

i

SOFTWARE DESIGN DESCRIPTION

FOR THE

NAVY COASTAL OCEAN MODEL (NCOM)

VERSION 4.0

September 2008

Prepared for:
Naval Research Laboratory
Ocean Modeling Division

Prepared by:
Paul Martin

Charlie N. Barron
Lucy F. Smedstad
Alan J. Wallcraft
Robert C. Rhodes

Timothy J. Campbell
Clark Rowley

Naval Research Laboratory

Suzanne N. Carroll
Planning Systems, Incorporated
Stennis Space Center, MS 39529

NRL/MR/7320--08-9149
Approved for public release. Distribution unlimited.

ii

iii

TABLE OF CONTENTS

TABLE OF FIGURES ... VI

1.0 SCOPE ... 1
1.1 IDENTIFICATION .. 1
1.2 DOCUMENT OVERVIEW ... 2

2.0 REFERENCED DOCUMENTS .. 2
2.1 NCOM SOFTWARE DOCUMENTATION ... 2
2.2 GENERAL TECHNICAL REFERENCES .. 3
2.3 RECOMMENDED READING ... 4

3.0 MODEL DESIGN DECISION ... 7

4.0 MODEL ARCHITECTURAL DESIGN ... 7
4.1 MODEL COMPONENTS ... 7
4.2 NCOM BUILD INFORMATION .. 13

4.2.1 Required Build Variables .. 13
4.2.2 Optional build variables .. 13

4.3 CODE MODIFICATIONS .. 15
4.3.1 Changes from NCOM 2.6 to NCOM 4.0 (up to 12-26-2007) .. 15
4.3.2 NCOM Sub-Version Repository ... 16

4.4 CONCEPT OF EXECUTION ... 16
4.5 INTERFACE DESIGN ... 18

4.5.1 Interface Identification and Diagrams .. 18
5.0 NCOM DETAILED DESIGN .. 20

5.1 CONSTRAINTS AND LIMITATIONS .. 20
5.2 LOGIC AND BASIC EQUATIONS .. 21
5.3 NCOM SETUP ROUTINES .. 22

5.3.1 General Setup Subroutines (ncom_setup_plib_sigz) ... 22
5.3.2 Spline Interpolation Subroutines (ncom_setup_spln) .. 31

5.4 MAIN NCOM SUBROUTINES (LIBSRC/ NCOM/) .. 31
5.4.1 File ncom1 .. 32
5.4.2 Free-Surface Calculation Subroutines (ncom1baro)... 34
5.4.3 COAMPS Specific Subroutines (ncom1coam) ... 35
5.4.4 Flux Corrected Transport Subroutines (ncom1fct_sigz) ... 38
5.4.5 Initialization Subroutines (ncom1init_sigz) ... 39
5.4.6 Nested Grid Boundary Condition Interpolation Subroutines (ncom1nest2) 42
5.4.7 Open Boundary Condition Subroutines (ncom1obc_sigz) ... 44
5.4.8 Output Subroutines (ncom1out_sigz) .. 46
5.4.9 Generic and Plotting Subroutines (ncom1plib) .. 47
5.4.10 Read/Write Subroutines (ncom1rwio) ... 56
5.4.11 Surface Forcing Subroutines (ncom1sbc) ... 60
5.4.12 Tidal Calculation Subroutines (ncom1tide) .. 62
5.4.13 Update Subroutines for U, V, T, S (ncom1updt_sigz) ... 64
5.4.14 Utility Subroutines (ncom1util) ... 75
5.4.15 Vertical Mixing Subroutines (ncom1vmix_sigz) ... 78

5.5 NETCDF-SPECIFIC SUBROUTINES (LIBSRC/ CDF/) ... 80
5.6 COAMPS RELATED SUBROUTINES (LIBSRC/ COAMPSLIB/) ... 84
5.7 ESMF RELATED SUBROUTINES (LIBSRC/ ESMF/) ... 87

iv

5.8 PRIMARY FNMOC SUBROUTINES (LIBSRC/ FNOCLIB/) .. 88
5.9 MISCELLANEOUS NCOM SUBROUTINES (LIBSRC/ MISC/) .. 92

5.9.1 Cubic Spline Interpolation Subroutines (cubspl_irr and ocubspl_irr)) ... 92
5.9.2 Time Conversion Subroutines (timesubs) .. 93
5.9.3 File Conversion Subroutines (w_ncomnc/ w_ncomnc2) .. 98
5.9.4 Unit Conversion Subroutines (gc_ellipsoid) .. 99
5.9.5 Array Allocation Subroutines (allocate) .. 99
5.9.6 Array Conversion Subroutines (w_rgb) ... 99
5.9.7 Table Lookup Subroutines (tablk2s) .. 100
5.9.8 Horizontal Grid Embedding Subroutine (padarr) ... 100

5.10 DUMMY COMPUTER-SPECIFIC SUBROUTINES (LIBSRC/ NONE/) .. 100
5.11 DUMMY NCOM PLOTTING SUBROUTINES (LIBSRC/ PDUM/) .. 100

