodel
I/O Parameters: integer kstrngth- input

evp_finish Calculates ice-ocean stress.
I/O: None
Calls: ice_flux, iceumask, u2tgrid
Called by: evp
I/O Parameters: None

evp_prep Computes quantities needed in the stress tensor (sigma) and
momentum (u) equations, but the following quantities do not
change during the thermodynamics/transport time step:
wind stress shift to U grid, ice mass and ice extent masks,
pressure (strength), and part of the forcing stresses, initializes
ice velocity for new points to ocean surface current.
I/O: None
Calls: bound, tmask, t2ugrid, to_ugrid, iceumask,
ice_strength, ice_flux, ice_calendar, ice_mechred
Called by: evp
I/O Parameters: integer kstrngth- input

exit_coupler Exits from coupled/MPI environment.
I/O: stdout
Calls: cpl_interface_finalize, mpi_abort
Called by: icemodel
I/O Parameters: None

94

 PIPS 3.0 SDD

Subroutine Description
file_year Constructs the correct name of the atmospheric data file to

be read, given the year and assuming the naming convention
of filenames ending with 'yyyy.dat'.
I/O: stdout (a, 14.4, a)
Calls: None
Called by: ncar_files, read_data
I/O Parameters: character data file

fit_line Fits g(h) with a line, satisfying area and volume constraints.
To reduce round off errors caused by large values of g0 and
g1, it computes g(eta), where eta = h - hL, and hL is the left
boundary.
I/O: None
Calls: None
Called by: linear_itd
I/O Parameters: integer n- category index
real HbL, HbR- left and right cat boundaries
real hice- ice thickness
real g0, g1- coefficients in linear equation for g(eta)
real hL-min value of range over which g(h) > 0
real hR- max value of range over which g(h) > 0
logical reamp_flag

flux_integrals Computes the fluxes across each edge by integrating the ice
area and tracers over each flux triangle. Input variables have
the same meanings as in the main subroutine. Repeated use
of certain sums makes the calculation more efficient.
I/O: None
Calls: None
Called by: transport_remap
I/O Parameters: real triarea
real xp0, yp0
real xp1, yp1
real xp2, yp2
real xp3, yp3
integer iflux, jflux
real aic, aix, aiy
real aiflx
real trc, trx, try
real atflx

95

 PIPS 3.0 SDD

Subroutine Description
freeboard If there is enough snow to lower the ice/snow interface

below sea level, this subroutine converts enough snow to ice
to bring the interface back to sea level.

NOTE: Subroutine rebin should be called after freeboard to
make sure ice thicknesses are within category bounds.
I/O: None
Calls: None
Called by: thermo_itd
I/O Parameters: None

from_coupler Reads input data from coupler to sea ice model.
I/O: 100 (write)
Calls: get_sum, ice_timer_start, ice_timer_stop,
cpl_interface_contractrecv, tarea, hm, bound, anglet, t2ugrid
Called by: icemodel
I/O Parameters: None

frzmlt_bottom_lateral Adjusts frzmlt to account for changes in fhnet since
from_coupler. Computes heat flux to the bottom surface.
Computes the fraction of ice that melts laterally.
I/O: None
Calls: None
Called by: thermo_vertical
I/O Parameters: real Tbot- ice bottom surface temp (°C)
real fbot- heat flux to ice bottom (W/m2)
real rside- fraction of ice that melts laterally

get_sum Computes a (weighted) sum over the global grid.
If flag = 1 then work1 is weighted by work2 before being
added to work3.
I/O: None
Calls: ice_global_real_sum
Called by: runtime_diags, to_coupler
I/O Parameters: integer flag
real work1, work2, work3
real gsum

getflux Gets forcing data and interpolates as necessary.
I/O: None
Calls: sss_sst_restore
Called by: icemodel
I/O Parameters: None

96

 PIPS 3.0 SDD

Subroutine Description
global_conservation Checks whether values of conserved quantities have

changed. An error probably means that ghost cells are
treated incorrectly.
I/O: stdout
Calls: abort_ice
Called by: transport_remap
I/O Parameters: real asum_init- initial global ice area
real asum_final- final global ice area
real atsum_init- initial global ice area*tracer
real atsum_final- final global ice area*tracer

global_gather Gathers a distributed array and strips off ghost cells to create
a local array with global dimensions.
I/O: None
Calls: ice_model_size, ice_constants
Called by: icecdf, ice_write, init_diags, init_mass_diags,
runtime_diags, tlatlon
I/O Parameters: real work

global_scatter Scatters a global array and adds ghost cells to create a
distributed array.
I/O: None
Calls: ice_model_size, ice_constants
Called by: columngrid, init_grid, ice_read, rectgrid, tlatlon
I/O Parameters: real work

ice_bcast_char Broadcasts a scalar character value to all processors.
I/O: None
Calls: None
Called by: input_data
I/O Parameters: character charval

ice_bcast_iscalar Broadcasts an integer scalar character value to all processors.
I/O: None
Calls: None
Called by: init_cpl, init_hist, restartfile
I/O Parameters: integer ival

ice_bcast_logical Broadcasts a scalar logical value to all processors.
I/O: None
Calls: None
Called by: ice_read, init_hist, input_data
I/O Parameters: logical logval

97

 PIPS 3.0 SDD

Subroutine Description
ice_bcast_rscalar Broadcasts a real scalar character value to all processors.

I/O: None
Calls: None
Called by: init_cpl, input_data, restartfile
I/O Parameters: real val

ice_coupling_setup This routine sets the model MPI communicators and task
IDs from CCSM share code.
I/O: stdout
Calls: cpl_interface_init, shr_sys_flush
Called by: setup_mpi
I/O Parameters: character in_model_name- input
integer model_comm - communicator for model (output)

ice_global_real_minmax Determines and writes both minimum and maximum over
global grid and then prints.
I/O: stdout
Calls: ice_fileunits, ice_global_real_minval,
ice_global_real_maxval
Called by: None
I/O Parameters: integer nc
real work(nc)
character string

ice_global_real_maxval Computes the maximum over the global grid.
I/O: None
Calls: None
Called by: ice_global_real_minmax, ice_timer_print,
runtime_diags
I/O Parameters: integer nc
real work(nc)

ice_global_real_minval Computes the minimum over the global grid.
I/O: None
Calls: None
Called by: ice_global_real_minmax, ice_timer_print
I/O Parameters: integer nc
real work(nc)

98

 PIPS 3.0 SDD

Subroutine Description
ice_global_real_sum Sums a given array over the global grid.

I/O: None
Calls: mpi_allreduce
Called by: conserved_sums, get_sum, runtime_diags
I/O Parameters: integer nc
real work(nc)

ice_open Opens an unformatted file for reading. The indication for
whether the file is sequential or direct access is found in
nbits.
I/O: open nu (unformatted direct access open)
Calls: None
Called by: dumpfile, pipsgrid, popgrid, restartfile,
read_clim_data, read_data, sss_clim, sst_ic
I/O Parameters: integer nu- unit number
integer nbits- no. of bits/variable (0 for sequential access)
character filename

ice_read Reads an unformatted file. Work is a real array, atype
indicates the format of the data.
I/O: stdout, read nu (unformatted read)
Calls: None
Called by: pipsgrid, popgrid, read_clim_data, read_data,
restartfile, sss_clim, sst_ic
I/O Parameters: integer nu- unit number
integer nrec- record number (0 for sequential access)
real work- output array (real, 8-byte)
character atype- format for input array (real/int, 4-byte/8-
byte)
logical scatter- if true, scatter the data
logical diag- if true, write diagnostic output
logical ignore_eof, hit_eof

99

 PIPS 3.0 SDD

Subroutine Description
ice_strength Computes the strength of the ice pack, defined as the energy

(J/m2) dissipated per unit area removed from the ice pack
under compression and assumed proportional to the change
in potential energy caused by ridging.

References: [35] and [16].
For simpler strength parameterization, see [15].

I/O: None
Calls: ridge_prep
Called by: evp_prep
I/O Parameters: integer kstrngth- =1 for Rothrock
formulation [35], 0 for Hibler formation [15]

ice_timer_clear Initializes timer n to 0. If n = -1, all timers are initialized.
I/O: None
Calls: None
Called by: icemodel
I/O Parameters: integer n- timer number

ice_timer_print Prints timing results of timer n. If n = -1 the timing results of
all timers are printed.
I/O: write 100
Calls: ice_domain, ice_mpi_internal, ice_fileunits,
ice_global_real_maxval, ice_global_real_minval,
Called by: icemodel
I/O Parameters: integer n- timer number

ice_timer_start Begin timing with timer n.
I/O: None
Calls: timers
Called by: bound_ijn, evp, icemodel, from_coupler,
ridge_ice, thermo_itd, thermo_vertical, to_coupler,
transport_mpdata, transport_remap
I/O Parameters: integer n- timer number

ice_timer_stop Ends (or pauses) timing with timer n.
I/O: None
Calls: timers
Called by: bound_ijn, evp, icemodel, from_coupler,
ridge_ice, thermo_itd, thermo_vertical, to_coupler,
transport_mpdata, transport_remap
I/O Parameters: integer n- timer number

100

 PIPS 3.0 SDD

Subroutine Description
ice_write Writes an unformatted file. Work is a real array, atype

indicates the format of the data.
I/O: stdout, write nu (unformatted write)
Calls: global_gather
Called by: dumpfile
I/O Parameters: integer nu- unit number
integer nrec- record number (0 for sequential access)
real work- input array
character atype- format for output array
logical gather- if true, gather the data

ice_write_hist Writes average ice quantities or snapshots.
I/O: None
Calls: icecdf, ice_flux, ice_albedo, ice_mechred, ice_grid,
ice_calendar, ice_state, ice_dyn_evp, ice_constants,
principal_stress
Called by: icemodel
I/O Parameters: None

icecdf Writes netCDF history file.
I/O: stdout, write ncfile
Calls: global_gather, ice_model_size, ice_constants,
ice_mpi_internal, ice_grid, ice_calendar
Called by: ice_write_hist
I/O Parameters: None

init_calendar Initializes calendar variables.
Calls: None
Called by: icemodel
I/O Parameters: None

init_constants Initializes constants that are best defined at run time (e.g. pi).
Calls: None
Called by: icemodel
I/O Parameters: None

init_cpl Initializes message passing between ice and coupler.
I/O: stdout
Calls: None
Called by: icemodel
I/O Parameters: None

101

 PIPS 3.0 SDD

Subroutine Description
init_diagnostics Initializes diagnostic fields written to history files.

I/O: None
Calls: ice_state
Called by: icemodel, thermo_vertical
I/O Parameters: None

init_diags Finds tasks for requested points.
I/O: stdout, 2234 (write)
Calls: global_gather, ice_grid, ice_mpi_internal
Called by: icemodel
I/O Parameters: None

init_evp Initializes parameters needed for EVP dynamics.
I/O: stdout (a8, f12.4)
Calls: ice_calendar, ice_fileunits, ice_flux
Called by: icemodel
I/O Parameters: None

init_flux Initializes all of the fluxes exchanged with the flux coupler
and some data derived fields.
I/O: None
Calls: ice_constants, ice_flux, init_flux_atm, init_flux_ocn
Called by: icemodel
I/O Parameters: None

init_flux_atm Initializes all fluxes sent to the coupler for use by the
atmospheric model and a few state quantities.
I/O: None
Calls: ice_state (only: aice)
Called by: init_flux
I/O Parameters: None

init_flux_ocn Initializes fluxes sent to the coupler for use by the ocean
model.
I/O: None
Calls: None
Called by: init_flux, thermo_itd
I/O Parameters: None

102

 PIPS 3.0 SDD

Subroutine Description
init_getflux Determines the final year of the forcing cycle based on

namelist input. It initializes the forcing data filenames and
initializes surface temperature and salinity from data.
I/O: stdout
Calls: ice_history (only: restart), ncar_files, sss_clim, sst_ic
Called by: icemodel
I/O Parameters: None

init_grid Horizontal grid initialization routine.
HT{N,E} = cell widths on {N,E} sides of T cell;
U{LAT,LONG} = true {latitude, longitude} of U points;
D{X,Y}{T,U} = {x,y} spacing centered at {T,U} points.
I/O: None
Calls: None
Called by: icemodel
I/O Parameters: None

init_hist Initializes history files.
I/O: stdout, open nu_nml, read nu_nml
Calls: abort_ice, ice_bcast_iscalar, ice_bcast_logical,
ice_constants, ice_calendar, ice_flux (only: mlt_onset,
frz_onset),. If coupled, shr_sys_mod (only: shr_sys_flush)
Called by: icemodel
I/O Parameters: None

init_itd Initializes area fraction and thickness boundaries for the ITD
model.
I/O: stdout
Calls: abort_ice
Called by: icemodel
I/O Parameters: None

init_mass_diags Computes the global combined ice and snow mass sum.
I/O: None
Calls: get_sum, global_gather, ice_mpi_internal, ice_state
Called by: icemodel
I/O Parameters: None

init_mechred Initializes some variables written to the history file.
I/O: None
Calls: None
Called by: icemodel
I/O Parameters: None

103

 PIPS 3.0 SDD

Subroutine Description
init_remap Initializes grid quantities used by remapping.

I/O: stdout
Calls: abort_ice, bound
Called by: icemodel
I/O Parameters: None

init_state Initializes state for the ITD model.
I/O: None
Calls: aggregate, bound, bound_aggregate, ice_constants,
ice_flux, ice_grid, ice_model_size, ice_state,
ice_therm_vertical
Called by: icemodel
I/O Parameters: None

init_thermo_vars For current thickness category, this routine initializes the
thermodynamic variables that are aggregated and sent to the
coupler, along with other fluxes passed among subroutines.
I/O: None
Calls: None
Called by: thermo_vertical
I/O Parameters: real strxn- air/ice zonal stress (N/m2)
real stryn- air/ice meridional stress (N/m2)
real Trefn- air temp reference level (K)
real Qrefn- air speed reference level (kg/kg)
real fsensn- surface downward sensible heat (W/m2)
real flatn- surface downward latent heat (W/m2)
real fswabsn- SW absorbed by ice (W/m2)
real flwoutn- upward LW at surface (W/m2)
real evapn- flux of vapor, atmosphere to ice (kg/m2/s)
real freshn- flux of water, ice to ocean (kg/m2/s)
real fsaltn- flux of salt, ice to ocean (kg/m2/s)
real fhnetn- fbot, corrected for surplus energy (W/m2)
real fswthrun- SW through ice to ocean (W/m2)
real fsurf- net flux to top surface, not inc. fcondtop
real fcondtop- downward cond flux at top surface (W/m2)
real fcondbot- downward cond flux at bottom surf (W/m2)
real fswint- SW absorbed in ice interior, below surf (W/m2)
real einit- initial energy of melting (J/m2)
real efinal- final energy of melting (J/m2)
real mvap- ice/ snow mass sublimated/condensed (kg/m2)

104

 PIPS 3.0 SDD

Subroutine Description
init_thermo_vertical Initializes the vertical profile of ice salinity and melting

temperature.
I/O: None
Calls: ice_itd
Called by: icemodel
I/O Parameters: None

init_vertical_profile Given the state variables (vicen, vsnon, eicen, esnon, Tsfcn),
this subroutine computes variables needed for the vertical
thermodynamics (hin, hsn, qin, qsn, Tin, Tsn, Tsf).
I/O: stdout
Calls: abort_ice, print_state
Called by: thermo_vertical
I/O Parameters: integer n- thickness category index
integer icells- number of cells with aicen > puny
integer indexi, indxj- compressed indices for cells with aicen
> puny
real hin- ice thickness (m)
real hsn- snow thickness (m)
real hlyr- ice layer thickness
real hin_init- initial value of hin
real hsn_init- initial value of hsn
real qsn- snow enthalpy
real Tsn- snow temperature
real Tsf- ice/snow surface temperature, Tsfcn
real qin- ice layer enthalpy (J/m3)
real Tin- internal ice layer temperatures
real einit- initial energy of melting (J/m2)

input_data Namelist variables that are set to default values. They may
be altered at run time.
I/O: stdout, read nu_nml, write 1000, 1010, 1020, 1030,
1050, 1060, 1070, 1080, 1090, 1095
Calls: abort_ice, ice_albedo, ice_bcast_char,
ice_bcast_iscalar, ice_bcast_logical, ice_bcast_rscalar,
ice_diagnostics, ice_mechred (only: kstrength, krdg_partic,
krdg_redist), ice_history, ice_calendar, ice_coupling (only:
l_coupled, runtype), ice_dyn_evp, ice_itd (only: kitd,
kcatbound), ice_ocean (only: oceanmixed_ice), ice_flux_in
(only: ycycle, fyear_init, atm_data_dir, ocn_data_dir)
Called by: icemodel
I/O Parameters: None

105

 PIPS 3.0 SDD

Subroutine Description
interp_coeff Computes coefficients for interpolating data to the current

time step. It works for any data interval that divides evenly
into a 365-day year (daily, 6-hourly, etc.). Uses
interp_coef_monthly for monthly data.
I/O: None
Calls: None
Called by: ncar_bulk_dat
I/O Parameters: integer recnum- record number for current
data value
integer recslot- spline slot for current record
real secant- seconds in data interval

interp_coeff_monthly Computes coefficients for interpolating monthly data to the
current time step.
I/O: None
Calls: None
Called by: ncar_bulk_dat, sss_sst_restore
I/O Parameters: integer recslot- slot (1 or 2) for current
record

interpolate_data Linear interpolation subroutine.
I/O: None
Calls: None
Called by: ncar_bulk_dat, sss_sst_restore
I/O Parameters: real field_data- two values used for
interpolation
real field – interpolated field

lateral_melt Given the fraction of ice melting laterally in each grid cell
(computed in subroutine frzmlt_bottom_lateral.f), melt the
ice.
I/O: None
Calls: None
Called by: thermo_itd
I/O Parameters: real rside- fraction of ice that melts
laterally

function lenstr (label) Computes the length string by finding the first non-blank
character from the right.
I/O: None
Calls: None
Called by: dumpfile, icecdf
I/O Parameters: character label

106

 PIPS 3.0 SDD

Subroutine Description
limited_gradient Computes a limited gradient of the scalar field phi.