5.11.1 Plotting Subroutines (ncom1pdum) .. 100
5.12 COMMUNICATION SUBROUTINES (LIBSRC/UTIL/) ... 102

5.12.1 Program xmc ... 102
5.12.2 Communication Subroutines for Shared Memory Computer (xmc_sm) 102
5.12.3 Communication Subroutines for Multiple Processors (xmc_mp) ... 105
5.12.4 Program za ... 109
5.12.5 I/O Subroutines for Shared Memory Computer (za_sm) .. 109
5.12.6 I/O Subroutines for Multiple Processors (za_mp) .. 114

5.13 ESMF DRIVER PROGRAM (SRC/ESMF) ... 118
5.13.1 Program ncom ... 118

5.14 NCOM DRIVER PROGRAMS (SRC/NCOM) .. 119
5.14.1 Program ncom .. 119

5.15 TEST_XCA SUBROUTINES (SRC/TEST_XCA) ... 119
5.15.1 Program test_xca ... 119

5.16 TEST_XCA SUBROUTINES (SRC/TEST_XCL) .. 119
5.16.1 Program test_xcl .. 119

6.0 NOTES .. 120
6.1 ACRONYMS AND ABBREVIATIONS ... 120

7.0 APPENDIX A FORTRAN COMMON BLOCKS .. 122
7.1 COMMON BLOCKS FOR GENERAL SETUP SUBROUTINES ... 122
7.2 COMMON BLOCKS FOR FILE NCOM1 SUBROUTINES .. 122
7.3 COMMON BLOCKS FOR PRINTING/PLOTTING SUBROUTINES ... 122
7.4 COMMON BLOCKS FOR TIDAL CALCULATION SUBROUTINES ... 123
7.5 COMMON BLOCKS FOR COMMUNICATIONS SUBROUTINES FOR SM COMPUTERS 124
7.6 COMMON BLOCKS FOR COMMUNICATION SUBROUTINES FOR MULTIPLE PROCESSORS 125
7.7 COMMON BLOCKS FOR I/O SHARED MEMORY SUBROUTINES .. 127
7.8 COMMON BLOCKS FOR I/O MULTIPLE PROCESSOR SUBROUTINES ... 127
7.9 COMMON BLOCKS FOR PROGRAM TEST_XCA AND TEST_XCL ... 128
7.10 COMMON BLOCKS FOR MISCELLANEOUS NCOM SOURCE CODE ... 129
7.11 COMMON BLOCKS FOR SUBROUTINE OMODEL (NCOMPAR.H) ... 129
7.12 COMMON BLOCKS FOR NCOM (COMMON.H) ... 132
7.13 COMMON BLOCKS FOR COAMPS (COAMPS.H) ... 134

8.0 APPENDIX B ARGUMENT VARIABLES... 135
PRIMARY NCOM VARIABLES ... 135

Main Input Dimensions .. 135
Time variables .. 136
Grid indexing variables ... 136
Time indexing variables ... 136
Grid related variables .. 137

v

Input values for vertical grid ... 137
Input values for horizontal grid ... 137
Main prognostic variables ... 137
Variables used for relaxation of T and S to specified values ... 138
Surface forcing variables ... 138
Open boundary variables ... 138
River inflow variables .. 139
Other variables .. 139
Temporary variables .. 140

CONSTANTS ... 141
Defined and Calculated Constants .. 141
Defined Constants .. 141
Calculated Constants ... 142
Calculated Grid Related Constants ... 142

vi

TABLE OF FIGURES

FIGURE 4.4-1: FLOW DIAGRAM DESCRIBING THE EXECUTION OF THE NCOM. 17
TABLE 4.5-1: LIST AND DESCRIPTION OF NCOM INPUT FILES. ... 18
TABLE 4.5-2: THE OUTPUT FILES AND THEIR DESCRIPTION. ... 19

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

1

1.0 SCOPE

1.1 Identification
The Navy Coastal Ocean Model (NCOM) Version 4.0 is based primarily on two existing ocean
circulation models, the Princeton Ocean Model (POM) (Blumberg and Mellor 1983; Blumberg
and Mellor 1987) and the Sigma/Z-level Model (SZM) (Martin et al., 1998). NCOM Version 4.0
has a free-surface and is based on the primitive equations and the hydrostatic, Boussinesq, and
incompressible approximations. The Mellor Yamada Level 2 (MYL2) and MYL2.5 turbulence
models are provided for the parameterization of vertical mixing. The vertical mixing
enhancement scheme of Large et al. (1994) is also offered for parameterization of unresolved
mixing processes occurring at near-critical Richardson numbers. The inclusion of a source term
in the model equations allows for the input of river and runoff inflows.

The model uses a staggered Arakawa C grid (as in POM). Spatial finite differences are mostly
second-order centered (as in POM), but there are options to use higher-order spatial differences
for some terms. The temporal scheme is leapfrog, with an Asselin filter to suppress timesplitting
(as in POM). Most terms are treated explicitly in time, but the propagation of surface waves and
vertical diffusion are treated implicitly.