"Limited" means that we do not create new extrema in phi.
For instance, field values at the cell corners can neither
exceed the maximum of phi(i,j) in the cell and its eight
neighbors, nor fall below the minimum.
I/O: None
Calls: None
Called by: construct_fields
I/O Parameters: real phi- input tracer field (mean values in
each grid cell)
real cnx- x-coordinate of phi relative to geometric center of
cell
real cny- y-coordinate of phi relative to geometric center of
cell
real phimask- phimask(i,j) = 1 if phi(i,j) has physical
meaning, = 0 otherwise. For instance, aice has no physical
meaning on land points, and hice no physical meaning where
aice = 0
real gx- limited x-direction gradient
real gy- limited y-direction gradient

linear_itd Ice thickness distribution scheme that shifts ice among
categories. The default scheme is linear remapping, which
works as follows:
Using the thermodynamic "velocities", it interpolates to find
the velocities in thickness space at the category boundaries
and computes the new locations of the boundaries. Then for
each category, the scheme computes the thickness
distribution function, g(h), between hL and hR, the left and
right boundaries of the category.
I/O: stdout
Calls: aggregate_area, column_sum,
column_conservation_check, fit_line, shift_ice
Called by: thermo_itd
I/O Parameters: real hicen_old- starting value of hicen
real hicen- ice thickness for each category (m)

107

 PIPS 3.0 SDD

Subroutine Description
load_tracers Loads tracer array and computes tracer dependency vectors.

The default version assumes that the advected tracers are
hice, hsno, Tsfc, qice(1:nilyr), and qsno. This subroutine
must be modified if a different set of tracers is to be
transported. The rule for ordering tracers is that a dependent
tracer (such as qice) must have a larger tracer index than the
tracer it depends on (i.e., hice).
I/O: None
Calls: None
Called by: transport_remap
I/O Parameters: integer n- ice category index
real trm- mean tracer values in each grid cell

local_max_min At each grid point, this subroutine computes the local max
and min of a scalar field phi: i.e., the max and min values in
the nine-cell region consisting of the home cell and its eight
neighbors, plus the neighbors of the neighbors (25 cells in
all).
I/O: None
Calls: bound
Called by: transport_remap
I/O Parameters: real aimask
real trm
real trmask
real tmin- local min tracer
real tmax- local max tracer

108

 PIPS 3.0 SDD

Subroutine Description
locate_triangles Computes areas and vertices of flux triangles for east and

north cell edges.
I/O: None
Calls: None
Called by: transport_remap
I/O Parameters: real dpx,dpy- x, y coordinates of departure
points at cell corners
real triarea_e- area of east-edge flux triangle
triarea_n- area of north-edge flux triangle
real xp0_e, yp0_e- coordinates of special triangle points
real xp0_e, yp0_e- e for east edges, n for north edges
real xp1_e, yp1_e
real xp2_e, yp2_e
real xp3_e, yp3_e
real xp0_n, yp0_n
real xp1_n, yp1_n
real xp2_n, yp2_n
real xp3_n, yp3_n

make_masks Creates area and tracer masks. If an area is masked out (aim
< puny), then the values of tracers in that grid cell are
assumed to have no physical meaning. Similarly, if a tracer
with dependents is masked out (abs(trm) < puny), then the
values of its dependent tracers in that grid cell are assumed
to have no physical meaning. For example, the enthalpy
value has no meaning if the thickness is zero.
I/O: None
Calls: None
Called by: transport_remap
I/O Parameters: real aim- mean ice area in each grid cell
real aimask- 1. if ice is present, otherwise = 0
real trm- mean tracer values in each grid cell
real trmask- 1. if tracer is present, else = 0

makemask Sets the boundary values for the T cell land mask (hm) and
makes the logical land masks for T and U cells (tmask,
umask). This routine also creates hemisphere masks (mask-n
Northern, mask-s Southern).
I/O: None
Calls: bound
Called by: init_grid
I/O Parameters: None

109

 PIPS 3.0 SDD

Subroutine Description
merge_fluxes Aggregates flux information from all ice thickness

categories.
I/O: None
Calls: ice_state
Called by: thermo_vertical
I/O Parameters: integer n- thickness category index
real strxn- air/ice zonal stress (N/m2)
real stryn- air/ice meridional stress (N/m2)
real fsensn- sensible heat flux (W/m2)
real flatn- latent heat flux (W/m2)
real fswabsn- shortwave absorbed heat flux (W/m2)
real flwoutn- upward low emitted heat flux (W/m2)
real evapn- evaporation (kg/m2/s)
real Trefn- air temp reference level (K)
real Qrefn- air speed humidity reference level (kg/kg)
real freshn- fresh water flux to ocean (kg/m2/s)
real fsaltn- salt flux to ocean (kg/m2/s)
real fhnetn- actual ocean/ice heat flux (W/m2)
real fswthrun- SW radiation through ice bottom (W/m2)

mixed_layer Computes the mixed layer heat balance and updates the SST.
This routine also computes the energy available to freeze or
melt ice.
NOTE: SST changes due to fluxes through the ice are
computed in ice_therm_vertical.
I/O: None
Calls: atmo_boundary_layer, ice_flux, ice_calendar (only:
dt), ice_grid (only: tmask), ice_state, ice_albedo
Called by: icemodel
I/O Parameters: None

mpdata (narrays.phi) Advection according to mpdata.
Reference: [39].
I/O: stdout
Calls: bound, bound_narr, ice_calendar, ice_state (only:
uvel, vvel), abort_ice
Called by: transport_mpdata
I/O Parameters: integer narrays
real phi

110

 PIPS 3.0 SDD

Subroutine Description
NCAR_bulk_dat Reads NCAR_bulk atmospheric data.

I/O: readm, read6, read
Calls: interp_coeff_monthly, read_clim_data
Called by: getflux
I/O Parameters: None

NCAR_files This subroutine is based on the LANL file naming
conventions. The user must edit it for other directory
structures or filenames.
NOTE: The year number in these filenames does not matter,
because subroutine file_year will insert the correct year.
I/O: stdout
Calls: file_year
Called by: init_getflux
I/O Parameters: integer yr- current forcing year

pipsgrid PIPS 3.0 rotated spherical grid and land mask.

Rec No. Field Units
Land Mask 1 KMT 1 grid file with

real KMT's grid
2 ULAT radians
3 ULON radians
4 HTN cm
5 HTE cm
6 HUS cm
7 HUW cm
8 ANGLE radians

I/O: stdout
Calls: ice_read_write
Called by: init_grid
I/O Parameters: None

popgrid Reads and sets POP displaced pole grid and land mask.
See Subroutine pipsgrid description above for record
number, field and units, as they are identical.
I/O: None
Calls: ice_read_write, ice_open, ice_read
Called by: init_grid
I/O Parameters: None

111

 PIPS 3.0 SDD

Subroutine Description
prepare_forcing Finishes the task of manipulating forcing.