The horizontal grid is orthogonal-curvilinear (as in POM). NCOM 4.0 has two choices of
vertical grid, which are selected at compile time. One choice is the original vertical grid used by
NCOM, which is a hybrid sigma and z-level grid with sigma coordinates used from the surface
down to a specified depth and level coordinates used below the specified depth. The switch from
sigma to level coordinates can occur at any specified interface between layers, i.e., from just
below the uppermost layer (there must be at least one sigma layer at the surface) to the bottom of
the lowest layer (in which case the entire grid would be sigma coordinate, as in POM). On the
sigma coordinate portion of the grid, each sigma layer is a fixed fraction of the depth from the
surface to the bottom of the sigma coordinate grid. This fractional depth may vary for different
sigma layers, but cannot change within a particular layer. On the level portion of the grid, each
layer's depth and thickness is fixed and the bottom depth is adjusted to match the depth of the
nearest layer.

The second, newer, choice of vertical grid is a general vertical coordinate (GVC) grid. The GVC
grid consists of a three-tiered vertical grid structure comprised of: (1) a "free" sigma grid near
the surface that expands and contracts with the movement of the free surface, (2) a "fixed" sigma
grid that does not move with the free surface, and (3) a z-level grid that allows for "partial"
bottom cells. For both the "free" and "fixed" sigma grids, the fractional layer thickness can be
specified independently for each grid cell and the land-sea masking can be different for different
sigma layers. The vertical grid structure can consist of just (1), or (1) and (2), or (1) and (3), or
(1), (2), and (3). This new vertical grid structure allows for more flexibility on both the sigma
and z-level portions of the grid. For the sigma grid, the fractional layer thickness can vary both
horizontally and vertically (i.e., it can be specified independently at each model grid pt) and
masking can be used on the sigma grid to mask land areas and reduce the number of active sigma
layers. For the z-level grid, grid cells at the bottom can be made "partial" cells so that the z-level
grid can match the true bottom depth. In addition, a "fixed" sigma grid that does not expand and

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

2

contract with the movement of the free surface can be used between the "free" sigma grid near
the surface and the (fixed) z-level grid. However, the increased flexibility of the generalized
vertical grid comes at the cost of a 15-20% increase in the required memory storage and CPU
time. Also, the use of “partial” z-level cells involves increased numerical truncation error
because of the abrupt change in grid-layer thickness at a "partial" grid cell. The “classic” sigma
grid, where each layer is a fixed fraction of the total depth of the sigma grid, has some numerical
advantages over the generalized sigma grid.

The NCOM surface boundary conditions are the surface stress for the momentum equations, the
surface heat flux for the temperature equation, and the effective surface salt flux for the salinity
equation. The bottom boundary conditions are the bottom drag for the momentum equations,
which is parameterized by a quadratic drag law, and zero flux for the temperature and salinity
equations.

NCOM provides for an arbitrary number of levels of nesting. This nesting capability is made
possible by using dynamic memory allocation with array dimensions specified at run time and by
passing model variables to subroutines through subroutine argument lists rather than through
common blocks. This allows the same model routines to calculate the different nests.

1.2 Document Overview
The purpose of this Software Design Description (SDD) is to describe the software design and
code of the Navy Coastal Ocean Model Version 4.0 (NCOM). It includes flow charts and
descriptions of the NCOM programs, subprograms, and common blocks. This document, along
with the User’s Manual (Martin et al, 2008) and two Validation Test Reports (Barron et al.,
2007, 2008) form a comprehensive documentation package for the NCOM 4.0 delivery. A User’s
Guide for the Global NCOM Nowcast/Forecast model, called the Global Ocean Forecast System
(GOFS), is also available (Smedstad et al., 2008).

2.0 REFERENCED DOCUMENTS

2.1 NCOM Software Documentation
Barron, C.N., A.B. Kara, R.C. Rhodes, C. Rowley, and L.F. Smedstad, (2007). “Validation Test

Report for the 1/8° Global Navy Coastal Ocean Model Nowcast/Forecast System.” NRL
Tech Report, NRL/MR/7320—07-9019, Naval Research Laboratory, Stennis Space
Center, MS.

Barron, C.N., R.W. Helber, T.L. Townsend, L.F. Smedstad, and J.M. Dastugue, (2008).
“Validation Test Report: MLD-Modified Synthetics and NCODA Profile Assimilation in
Global NCOM.” NRL Tech Report, submitted, Naval Research Laboratory, Stennis Space
Center, MS.

Martin, P.J., (2000). “Description of the Navy Coastal Ocean Model Version 1.0.”
NRL/FR/7322—00-9962, Naval Research Laboratory, Stennis Space Center, MS.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

3

Martin, P.J., C.N. Barron, L.F. Smedstad, T.J. Campbell, A.J. Wallcraft, R.C. Rhodes, C.
Rowley, T.L. Townsend, and S.N. Carroll, (2008). “User’s Manual for the Navy Coastal
Ocean Model (NCOM) Version 4.0.” NRL/MR/7320--08-9151, Ocean Modeling
Division, Naval Research Laboratory, Stennis Space Center, MS.

Posey P.G., L.F. Smedstad, R.H. Preller, E.J. Metzger and S.N. Carroll, (2008). "Software
Design Description for the Polar Ice Prediction System (PIPS) Version 3.0",
NRL/MR/7320--08-9150, Ocean Modeling Division, Naval Research Laboratory, Stennis
Space Center, MS.

Smedstad L.F., T.L. Townsend, C.N. Barron, T.J. Campbell, P.J. Martin, P.G. Posey, R.C.
Rhodes, and S.N. Carroll, (2008). User’s Guide for the Global Ocean Forecast System
(GOFS) Version 2.6” NRL/MR/7320--09-????, Ocean Modeling Division, Naval
Research Laboratory, Stennis Space Center, MS. In progress.

2.2 General Technical References
Akima, H., (1970). A New Method of Interpolation and Smooth Curve Fitting Based on local

Procedures. J. Ass. For Computing Machinery, 17(4): 589-602.
Barron, C.N., A.B. Kara, P.J. Martin, R.C. Rhodes, and L.F. Smedstad. (2006): Formulation,

implementation and examination of vertical coordinate choices in the Global Navy
Coastal Ocean Model (NCOM). Ocean Modelling, 11: 347-375.

Barron, C.N., Rhodes, R.C., Smedstad, L.F., Rowley, C.D., Martin, P.J., and Kara, A.B. (2003)
Global ocean nowcasts and forecasts with the Navy Coastal Ocean Model (NCOM).
NRL Review, 175-178.

Blumberg, A. F. and Mellor, G. L., (1983). Diagnostic and prognostic numerical circulation
studies of the South Atlantic Bight. J. Geophys. Res., 88: 4579- 4592.

Blumberg, A. F. and Mellor, G. L., (1987). “A description of a three-dimensional coastal ocean
circulation model.” In: Three-Dimensional Coastal Ocean Models. N. Heaps, ed.,
American Union, New York, N.Y., p. 208.

Collins-Sussman, B., Fitzpatrick, B.W., and Pilato, C. M. “Version Control with Subversion.”
[Online]. Copyright © 2002, 2003, 2004, 2005, 2006, 2007
O'Reilly Media Inc, Sebastopol, CA. <http://subversion.tigris.org/>.

Fox, D.N., W.J. Teague, M.R. Carnes, C.M. Lee, and C.N. Barron. (2002). The Modular Ocean
Data Assimilation System (MODAS), J. Atmos. Oceanic Technol., 19: 240-252.

Friedrich, H. and Levitus, S., (1972). An approximation to the equation of state for sea water,
suitable for numerical ocean models. J. Phys. Oceanogr., 2: 514-517.

Gibson, J.K., P. Kållberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA
description. ECMWF Re-Analysis Project Report Series, No. 1, 72 pp. [Available from
ECMWF, Shinfield Park, Reading RG2 9AX, UK.]

Kara, A.B., P.A. Rochford, H.E. Hurlburt. (2000). Efficient and accurate bulk parameterizations
of air-sea fluxes for use in general circulation models. J. Atmos. Ocean Tech. 17: 1421-
1438.

Kara, A.B., P.A. Rochford, and H.E. Hurlburt, (2002). Air-sea flux estimates and the 1997-1998
ENSO event. Bound.-Layer Meteor. 103: 439-458.

Large, W. G., McWilliams, J. C., and Doney, S., (1994). Oceanic vertical mixing: a review and a
model with a nonlocal boundary layer parameterization. Rev. Geophys., 32: 363-403.

https://198.70.52.167/exchweb/bin/redir.asp?URL=http://subversion.tigris.org/

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

4

Martin, P. J., Peggion, G., and Yip, K. J., (1998). “A comparison of several coastal ocean
models.” NRL Report NRL/FR/7322--97-9692. Naval Research Laboratory, Stennis
Space Center, MS., 96.

Mellor, G. L., (1991). An equation of state for numerical models of oceans and estuaries. J.
Atmos. and Ocean Tech., 8: 609-611.

Morel, A., (1988). Optical modeling of the upper ocean in relation to its biogenous matter
content (Case I waters). J. Geophys. Res., 93: 10749-10768.

Neumann, G. and W.J. Pierson, Jr. (1966). Principles of Physical Oceanography, Prentice-Hall,
Inc. Englewood Cliffs, NJ.

Rosmond, T.E., J. Teixeira, M. Peng, T.F. Hogan, and R. Pauley, (2002). Navy Operational
Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models.
Oceanography, 15: 99-108.

Smith, R. C. and Baker, K. S., (1981). Optical properties of the clearest natural waters (200-800
nm). Appl. Optics, 20(2): 177-184.

Urick, R. J., (1975). Principles of Underwater Sound, 1st ed., McGraw-Hill Publishing Co. New
York, pp. 99, 102, 105.

Vincenty, T. (1975). Direct and Inverse Solutions of Ellipsoid on the Ellipsoid with Application
of Nested Equations, Survey Review, XXII (176): 88-93.

2.3 Recommended Reading
Asselin, R. A., (1972). Frequency filter for time integrations. Mon. Weather Rev., 100: 487-490.
Barron, C.N. and L.F. Smedstad, (2002). Global River Inflow within the Navy Coastal Ocean

Model, Proceedings to Oceans 2002 MTS/IEEE Meeting, 29-31 October 2002.
Bird, R. E., (1984). A simple spectral model for direct normal and diffuse horizontal irradiance.

Solar Energy, 32: 461-471.
Bleck, R., Rooth, C., Hu, D., and Smith, L. T., (1992). Salinity-driven thermocline transients in a

wind-and-thermohaline-forced isopycnic coordinate model of the North Atlantic. J. Phys.
Oceanogr., 22: 1486-1505.