I/O: None
Calls: ice_state (only: aice)- lipscombtune
Called by: getflux
I/O Parameters: None

principal_stress Computes principal stresses for comparison with the
theoretical yield curve; northeast values.
I/O: None
Calls: None
Called by: ice_write_hist
I/O Parameters: None

print_state Prints ice state for a specified grid point. This routine is
useful for debugging.
I/O: stdout
Calls: ice_model_size, ice_kinds_mod, ice_state, ice_itd,
ice_flux
Called by: conservation_check_vthermo, debug_ice,
init_vertical_profile, temperature_changes
I/O Parameters: character plabel- input
character i,j- input

read_clim_data Reads annual climatological data needed for interpolation, as
in read_data. It assumes a one-year cycle of climatological
data, so that there is no need to get data from other years or
to extrapolate data beyond the forcing time period.
I/O: stdout
Calls: ice_diagnostics (for debugging), ice_open, ice_read
Called by: ncar_bulk_dat, sss_sst_restore
I/O Parameters: logical readflag
integer recd- baseline record number
integer imx, ixx, ipx- record numbers of three data values
relative to recd
character data_file
real field_data- two values needed for interpolation

112

 PIPS 3.0 SDD

Subroutine Description
read_data Reads data for interpolation. If data is at the beginning of a

one-year record, this subroutine gets data from the previous
year. If data is at the end of a one-year record, it gets data
from the following year. If no earlier data exists (beginning
of fyear_init), then:
 (1) For monthly data, get data from the end of year_final.
 (2) For more frequent data, let the imx value equal the
first value of the year.

If no later data exists (end of fyear_final), then:
 (1) For monthly data, get data from the beginning of
fyear_init.
 (2) For more frequent data, let the ipx value equal the last
value of the year.
In other words, assume persistence when daily or 6-hourly
data is missing, and assume periodicity when monthly data is
missing.
I/O: stdout
Calls: file_year, ice_diagnostics, ice_open, ice_read
Called by: ncar_bulk_dat
I/O Parameters: logical flag
integer recd- baseline record number
integer yr- year of forcing data
integer imx, ixx, ipx- record numbers of three data values
relative to recd
integer maxrec- maximum record value
real field data- two values needed for interpolation

rebin Rebins thicknesses into defined categories.
I/O: None
Calls: ice_grid, shift_ice
Called by: thermo_itd
I/O Parameters: None

rectgrid Regular rectangular grid and mask.
I/O: None
Calls: global_scatter, ice_model_size
Called by: init_grid
I/O Parameters: None

113

 PIPS 3.0 SDD

Subroutine Description
reduce_area Reduces area when ice melts for special case ncat=1. Use

a CSM 1.0-like method of reducing ice area when melting
occurs. Assumes only half the ice volume change goes to
thickness decrease and the other half to reduction in ice
fraction.
I/O: None
Calls: ice_grid
Called by: thermo_itd
I/O Parameters: real hice1_old- old ice thickness for
category 1 (m)
real hice1- new ice thickness for category 1 (m)

restartfile Restarts from a dumpfile.
I/O: read, write nu_rst_pointer, write filename, read
nu_restart, stdout
Calls: aggregate, bound, bound_aggregate, bound_state,
ice_bcast_iscalar, ice_bcast_rscalar, ice_model_size,
ice_flux, ice_mpi_internal, ice_grid, ice_calendar, ice_state,
ice_dyn_evp, ice_itd, ice_ocean, ice_open, ice_read, (only:
oceanmixed_ice), ice_coupling (only: 1_coupled), lenstr
Called by: icemodel
I/O Parameters: None

ridge_ice Computes changes in the ice thickness distribution due to
divergence and shear.

References: [13], [16], [35], [43].
I/O: stdout
Calls: abort_ice, asum_ridging, ice_timers, ice_timer_start,
ice_timer_stop, ice_flux, ridge_prep, ridge_shift
Called by: icemodel
I/O Parameters: real Delta- in the denominator of zeta, eta
(1/s)
real divu- strain rate I component, velocity divergence (1/s)

114

 PIPS 3.0 SDD

Subroutine Description
ridge_prep Preparation for ridging and strength calculations. Computes

the thickness distribution of the ice and open water
participating in ridging and of the resulting ridges.
This version includes new options for ridging participation
and redistribution. The new participation scheme improves
model stability by increasing the time scale for large changes
in ice strength. The new redistribution scheme improves the
agreement between ITDs of modeled and observed ridges.
I/O: None
Calls: asum_ridging
Called by: ice_strength, ridge_ice
I/O Parameters: None

ridge_shift Shifts ridging ice among thickness categories. It removes
area, volume, and energy from each ridging category and
adds them to thicker ice categories.
I/O: stdout
Calls: abort_ice, column_conservation_check, column_sum
Called by: ridge_ice
I/O Parameters: real opening- rate of opening due to
divergence/sheer
real closing_gross- rate at which area is removed, not
counting area of new ridges
real msnow_mlt- mass of snow added to ocean (kg/m2)
real esnow_mlt- energy needed to melt snow in ocean (J/m2)

runtime_diags Writes diagnostic information, such as max, min, global
sums, etc., to standard out.
I/O: stdout, 799, 800, 801, 899, 900, 901, 902, 903 (write)
Calls: global_gather, ice_global_real_maxval,
ice_model_size, ice_flux, ice_albedo, ice_global_real_sum,
ice_mpi_internal, ice_state, ice_itd, get_sum. If coupled,
shr_sys_mod (only: shr_sys_flush)
Called by: icemodel
I/O Parameters: None

scale_fluxes Divides ice fluxes by ice area before sending them to the
coupler, since the coupler multiplies by ice area. This is the
ice area at the beginning of the timestep, i.e. the value sent to
the coupler.
I/O: None
Calls: ice_albedo
Called by: icemodel
I/O Parameters: None

115

 PIPS 3.0 SDD

Subroutine Description
scale_hist_fluxes Divides ice fluxes by ice area used by the coupler before

writing out diagnostics. Aice_init is the ice area saved from
coupling. This makes the fluxes written to the history file
consistent with those sent to the coupler.
I/O: None
Calls: None
Called by: icemodel
I/O Parameters: None

setup_mpi This routine initializes MPI for either internal parallel
processing or for message passing with the coupler.
I/O: stdout
Calls: abort_ice, ice_mpi_internal, ice_coupling,
ice_coupling_setup
Called by: icemodel
I/O Parameters: None

shift_ice Shifts ice across category boundaries, conserving area,
volume, and energy.
I/O: stdout
Calls: abort_ice, ice_flux, ice_work (only: worka)
Called by: linear_itd, rebin
I/O Parameters: integer donor- donor category index
real daice- ice area transferred across boundary
real dvice- ice volume transferred across boundary
real hicen- ice thickness for each category (m)

NOTE: Third index of donor, daice, dvice should be ncat-1,
except that compilers would have trouble when ncat = 1.

sss_clim Creates an annual mean climatology for Levitus SSS from a
12-month climatology.
I/O: stdout
Calls: ice_open, ice_read, ice_work (only: worka)
Called by: init_getflux
I/O Parameters: None

sss_sst_restore Interpolates monthly SSS and SST data to timestep. This
subroutine restores SST computed by the ice model to data.
I/O: stdout, readm
Calls: complete_getflux_ocn, interp_coeff_monthly,
interpolate_data, read_clim_data
Called by: getflux
I/O Parameters: None

116

 PIPS 3.0 SDD

Subroutine Description
sst_ic Reads SST data for current month, and adjusts SST based on

freezing temperature. This routine does not interpolate.
I/O: stdout
Calls: ice_open, ice_read
Called by: init_getflux
I/O Parameters: None

stepu Calculation of the surface stresses and integration of the
momentum equation to find velocity (u,v).
I/O: None
Calls: ice_flux
Called by: evp
I/O Parameters: None

stress Computes the rates of strain and internal stress components
for each of the four corners on each T-grid cell.
I/O: None
Calls: None
Called by: evp
I/O Parameters: integer ksub- subcycling step input)

surface_fluxes Computes radiative and turbulent fluxes and their derivatives
with respect to Tsf.
I/O: None
Calls: None
Called by: temperature_changes
I/O Parameters: integer isolve- no. of cells with temps not
converged
integer indxii, indxjj- compressed indices for cells not
converged
real Tsf- ice/snow surface temperature, Tsfcn
real fswsfc- SW absorbed at ice/ snow surface (W/m2)
real fsensn- surface downward sensible heat (W/m2)
real flatn- surface downward latent heat (W/m2)
real flwoutn- upward LW at surface (W/m2)
real fsurf- net flux to top surface, not incl. fcondtop
real dfsens_dT- derivative of fsens with respect to Tsf (W/m2

/deg)
real dflat_dT- deriv of flat with respect to Tsf (W/m2 /deg)
real dflwout_dT- deriv of flwout with respect to Tsf (W/m2

/deg)
real dfsurf_dT- derivative of fsurf with respect to Tsf

117

 PIPS 3.0 SDD

Subroutine Description
t2ugrid Transfers from T-cell centers to U-cell centers. Writes work

into another array that has ghost cells.
I/O: None
Calls: bound, to_ugrid
Called by: evp_prep, from_coupler
I/O Parameters: real work

temperature_changes Computes new surface temperature and internal ice and
snow temperatures. It includes effects of salinity on sea ice
heat capacity in a way that conserves energy [7]. New
temperatures are computed iteratively by solving a
tridiagonal system of equations. Heat capacity is updated
with each iteration. Finite differencing is backward implicit.
I/O: stdout
Calls: abort_ice, absorbed_solar, conductivity, print_state,
surface_fluxes, tridiag_solver
Called by: thermo_vertical
I/O Parameters: integer n- thickness category index
integer icells- number of cells with aicen > puny
integer indxi, indxj- compressed indices for cells with aicen
> puny
real hlyr- ice layer thickness
real hsn- snow thickness (m)
real Tbot- ice bottom surface temp (° C)
real fbot- ice-ocean heat flux at bottom surface (W/m2)
real qsn- snow enthalpy
real Tsn- internal snow temperature
real Tsf- ice/snow surface temperature, Tsfcn
real fsensn- surface downward sensible heat (W/m2)
real flatn- surface downward latent heat (W/m2)
real fswabsn- shortwave absorbed by ice (W/m2)
real flwoutn- upward LW at surface (W/m2)
real fswthrun- SW through ice to ocean (W/m2)
real fhnetn- fbot, corrected for any surplus energy
real fsurf- net flux to top surface, not including fcondtop
real fcondtop- downward cond flux at top surface (W/m2)
real fcondbot- downward cond flux at bottom surface
(W/m2)
real fswint- SW absorbed in ice interior, below surface
(W/m2)
real qin- ice layer enthalpy (J/m3)
real Tin- internal ice layer temperatures
real einit- initial energy of melting (J/m2)

118

 PIPS 3.0 SDD

Subroutine Description
thermo_itd Driver for post-coupler thermodynamic changes not needed

for coupling: transport in thickness space, lateral growth and
melting, and freeboard adjustment.

NOTE: Ocean fluxes are initialized here.

I/O: None
Calls: add_new_ice, aggregate, freeboard, ice_timers,
ice_itd_linear, ice_therm_vertical, ice_timer_start,
ice_timer_stop, init_flux_ocn, lateral_melt, linear_itd,
reduce_area, rebin, zap_small_areas
Called by: icemodel
I/O Parameters: None

thermo_vertical Driver for updating ice and snow internal temperatures and
computing thermodynamic growth rates and atmospheric
fluxes.
I/O: None
Calls: add_new_snow, atmo_boundary_layer,
conservation_check_vthermo, frzmlt_bottom_lateral,
ice_atmo, ice_timers, ice_timer_start, ice_timer_stop,
ice_ocean, ice_work (only: worka, workb), init_diagnostics,
init_flux_atm, init_thermo_vars, init_vertical_profile,
merge_fluxes, temperature_changes, thickness_changes,
update_state_vthermo
Called by: icemodel
I/O Parameters: None

119

 PIPS 3.0 SDD

Subroutine Description
thickness_changes Computes growth and/or melting at the top and bottom

surfaces.
I/O: None
Calls: None
Called by: thermo_vertical
I/O Parameters: integer n- thickness category index
integer icells- number of cells with aicen > puny
integer indxi, indxj- compressed indices for cells with aicen
> puny
real fbot - ice-ocean heat flux at bottom surface (W/m2)
real Tbot - ice bottom surface temperature (° C)
real flatn - surface downward latent heat (W/m2)
real fsurf - net flux to top surface, not including fcondtop
real fcondtop- downward cond flux at top surface (W/m2)
real fcondbot- downward cond flux at bottom surface
(W/m2)
real qin- ice layer enthalpy (J/m3)
real fhnetn- fbot, corrected for any surplus energy
real hlyr - ice layer thickness
real hsn - snow thickness (m)
real qsn - snow enthalpy
real efinal- final energy of melting (J/m2)
real mvap - ice/snow mass sublimated/condensed (kg/m2)
real hin- total ice thickness

timers Does the work.
I/O: None
Calls: None
Called by: ice_timer_start, ice_timer_stop
I/O Parameters: real t1

tlatlon Initializes latitude and longitude on T grid.
I/O: stdout
Calls: bound, global_gather, global_scatter, ice_model_size,
ice_read_write (if reading ULAT, ULON directly from file)
Called by: init_grid
I/O Parameters: None

to_coupler Sends data from PIPS 3.0 model to coupler.
I/O: stdout, 100 (write)
Calls: get_sum, ice_timer_start, ice_timer_stop
Called by: init_cpl
I/O Parameters: None

120

 PIPS 3.0 SDD

Subroutine Description
to_tgrid Shifts quantities from the U-cell midpoint (work1) to the T-

cell midpoint (work2).
I/O: None
Calls: None
Called by: u2tgrid
I/O Parameters: real work1, real work2

to_ugrid Shifts quantities from the T-cell midpoint (work1) to the U-
cell midpoint (work2).
I/O: None
Calls: None
Called by: evp_prep, t2ugrid
I/O Parameters: real work1, real work2

transport_mpdata Computes the transport equations for one timestep using
mpdata. Sets several fields into a work array and passes it to
mpdata routine.
I/O: stdout
Calls: bound_narr, check_state, ice_flux, ice_timers,
ice_state, ice_itd (check_state), ice_timer_start,
ice_timer_stop, mpdata
Called by: icemodel
I/O Parameters: None

transport_remap This subroutine solves the transport equations for one
timestep using the conservative remapping scheme
developed by John Dukowicz and John Baumgardner (DB)
and modified for sea ice by William Lipscomb and Elizabeth
Hunke. This scheme is second-order accurate, except where
gradients are limited to preserve monotonicity. It is
compatible for tracers; that is, it does not produce new
extrema in thickness or enthalpy.

References: [9], [26].

I/O: None
Calls: bound, bound_narr, bound_state, bound_sw,
check_monotonicity, conserved_sums, construct_fields,
departure_points, flux_integrals, global_conservation,
ice_timer_start, ice_timer_stop, load_tracers,
local_max_min, locate_triangles, make_masks,
unload_tracers, update_fields
Called by: icemodel
I/O Parameters: None

121

 PIPS 3.0 SDD

Subroutine Description
triangle_coordinates For each triangle, this subroutine finds the coordinates of the

four points needed to compute integrals of cubic
polynomials, using a formula from [35]. (Section 8.8,
formula 3.1.) Quadratic functions can be integrated using 3-
point formulas, but it is more efficient to use a single
formula for both quadratics and cubics.

The formula is as follows:
I3 = integral of f(x,y)*dA
 = AR * [-9/16 * f(x0,y0)
 + 25/48 * (f(x1,y1) + f(x2,y2) + f(x3,y3))]
where I3 is the integral of a polynomial of 3rd order or
lower, AR is the area of the triangle, (x0,y0) is the midpoint,
and the other three points are located 2/5 of the way from
the midpoint to each of the three vertices.
I/O: None
Calls: None
Called by: transport_remap
I/O Parameters: real triarea- areas of flux triangles
real xp0, yp0- coordinates of triangle points
xp1, yp1
xp2, yp2
xp3, yp3

tridiag_solver Tridiagonal matrix solver. It is used to solve the implicit
vertical heat equation in ice and snow.
I/O: None
Calls: None
Called by: temperature_changes
I/O Parameters: integer isolve- number of cells with temps
not converged
integer indxii, indxjj- compressed indices for cells not
converged
integer nmat- matrix dimension
real diag- diagonal matrix elements
real sbdiag- sub-diagonal matrix elements
real spdiag- super-diagonal matrix elements
real rhs- rhs of tri-diagonal matrix equation
real xout- solution vector

122

 PIPS 3.0 SDD

Subroutine Description
u2tgrid Transfers from U-cell centers to T-cell centers. Writes work

into another array that has ghost cells.
I/O: None
Calls: bound, to_tgrid
Called by: evp_finish
I/O Parameters: real work

unload_tracers Converts from tracer array back to state variables. Like
load_tracers, this subroutine must be modified if a different
set of tracers is to be transported.
I/O: None
Calls: None
Called by: transport_remap
I/O Parameters: integer n- ice category index
real trm- mean tracer values in each grid cell

update_fields Given fluxes through cell edges, this subroutine computes
new area and tracers.
I/O: None
Calls: abort_ice
Called by: transport_remap
I/O Parameters: real aiflxe, aiflxn- flux of aice through east
and north cell edges
real aim- mean ice area
real atflxe, atflxn- flux of aice*tracer through E and N cell
edges
real trm- mean tracers
integer n- ice category index (for error diagnostics)

123

 PIPS 3.0 SDD

Subroutine Description
update_state_vthermo Given the vertical thermo state variables (hin, hsn, qin,

 qsn, Tsf), this subroutine computes the new ice state
variables (vicen, vsnon, eicen, esnon, Tsfcn).
State variables are zeroed out if ice has melted entirely.
I/O: None
Calls: None
Called by: thermo_vertical
I/O Parameters: integer n- thickness category index
integer icells- number of cells with aicen > puny
integer indxi, indxj- compressed indices for cells with aicen
> puny
real hin- ice thickness (m)
real hsn- snow thickness (m)
real qsn- snow enthalpy
real Tsf- ice/snow surface temperature, Tsfcn
real qin- ice layer enthalpy (J/m3)

zap_small_areas Eliminates very small ice areas.
I/O: stdout
Calls: abort_ice, ice_flux, ice_calendar (only: dt)
Called by: icemodel, thermo_itd
I/O Parameters: None

124

 PIPS 3.0 SDD

6.0 PIPS 3.0 Primary Variables and Parameters

The following table defines many of the symbols frequently used in the PIPS 3.0 code. Values
appearing in this list are either fixed or recommended; most namelist parameters are indicated (*)
with their default values. For other namelist options, see Table 2. All quantities in the code are
expressed in MKS units (temperatures may take either Celsius or Kelvin units).