Blumberg, A. F., (1992). A Primer for ECOM-si. Technical Report, HydroQual, Inc., Mahwah,
N.J., 64 pp.

Bryan, K., (1969). A numerical method for the study of the circulation of the World Ocean. J.
Comput. Phys., 4: 347-376.

Buck, A. L., (1981). New equations for computing vapor pressure and enhancement factor. J.
Appl. Meteor., 20: 1527-1532)

Casulli, V. and Cattani, E., (1994). Stability, accuracy, and efficiency of a semi-implicit method
for three-dimensional shallow water flow. Comp. and Math. with Appl., 27: 99-112.

Casulli, V. and Cheng, R. T., (1994). “Solutions of primitive equations for three-dimensional
tidal circulation.” In: Estuarine and Coastal Modeling III. Proc. of the 3rd Int. Conf.,
ASCE, New York, N.Y., pp. 396-406.

Casulli, V. and Stelling, G. S., (1996). “Simulation of three-dimensional, non-hydrostatic
free-surface flows for estuaries and coastal seas.” In: Estuarine and Coastal Modeling.
Proc. of the 4th Int. Conf., M.L. Spaulding and R.T. Cheng, eds., ASCE, New York, N.Y.,
pp. 1-25.

Craig, P. D. and Banner, M. L., (1994). Modeling wave-enhanced turbulence in the ocean
surface layer. J. Phys. Oceanogr., 24: 2546-2559.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

5

Craig, P. D., (1996). Velocity profiles and surface roughness under breaking waves. J. Geophys.
Res., 101: 1265-1277.

Dietrich, D. E. and Ko, D. S., (1994). A semi-collocated ocean model based on the SOMS
approach. J. Num. Methods in Fluids, 19: 1103-1113.

Dukowicz, J. K. and Smith, R. D., (1994). Implicit free-surface method for the
Bryan-Cox-Semtner ocean model. J. Geophys. Res., 99: 7991-8014.

Fofonoff, N. P., (1962). “Physical properties of seawater.” In: The Sea: Ideas and observations
on progress in the study of the seas. Physical Oceanography. M.N. Hill, ed., Wiley,
Interscience, New York, Vol.1 pp. 9.

Garratt, J. R., (1977). Review of Drag Coefficients over Oceans and Continents. Monthly
Weather Review, 105(7): 915-929.

Gill, A. E., (1982). Atmosphere-Ocean Dynamics. Academic Press, New York, p. 662.
Haney, R. L., (1974). A numerical study of the response of an idealized ocean to large-scale

surface heat and momentum flux. J. Phys. Oceanogr., 4: 145-167.
Haney, R. L., (1991). On the pressure gradient force over steep topography in sigma coordinate

ocean models. J. Phys. Oceanogr., 21: 610-619.
Hodur, R. M., (1997). The Naval Research Laboratory's Coupled Ocean/Atmosphere Mesoscale

Prediction System (COAMPS). Mon. Wea. Rev., 125: 1414-1430.
Hurlburt, H. E. and Thompson, J. D., (1980). A numerical study of Loop Current intrusions and

eddy shedding. J. Phys. Oceanogr., 10: 1611-1651.
Hyland, R.W., (1975). A correlation for the second interaction virial coefficients and

enhancement factor for moist air, J. Res. Natl. Bur. Stand, (79A):551.
Jerlov, N. G., (1968). Optical Oceanography. Elsevier Publishing Co., New York.
Kantha L. H. and Clayson, C. A., (1994). An improved mixed layer model for geophysical

applications. J. Geophys. Res., 99: 25235-25266.
Killworth, P. D., Stainforth, D., Webb, D. J., and Paterson, S. M., (1991). The development of a

free-surface Bryan-Cox-Semtner ocean model. J. Phys. Oceanogr., 21: 1333-1348.
Large, W. G., and Pond, (1982). Sensible and latent heat flux measurements over the ocean. J.

Phys. Oceanogr., 12: 464-482.
Leendertse, J. J., (1989). A new approach to three-dimensional free-surface flow modeling. The

RAND Corporation Memorandum R-3712-NETH/RC, Santa Monica, CA. List, R. J.,
(1951). Smithsonian Meteorological Tables. Washington: Smithsonian Institute. pps.
290-295, 347, 350.

Lumb, F. E., (1964). The influence of cloud on hourly amounts of total solar radiation at the sea
surface. Quarterly Journal of the Royal Met Soc., 90: 43-56.

Martin, P. J., (1985). Simulation of the ocean mixed layer at OWS November and Papa with
several models. J. Geophys. Res., 90: 903-916.

Martin, P. J., (1986). “Testing and Comparison of Several Mixed-Layer Models.” NORDA
Report 143. Naval Research Laboratory, Stennis Space Center, MS., pp. 30.

Mellor, G. L. and Yamada, T., (1974). A hierarchy of turbulence closure models for planetary
boundary layers. J. Atmos. Sci., 31: 1791-1806.

Mellor, G. L. and Durbin, P. A., (1975). The structure and dynamics of the ocean surface mixed
layer. J. Phys. Oceanogr., 5: 718-728.