Name Description Default Values
A

advection type of advection algorithm used ‘remap’

ahmax thickness above which ice albedo is constant 0.5 m

aice0 fractional open water area

aice(n) total concentration of ice in grid cell (in category n)

aice_init concentration of ice at beginning of dt (for
diagnostics)

ain_min minimum fractional ice area allowed in each
category

albicei *near infrared ice albedo for thicker ice 0.36

albicev *visible ice albedo for thicker ice 0.78

albsnowi *near infrared, cold snow albedo 0.70

albsnowv *visible, cold snow albedo 0.98

albocn ocean albedo 0.06

alpha floe shape constant for lateral melt 0.66

astar e-folding scale for participation function 0.05

awtidf weighting factor for near-ir, diffuse albedo 0.16

awtidr weighting factor for near-ir, direct albedo 0.31

awtvdf weighting factor for visible, diffuse albedo 0.24

awtvdr weighing factor for visible, direct albedo 0.29

ANGLE for conversions between the ocean grid and lat-lon
grids

ANGLET ANGLE converted to T-cells

atm_data_dir *directory for atmospheric forcing data

avgsiz number of fields that may be written to history file 91

C

125

 PIPS 3.0 SDD

Name Description Default Values
Cf ratio of ridging work to PE change in ridging 17.

char_len length of character variable strings 80

char_len_long length of longer character variable strings 128

check_step time step for writing debugging data

cldf cloud fraction

congel basal ice growth m

cosw cosine of the turning angle in water 1.

cp_air specific heat of air 1005.0 J/kg/K

cp_wv specific heat of water vapor 1.81 x 103 J/kg/K

cp_ice specific heat of fresh ice 2106. J/kg/K

cp_ocn specific heat of sea water 4218. J/kg/K

cm_to_m cm to meters conversion 0.01

c<n> real(n)

Cs fraction of shear energy contributing to ridging 0.5

Cstar constant in Hibler ice strength formula 20

D

daidtd ice area tendency due to dynamics/transport 1/s

daidtt ice area tendency due to thermodynamics 1/s

dalb_mlt [see ice_albedo.F] -0.075

dalb_mlti [see ice_albedo.F] -0.100

dalb_mltv [see ice_albedo.F] -0.150

dardg1dt rate of fractional area loss by ridging ice 1/s

dardg2dt rate of fractional area gain by new ridges 1/s

dvirdgdt ice volume ridging rate m/s

dbl_kind definition of double precision selected_real_kind
(13)

dbug *write forcing data diagnostics .false.

Delta function of strain rates (see Section 5.2.2.4)

depressT ratio of freezing temps to salinity of brine 0.054 deg/psu

diag_file *diagnostic output file (alternative to stdout)

diag_type *where diagnostic output is written stdout

126

 PIPS 3.0 SDD

Name Description Default Values
diagfreq *how often diagnostic output is written (10 =

once/10 dt
24

divu strain rate I component, velocity divergence 1/s

divu_adv divergence associated with advection 1/s

dt *thermo/transport time step 3600.s

dt_dyn dynamics/transport time step (dyntΔ)

dte subcycling time step for elastic dynamics (Δte) s

dtei 1/dte, where dte is the EVP subcycling time step 1/s

dT_mlt [see ice_albedo.F] 1. deg

dump_file * output file for restart dump

dumpfreq * dump frequency for restarts, y, m, or d y

dumpfreq_n *restart output frequency 1

dragw drag coefficient for water on ice*ρw 0.00536*rhow kg/m3

dxt width of T cell (Δx) through the middle m

dxu width of U cell (Δx) through the middle m

dyt height of T cell (Δy) through the middle m

dyu height of U cell (Δy) through the middle m

dvidtd ice volume tendency due to dynamics/transport m/s

dvidtt ice volume tendency due to thermodynamics m/s

E

ecc yield curve major/minor axis ratio, squared 4.

eice(n) energy of melting of ice per unit area (in category n) J/m2

emissivity emissivity of snow and ice 0.95

eps04 a small number 10 -4

eps11 a small number 10 -11

eps12 a small number 10 -12

eps13 a small number 10 -13

eps15 a small number 10 -15
esno(n) energy of melting of snow per unit area (in category

n)
J/m2

evap evaporative water flux kg/m2/s

127

 PIPS 3.0 SDD

Name Description Default Values
evp_damping *if true, use evp damping procedure [17] F

eyc coefficient for calculating the parameter E, 0<eyc<1 0.36

F

fcor Coriolis parameter 1/s

ferrmax max allowed energy flux error (thermodynamics) 1x10-3 W/m2

fhnet net heat flux W/m2

fhnet_hist net heat flux to ocean (fhnet) for history W/m 2

flat latent heat flux W/m2

floediam effective flue diameter for lateral melt 300. m

flw incoming longwave radiation W/m2

flwout outgoing longwave radiation W/m2

frain rainfall rate kg/m2/s

frazil frazil ice growth m

fresh fresh water flux to ocean kg/m2/s

fresh_hist fresh water flux (fresh) for history kg/m2/s

frzmlt freezing/melting potential W/m2

frz_onset day of year that freezing begins

fsalt net salt flux to ocean kg/m2/s

fsalt_hist salt flux to ocean (fsalt) for history kg/m2/s

fsens sensible heat flux W/m2

fsnow snowfall rate kg/m2/s

fsnowrdg snow fraction that survives in ridging 0.5

fsw incoming shortwave radiation W/m2

fswabs absorbed shortwave radiation W/m2

fswthru shortwave penetrating to ocean W/m2

fswthru_hist shortwave penetrating to ocean (fswthru) for history W/m2

fyear current data year

fyear_final last data year

fyear_init *initial data year

G

128

 PIPS 3.0 SDD

Name Description Default Values
gravit gravitational acceleration 9.80616 m/s2

grid_file *input file for grid info

grid_type *‘rectangular’ or ‘displace_pole’ or ‘column’ displaced_pole

Gstar used to compute ridging participation function 0.15

H

hfrazilmin minimum thickness of new frazil ice 0.05 m

hi_min minimum ice thickness for thinnest ice category 0.01 m

hicen ice thickness in category n m

hin_max category limits m

hist_avg *if true, write averaged data instead of snapshots T

histfreq *history output frequency; y, m, w, d or 1 m

history_dir *path to history output files

history_file *output file for history

hm land/boundary mask, thickness (T-cell)

hmix ocean mixed layer depth 20 m

hsnomin minimum thickness for which Ts is computed 1. x 10-6 m

Hstar determines mean thickness of ridged ice 25. m

HTE length of eastern edge (Δy) of T-cell m

HTN length of northern edge (Δx) of T-cell m

HTS length of southern edge (Δx) of T-cell m

HTW length of western edge (Δy) of T-cell m

I

i0vis fraction of penetrating visible solar radiation 0.70

icells number of grid cells with specified property (for
vectorization)

ice_ref_salinity reference salinity for ice-ocean exchanges 4. psu

iceruf ice surface roughness 5. x 10-4 m

icetmask ice extent mask (T-cell)

iceumask ice extent mask (U-cell)

idate the date at the end of the current time step
(yyyymmdd)

ierr general-use error flag

129

 PIPS 3.0 SDD

Name Description Default Values
i(j)hi last i(j) index of physical domain (local)

i(j)lo first i(j) index of physical domain (local)

ilyr1 index of the top layer in each cat (for eicen)

ilyrn index of the bottom layer in each cat (for eicen)

i(j)mt_global number of physical gridpts in x(y) direction, local
domain

i(j)mt_local total no. of gridpoints in x(y) direction, local domain

int_kind definition of an integer kind(1)

ip, jp local processor coordinates for writing debugging
data

istep local step counter for time loop

istep0 *number of steps taken in previous run 0

istep1 total number of steps at current time step

K

kappav visible extinction coeff. In ice, wavelength < 700
nm

1.4/m

kappan visible extinction coeff. In ice, wavelength > 700
nm

17.6/m

kcatbound *category boundary formula 0

kdyn *type of dynamics (1 = EVP, 0 = off) 1

kg_to_g kg to g conversion factor 1000.

kice thermal conductivity of fresh ice 2.03 W/m/deg

kimin minimum conductivity of saline ice W/m/deg

kitd *type of ITD conversions (1 = delta fxn, 1 = linear
remap)

1

kmt_file *input file for land mask info

krdg_partic *ridging participation function 1

krdg_redist *ridging redistribution function 1

ksmooth *1 = smooth the ice strength 0

ksno thermal conductivity of snow 0.30 W/m/deg

kstrength *ice strength formulation (1 = [35], 0 = [15]) 1

L

l_conservation_check if true, check conservation

130

 PIPS 3.0 SDD

Name Description Default Values

Lfresh latent heat of melting of fresh ice = Lsub=Lvap J/kg

lhcoef transfer coefficient for latent heat

log_kind definition of a logical variable kind(.true.)