Mellor, G. L. and Yamada, T., (1982). Development of a turbulence closure model for
geophysical fluid problems. Geophys. and Space Phys., 20: 851-875.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

6

Mellor, G. L. and Blumberg, A. F., (1985). Modeling vertical and horizontal diffusivities with
the sigma coordinate system. Mon. Wea. Rev., 113: 1379-1383.

Mellor, G. L., (1996). User's Guide for a Three-Dimensional, Primitive-Equation, Numerical
Ocean Model. Princeton University, Princeton, N.J., pp. 39.

Muellor, J. L. and Lange, R.E., (1989). Bio-optical provinces of the Northeast Pacific Ocean: A
provisional analysis. Limnol. Oceanogr., 34: 1572-1586.

Orszag, S. A., (1971). Numerical simulation of incompressible flows within simple boundaries:
accuracy. J. Fluid Mech., 49: 75-112.

Paul, J. F., (1994). “Observations related to the use of the sigma coordinate transformation for
estuarine and coastal modeling studies.” In: Estuarine and Coastal Modeling III. Proc. of
the 3rd Int. Conf., M. Spaulding, K. Bedford, A. Blumberg, R. Cheng, and C. Swanson,
eds., ASCE, New York, N.Y., p. 682.

Pietrzak, J. D., (1995). A comparison of advection schemes for ocean modeling. Report 95-8 of
the Danish Meteorological Institute, Copenhagen, Denmark, 45 pp.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., and Metcalf, M., (1997).
Numerical Recipes in Fortran 90: The art of parallel scientific computing. 2nd ed. Vol. 2.
Numerical Recipes Software, U.S., p. 659.

Rood, R. B., (1987). Numerical advection algorithms and their role in atmospheric transport and
chemistry models. Rev. Geophys., 25: 71-100.

Smagorinsky, J., (1963). General circulation experiments with the primitive equations, Part I:
The basic experiment. Mon. Wea. Rev., 91: 99-164.

Troen, I. B. and Mahrt, L., (1986). A simple model of the atmospheric boundary layer;
sensitivity to surface evaporation. Boundary Layer Meteorol., 37: 129-148.

Wallcraft, A. J., (1991). “The Navy Layered Ocean Model Users' Guide.” NOARL Report 35,
Naval Research Laboratory, Stennis Space Center, MS.

Wexler, A., (1976). Vapor pressure formulation for water in range 0 to 100 C. A Revision. J.
Res. Natl. Bur. Stand, 80A: 775.

Wilson, W.D., (1960). Speed of sound in sea water as a function of temperature, pressure, and
salinity. J. Acoust. Soc. Am., 34: 641.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

7

3.0 MODEL DESIGN DECISION
The goal for initial development of NCOM was to make use of well established ocean modeling
techniques and to incorporate improvements and additional capabilities into NCOM as needed. It
may not be possible to meet every Navy coastal modeling requirement with a single model, but
the approach is to make NCOM as flexible as possible without incurring a significant penalty in
terms of efficiency.

NCOM is set up so that the main model program requires little or no alteration to run a
particular simulation, as almost everything needed for a model simulation is passed in via input
files. A setup program is required to generate the input files for regional domains. It is
recommended that the user modify one of the existing setup programs that are available.

4.0 MODEL ARCHITECTURAL DESIGN

4.1 Model Components
a) NCOM can be divided into several software units that include routines for NCOM setup,

input files, communication routines, and routines specific to running simulations on
different computer platforms. These are briefly described along with commonly used
library subroutines and data libraries required for smooth operation of NCOM.

b) RELO_NCOM – A setup program (RELO_NCOM) is used to generate the input files

for regional simulations. This program is considered to be in the domain of the user,
i.e., the setup program must be modified by the user to set up a particular simulation.
Most of the model input files are read and written in program ncom1rwio.F. The
same subroutine is used to read and write a particular file so that the code for reading
and writing the file is in the same place and the read and write instructions can be
kept more consistent. All of the subroutines in ncom1rwio.F have an initial
parameter which is either set to 1 (read) or 2 (write). The input/output files are either
IEEE binary or ASCII files.

c) GENERAL DIRECTORY STRUCTURE- The model code directory (ncom_4.0)

contains all of the files needed to generate the NCOM executable. A typical structure
of the directory is as follows:

ncom_4.0/

Makefile.ncom Top-level Makefile for NCOM.
 Makefile - Secondary- level Makefile for NCOM.

README.txt Compiling and running a simulation.
README.make NCOM build information.

bin/- Directory for NCOM executable(s). The executables are placed in

subdirectories that follow the naming convention described in Section
4.1.2.

config/- Configuration and makefile fragments used for compiling NCOM code.
Each makefile fragment is set up for some combination of a (i) specific

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

8

machine architecture (NCOM_ARCH) (ii) compiler (NCOM_COMP),
and (iii) user-specific (NCOM_USER) options.

 doc/- Directory of Readme documentation/explanation files.
ncom_changes.txt List of NCOM errors and changes.
ncom_guide.txt User’s guide for NCOM 4.0
README.version- Description of NCOM version number

string.
README.<xxx> Symbolic link to specific README on

<xxx>.
include/- NCOM include files that are included via cpp (These are now using

suffix *.h rather than *.inc).
 CAF.h- Co-Array Fortran I/O.

COAMPS.h- Common block to store info about
ocean/atm model grid for COAMPS.