Lsub latent heat of sublimation for fresh water 2.835 x 106 J/kg

Lvap latent heat of vaporization for fresh water 2.501 x 106 J/kg

M

m_to_cm meters to cm conversion 100.

m1 constant for lateral melt rate 1.6x10-6 m/s deg-m2

m2 constant for lateral melt rate 1.36

m2_to_km2 m2 to km2 conversion 1 x10-6

mask_n(s) northern (southern) hemisphere mask

master_task task ID for the controlling processor

mday day of the month

meltb basal ice melt m

meltl lateral ice melt m

meltt top ice melt m

melt_onset day of year that surface melt begins

month the month number

MPI_COMM_ICE communicator for ice model internal
communications (MPI)

mps_to_cmpdy m per s to cm per day conversion 8.64 x 106

mps_to_compyr m per s to cm per year conversion

mtask local processor number that writes debugging data

my_task task ID for the current processor

N

nbr_<dir> processor numbers for the N, S, E, W neighbor
processors

ncat number of ice categories 5

ndte *number of subcycles 120

ndyn_dt *number of dynamics/advection steps under thermo 1

new_day flag for beginning new day

131

 PIPS 3.0 SDD

Name Description Default Values
new_month flag for beginning new month

new_week flag for beginning new week

new_year flag for beginning new year

ngroups number of groups of flux triangles in remapping 5

nilyr number of ice layers 4

npt *total number of time steps (dt) 24

ntilay sum of number of layers in all categories

ntracer number of tracers transported in remapping

nu_diag unit number for diagnostics output file 6

nu_dump unit number for dump file for restarting 50

nu_forcing unit number for forcing data file 49

nu_grid unit number for grid file 11

nu_kmt unit number for land mask file 12

nu_nml unit number for namelist input file 21

nu_restart unit number for restart input file 50

nu_rst_pointer unit number for pointer to latest restart file 52

num_ghost_cells no. of rows of ghost cells surrounding each
subdomain

1

nyr year number

O

oceanmixed_file *data file containing ocean forcing data

oceanmixed_ice *if true, use internal ocean mixed layer T

ocn_data_dir *directory for ocean forcing data

omega angular velocity of Earth 7.292 x 10-5 rad/s

one array of ones which is often useful 1.

opening rate of ice opening due to divergence and shear 1/s

P

p001 1/1000

p01 1/100

p027 1/36

p055 1/18

132

 PIPS 3.0 SDD

Name Description Default Values
p1 1/10

p111 1/9

p15 15/100

p166 1/6

p2 1/5

p222 2/9

p25 1/4

p333 1/3

p4 2/5

p5 ½

p52083 25/48

p5625m -9/16

p6 3/5

p666 2/3

pi π

pih π/2

pi2 2π

pointer_file *input file for restarting

potT atmospheric potential temperature K

precip_units *liquid precipitation data units

print_global *if true, print global data F

print_points *if true, print point data F

Pstar ice strength parameter 2.75x104 N/m

puny a small positive number 1 x 10-11

Q

Qa specific humidity at 10 m kg/kg

qdp deep ocean heat flux W/m 2
qqqice for saturated specific humidity over ice 1.16378 x 107 kg/m3

qqqocn for saturated specific humidity over ocean 6.275724 x 106
kg/m3

Qref 2 m atmospheric reference specific humidity kg/kg

R

133

 PIPS 3.0 SDD

Name Description Default Values
rad_to_deg degree-radian conversion 180/π

radius earth radius 6.37 x 106 m

real_kind definition of single precision real selected_real_kind(6
)

restart *if true, initialize using restart file instead of
defaults

T

restart_dir *path to restart/dump files

restore_sst *restore SST to data

rhoa air density kg/m3

rhofresh density of fresh water 1000.0 kg/m3

rhoi density of ice 917. kg/m3

rhos density of snow 330. kg/m3

rhow density of seawater 1026 kg/m3

rnilyr real(nlyr)

rside fraction of ice that melts laterally

S

saltmax max salinity, at ice base 3.2 ppm

sec seconds elapsed into idate

secday number of seconds in a day 86400.

shear strain rate II component 1/s

shcoef transfer coefficient for sensible heat

sig1(2) principal stress components (diagnostic)

sinw sine of the turning angle in water 0.

snoice snow-ice formation m

snowpatch length scale for parameterizing nonuniform snow
coverage

0.02 m

spval special value (generally over land or undefined
regions, in place of 0)

310 0

ss_tltx(y) sea surface slope in the x(y) direction m/m

sss sea surface salinity psu

sss_data_type *source of surface salinity data

sst sea surface temperature C

sst_data_type *source of surface temperature data

134

 PIPS 3.0 SDD

Name Description Default Values
stefan-boltzmann Stefan-Boltzmann constant 5.67 x 10-8 W/m2K4

stop_now if 1, end program execution

strairx(y) stress on ice by air, in the x(y)-direction (centered in
U cell)

N/ m2

strairx(y)T stress on ice by air, x(y)-direction (centered in T
cell)

N/ m2

strength ice strength (pressure) N/m

stressp internal ice stress, σ11 + σ22 N/m

stressm internal ice stress, σ11 - σ22 N/m

stress12 internal ice stress, σ12 N/m

strintx(y) divergence of internal ice stress, x(y) N/ m2

strocnx(y) ice-ocean stress in the x(y)-direction (U-cell) N/ m2

strocnx(y)T ice-ocean stress in the x(y)-dir. (T-cell) N/ m2

strtlx(y) surface stress due to sea surface slope N/ m2

swv(n)dr(f) incoming shortwave radiation, visible (near IR),
direct (diffuse)

W/ m2

T

Tair air temperature at 10 m K

tarea area of T-cell m2

tarean area of northern hemisphere T-cells m2

tarear 1/tarea 1/ m2

tareas area of southern hemisphere T-cells m2

Tf freezing temperature C

Tffresh freezing temp of fresh ice 273.15K

time total elapsed time s

time_forc time of last forcing update s

Timelt melting temperature of ice top surface 0. C

tinyarea puny * tarea m 2
TLAT latitude of cell center radians

TLON longitude of cell center radians

tmask land/boundary mask, thickness (T-cell)

tmass total mass of ice and snow kg/m2

135

 PIPS 3.0 SDD

Name Description Default Values
Tmin minimum allowed internal temperature -100 C

Tref 2m atmospheric reference temperature K

trestore *SST restoring time scale days

Tsfc(n) temperature of ice/snow top surface (in category n) C

Tsf_errmax max allowed Tsfc error (thermodynamics) 5. x 10-4 deg

Tsmelt melting temperature of snow top surface 0. C

TTTice for saturated specific humidity over ice 5897.8 K

TTTocn for saturated specific humidity over ocean 5107.4 K

U

uarea area of U-cell m2

uarear 1/uarea

u(v)atm wind velocity, x(y) m/s

ULAT latitude of U-cell centers radians

ULON longitude of U-cell centers radians

umask land/boundary mask, velocity (U-cell)

umin min wind speed for turbulent fluxes 1. m/s

u(v)ocn ocean current, x(y) direction m/s

uvel(vvel) x(y)-component of velocity m/s

uvm land/boundary mask, velocity (U-cell)