COAMPS_parms.h COAMPS parameter include file.
COMMON.h- Common blocks for NCOM.

 Dsetnl.h- COAMPS directory path include file.
 HEADER_MPI.h- MPI header on generic machine.
 HEADER_MPI_AIX.h- MPI header on IBM SP.
 HEADER_MPI_T3E.h- MPI header on Cray T3E.
 MACROS.h- Macros for customizing NCOM.
 NCOMPAR.h- Common blocks for NCOM subroutine

OMODEL.
 Omnl.h and omnloff.h- COAMPS ocean model namelist include

files.
PARAM.h- Compile-time constants for NCOM.

 README.include- Help file for includes.
 README.macros- Help file for macros in MACROS.h.

lib/- Directory of NCOM compiled libraries- Libraries are placed in
subdirectories that follow the naming convention described in Section 4.1.2.

sigz.global/-
libncom.a - Compiled library of all NCOM subroutines.
libncom_setup.a - Compiled library of all NCOM setup

subroutines.
libsrc/- Directory of all NCOM Fortran subroutine files.

Makefile- Makes compiled libraries containing collections of NCOM
Fortran files and puts libraries on lib/ directory.

cdf/- Contains a set of netCDF specific subroutines.

coampslib/- Subroutines for working with COAMPS fields.
 Makefile- Makefile to compile local source code.
 datar.F- Reads COAMPS-style flat files.
 datar_new.F- Reads COAMPS-style flat files.
 dataw.F- Writes COAMPS-style flat files.
 dataw_new.F- Writes COAMPS-style flat files.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

9

 dfalts.F- Returns information about the specified-input field
name, e.g., default contour interval, max/min color
shading bar values.

 grdcon.F- Calculates the grid constant for input grid
projection and grid parameters.

 grdij.F- Generates real grid index values.
 ij2ll.F- Computes lat/lon from real grid index values for

specified grid projection and parameters.
 ll2ij.F- Computes real grid index coordinates from lat/lon

values for specified grid projection and parameters.
 rdata.F- Gets information for specified input field.
 rotang.F- Calculates angle of grid with respect to local lat/lon

for specified grid.
 s2hms.F- Converts from s to hour, min, sec.
 slen.F- Gives the size of a character string.
 uvg2uv.F- Converts grid u/v to earth-oriented u/v, i.e., with u

directed eastward and v directed northward.

 wdata.F - Writes data field to COAMPS-style flat file.
esmf/- Directory of ESMF routines.
 Makefile- Makefile to compile local source code.
 ncom1esmf.F- NCOM ESMF Module.
fnoclib/- Directory of main FNMOC routines and include

files.
 Makefile- Makefile to compile local source code.
 bessel.F- General 2D bessel interpolation.
 cctop.F- Converts fields from vector to Polar (magnitude and

direction) form.
 ch2int.F- Gets integer numerical value from integer character

string.
dfuv.F- Converts vectors from earth-oriented direction and

magnitude to u/v form on a conic grid projection.
differs.F- Perform operations performed on two input fields

depending on value of input flag.
dtgchk.F- Checks if DTG is valid.
dtgdif.F- Returns difference in hours of two input DTGs.

dtgmod.F- Returns new DTG given base DTG and increment

in hours.
dtgnum.F- Given DTG, returns integer values of year, month,

day, hour, days into the year, and hours into the
year.

dtgops.F- Returns three types of DTG.
edge.F- Performs next-to-edge processing for low-pass

filter.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

10

fintrp.F- Interpolates input field values.
gcpnts.F- Computes evenly spaced lat/lon points along a great

circle path between two input lat/lon locations.

gent.F- Gets a single entry from a HRLS table.
 getls.F- Reads a HRLS table from ISIS or UNIX files.

imaxcv.F- Computes imax from colcnt and rowcnt.
 int2ch.F- Converts an integer to an left-justified character

string.
ioinq.F- Uses Fortran “Inquire” statement to give info for

user in tracking the action of the program I/O.
isint.F- Tests if a character string contains only digits and a

possible sign.
jmaxcv.F- Computes jmax from colcnt and rowcnt, depending

on stordsc.
leapyr.F- Checks to see if input year is a leap year.
lndavg.F- Computes values for flagged pts in a 2D field as

averages of surrounding non-flagged pts.
lpf.F- Low-pass 2D filter.
niddf.F- Computes the value of variables, given 1D arrays

and independent variables.
ocord.F- Reads file containing instructions for outputting

model fields in flat file format.
pctocc.F- Converts vector fields from dir and mag to u/v

form.
qprint.F- Quick prints parts of a gridded field.
rlpnts.F- Computes grid index locations of evenly-spaced x/y

pts along a straight line on the grid.
strcmpr.F- Tests to see that two char strings match,

disregarding whether letters are upper or lower
case.

strleft.F- Deletes leading white space from a char string, left-
justifying the string.

strlen.F- Computes the length of an input string.
strnot.F- Finds the first location in an input string that is not

a blank.
strpars.F- Extracts substrings from a char string.
unstrgr.F- Unstaggers a staggered gridded field.
uvdf.F- Converts from u/v on a conic grid to earth-oriented

speed and direction.
misc/- Directory of miscellaneous NCOM subroutines.
 Makefile- Makefile to compile local source code.
 allocate.F- Allocates the no. of array elements needed.
 cubspl_irr.F- Cubic spline interp. for irregular output grid.
 gc_ellipsoid.F-Returns distances in m, azimuth angle in deg.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

11

 ocubspl_irr.F- Old cubic spline interp. for irreg. output grid.
 padarr.F- Embeds model horiz. grid into comp. horiz. grid.
 tablk2s.F- Interpolates value from 2D array using linear interp.
 timesubs.F- Time subroutines.
 w_ncomnc.F- Writes NCOM data into a netCDF file.
 w_ncomnc2.F-Writes NCOM data into a netCDF file.
 w_rgb.F- Converts real array f to an output rgb file.
ncom/- Directory of NCOM main Fortran subroutines.