V

vice(n) volume per unit area of ice (in category n) m

vonkar von Karman constant 0.4

vsno(n) volume per unit area of snow (in category n) m

W

week week of the year

wind wind speed m/s

work_g1 allocatable, dbl_kind work array

work_g2 allocatable, dbl_kind work array

work_gr allocatable, real_kind work array

136

 PIPS 3.0 SDD

Name Description Default Values
write_history if true, write history now

write_ic if true, write initial conditions now

work_l1 (imt_local, jmt_local) work array

work_l2 (imt_local, jmt_local) work array

work_a (ilo:ihi, jlo:jhi) work array

work_b (ilo:ihi, jlo:jhi) work array

write_restart if 1, write restart now

Y

ycycle *number of years in forcing data cycle

yday day of the year

year_init *the initial year

Z

zlvl atmospheric level height m

zref reference height for stability 10. m

zTrf reference height for Tref, Qref 2. m

zvir gas constant (water vapor)/gas constant (air) -1 0.606

137

PSI Technical Report SSC-001-06 PIPS SDD

7.0 NOTES

7.1 Acronyms and Abbreviations

Acronym Definition

CCSM Community Climate System Model

CICE Los Alamos Sea-Ice Model

DMSP Defense Meteorological Satellite Program

DTG Date-Time-Group

EVP Elastic-Viscous-Plastic

FNMOC Fleet Numerical Meteorology and Oceanography Center

HYCOM HYbrid Coordinate Ocean Model

I/O Input/Output

ITD Ice Thickness Distribution model

LANL Los Alamos National Laboratory

MPDATA Multidimensional Positive Definite Advection Transport Algorithm

MPI Message Passing Interface

NAVOCEANO Naval Oceanographic Office

NCAR National Center for Atmospheric Research

NCOM Navy Coastal Ocean Model

NOGAPS Navy Operational Global Atmospheric Prediction System

NRL Navy Research Laboratory

PIPS Polar Ice Prediction System

POP Parallel Ocean Program model

PSI Planning Systems, Incorporated

S Salinity

138

PSI Technical Report SSC-001-06 PIPS SDD

SDD Software Design Description

SGI Silicon Graphics Incorporated

SHEBA Surface Heat Budget of the Arctic Ocean

SSC Stennis Space Center

SSM/I Special Sensor Microwave/Imager

SSS Sea Surface Salinity

SST Sea Surface Temperature

SUM Software Users Manual

T Temperature

139

PSI Technical Report SSC-001-06 PIPS SDD

Appendix A

Table of Namelist Options

Name Type/Options Description Default Values /
Directory Location

albicei 0 < α < 1 near infrared ice albedo for
thicker ice

albicev 0 < α < 1 visible ice albedo for thicker
ice

albsnowi 0 < α < 1 near infrared, cold snow
albedo

albsnowv 0 < α < 1 visible, cold snow albedo
advection remap linear remapping advection ’remap’
 mpdata 2nd order MPDATA
 upwind 1st order MPDATA
atm_data_dir path/ path to atmospheric forcing

data directory
atm_data_type default constant values defined in

the code
 ncar NCAR bulk forcing data

 LYq AOMIP/Large-Yeager

forcing data
dbug true/false if true, write atm/ocn data

diagnostics
 .false.

diag_file filename diagnostic output file
diag_type stdout write diagnostic output to

stdout
 ‘stdout’ (if uncoupled)

 file write diagnostic output to
file

diagfreq integer frequency of diagnostic
output in dt

 30

 eg., 10 once every 10 time steps
dt seconds thermo/transport time step

length
 2800.

dump_file filename prefix output file for restart dump ’iced’
dumpfreq y, m, d write restart every

dumpfreq_n for years,
 'd'

140

PSI Technical Report SSC-001-06 PIPS SDD

Name Type/Options Description Default Values /
Directory Location

months, days
dumpfreq_n integer frequency restart data is

written

evp_damping true/false if true, damp elastic waves
[6]

 .false.

fyear_init yyyy first year of atmospheric
forcing data

f_<var> true/false write <var> to history

grid_file filename name of grid file to be read ‘grid’

grid_type rectangular,
displaced_pole

rectangular: defined in
rectgrid
displaced_pole: read from
file in popgrid
pipsgrid: read from
file in pipsgrid

 ‘pipsgrid’

hist_avg true/false write time-averaged data if
true
write snapshots of data if
false

 .false.

hist_dir path/ path to history output
directory

histfreq y, m, w, d, l write history output once a
year, month, week, day, or
every time step

 'h'

history_file filename prefix output file for history 'iceh'

ice_ic default latitude and SST dependent ‘default’

 none no ice

istep0 integer initial time step number 0

kcatbound 0/1 if 0, original category
boundary formula
if 1, new category boundary
formula

 1

kdyn 0 /1 if 0, EVP dynamics OFF
if 1, EVP dynamics ON

 1

kitd 0 /1 if 0, delta function ITD
approx.
if 1, linear remapping ITD
approx.

 1

kmt_file filename name of land mask file to be 'kmt'

141

PSI Technical Report SSC-001-06 PIPS SDD

Name Type/Options Description Default Values /
Directory Location

read
krdg_partic 0/1 if 0, old ridging participation

function
if 1, new ridging
participation function

 1

krdg_redist 0/1 if 0, old ridging
redistribution function
if 1, new ridging
redistribution function

 0

kstrength 0 /1 if 0, [15] ice strength
formulation
if 1, [35] ice strength
formulation

 1

ndte integer number of EVP subcycles 120

ndyn_dt integer number of
dynamics/advection/ridging
steps per thermo timestep

 1

npt integer total number of time steps to
take

oceanmixed_file filename data file containing ocean
forcing data

oceanmixed_ice true/false active ocean mixed layer
calculation

 .true. (if uncoupled)

ocn_data_dir path/ path to oceanic forcing data
directory

 '/scr/posey/pips3c/data_in/'

print_points true/false print diagnostic data for two
grid points

 .true.

precip_units mm_per_month liquid precipitation data
units

 mm_per_sec (default; MKS units)

print_global true/false print diagnostic data, global
sums

 .true.

pointer_file pointer filename contains restart filename

restart true/false initialize using restart file .true.

restart_dir path/ path to restart directory

restore_sst true/false restore SST to data

sss_data_type default constant values defined in
the code

 clim climatological data

142

PSI Technical Report SSC-001-06 PIPS SDD

Name Type/Options Description Default Values /
Directory Location

 ncar POP ocean forcing data

sst_data_type default constant values defined in
the code

 clim climatological data

 ncar POP ocean forcing data

trestore integer SST restoring time scale
(days)

ycycle integer no. of years in forcing data
cycle

year_init yyyy the initial year, if not using
restart

	TABLE OF CONTENTS
	TABLE OF FIGURES
	1.0 SCOPE
	1.1 Identification
	1.2 Document Overview

	2.0 REFERENCED DOCUMENTS
	2.1 PIPS 3.0 Software Documentation
	2.2 General Technical Documentation

	3.0 PIPS 3.0 SOFTWARE SUMMARY
	4.0 PIPS 3.0 SOFTWARE INVENTORY
	4.1 PIPS 3.0 Components
	4.1.1 PIPS 3.0 Modules
	4.1.2 PIPS 3.0 Subroutines
	4.1.3 PIPS 3.0 Input File Namelist Parameters
	4.1.3.1 Ice Namelist (ice_nml)
	4.1.3.2 Ice Fields Namelist (icefields_nml)

	4.1.4 PIPS 3.0 Macros File
	4.1.5 PIPS 3.0 Makefile

	4.2 PIPS 3.0 Software Organization and Implementation
	4.2.1 Logical Component Call Trees
	4.2.1.1 Primary Tree (beginning at the program ‘icemodel’)
	4.2.1.2 Detached Call Trees (for extraneous modules and subroutines)

	4.2.2 Directory Structure

	5.0 PIPS 3.0 DETAILED DESIGN
	5.1 Constraints and Limitations
	5.2 Logic and Basic Equations
	5.2.1 Coupling with Ocean Model Components
	5.2.1.1 Atmosphere
	5.2.1.2 Ocean

	5.2.2 Model Components
	5.2.2.1 Horizontal Transport
	5.2.2.1.1 Reconstructing Area and Tracer Fields
	5.2.2.1.2 Locating Departure Triangles
	5.2.2.1.3 Integrating Fluxes
	5.2.2.1.4 Updating State Variables

	5.2.2.2 Transport in Thickness Space
	5.2.2.3 Mechanical Redistribution
	5.2.2.4 Dynamics
	5.2.2.5 Thermodynamics
	5.2.2.5.1 Thermodynamic Surface Forcing
	5.2.2.5.2 New Temperatures
	5.2.2.5.3 Growth and Melting

	5.3.1 PIPS 3.0 Modules
	5.3.2 PIPS 3.0 Subroutines

	6.0 PIPS 3.0 Primary Variables and Parameters
	7.0 NOTES
	7.1 Acronyms and Abbreviations

	Appendix A
	Table of Namelist Options