Makefile- Makefile to compile local source code.
ncom1.F- Routines to set up memory for NCOM and integrate

the ocean model in time(except for driver module,
which is in file ncom.F in directory src/ncom/.

 ncom1baro.F- Routines to update free-surface.
ncom1coam.F-Routines to get surface air-sea flux fields from

COAMPS atmospheric model flat file output.
ncom1fct_gvc.F- Routines for advection of scalar fields using FCT

to avoid advective overshoots- GVC grid.
ncom1fct_sigz.F- Routines for advection of scalar fields using

FCT-sig-z grid.
 ncom1init_gvc.F-Routines to initialize ocean model-GVC grid.
 ncom1init_sigz.F-Routines to initialize ocean model-sig-z grid.

ncom1nest2.F-Routines to interpolates boundary conditions for
and provide feedback from nested grids.

 ncom1obc_gvc.F-Routines to handle OBCs-GVC grid.
ncom1obc_sigz.F- Routines to handle OBCs -sig-z grid.
ncom1out_gvc.F-Routines to output model results- GVC grid.
ncom1out_sigz.F- Routines to output model results -sig-z grid.
ncom1plib.F- Generic routines from Paul Martin's library plib.

 ncom1rwio.F- Routines to read/write I/O files.
 ncom1sbc.F- Routines to obtain surface forcing.
 ncom1tide.F- Routines to provide tidal forcing.
 ncom1updt_gvc.F- Main update routines for u, v, T, S- GVC grid.
 ncom1updt_sigz.F- Main update routines for u, v, T, S-sig-z grid.

ncom1util.F- Utility routines used for testing, etc.
 ncom1vmix_gvc.F-Routines to compute vertical mixing-GVC

grid.
ncom1vmix_sigz.F- Routines to compute vertical mixing-sig-z

grid.
 pdum/- Directory for dummy NCOM routines, e.g., plotting.

Makefile – Makefile to compile local source code.
ncom1pdum.F-Dummy plotting routines for NCOM when

interactive NCAR graphics are not available.
r10k/- Fortran routines specific to SGI Origin 2000.

Makefile - Makefile to compile local source code.
wtime.c- NCOM routine to calculate wall time on SGIs.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

12

zunder.c- NCOM routine to flush underflows to zero on SGIs.
setup/- General routines to support setting up a simulation and post

process output.
Makefile - Makefile to compile local source code.
ncom_setup_plib_gvc.F-General routines for setting up a

simulation-GVC grid.
ncom_setup_plib_sigz.F-General routines for setting up a

simulation-sig-z grid.
ncom_setup_spln.F- Spline interpolation routines from D. S. Ko.

sunw/- Fortran routines specific to Sun Ultra 2 workstations.
Makefile - Makefile to compile local source code.
wtime.c- NCOM routine to calculate wall time on Sun

systems.
util/- Directory of communication routines for shared memory (SM) and

multi-processor (MP) computing.
Makefile- Makefile to compile local source code.

 README.xmc- Brief descriptions of all communication routines.
 README.za- Brief descriptions of machine-specific routines.
 xmc.F- Select between xmc_mp.F and xmc_sm.F.

xmc_mp.F- Communication routines for multiple processors.
xmc_sm.F- Communication routines for shared memory

computer.
 za.F- Select between za_mp.F and za_sm.F.
 za_mp.F- I/O routines for multiple processors.
 za_sm.F- I/O routines for shared memory computer.

mod/- Directory of compiled NCOM Fortran modules. The modules are placed in
subdirectories that follow the naming convention
described in Section 4.1.2.

 sigz.global/- Contains compiled global NCOM Fortran modules.
src/-
 Makefile-

esmf/-
 ncom.F- ESMF driver for stand-alone NCOM.

 ncom/-Directory for NCOM driver and makefile to make the executable.
 Makefile - Compile ncom.F, link executable and put on /bin.

 ncom.F - Main driver routine for NCOM.
test_xca/-
 Makefile- Makefile to build program test_xca.F.
 test_xca.F- Program to test xctilr.
test_xcl/-
 Makefile- Makefile to build program test_xcl.F.
 test_xcl.F- Program to test xclget and xclg3d.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

13

4.2 NCOM Build Information
README.make contains essential NCOM build information. GNUmake is required for the
NCOM build. Note that on some platforms GNUmake is referenced as “gmake”. The build
targets include the following:

• ncom: builds NCOM libraries, modules and executables.
• libs: builds NCOM libraries and modules only.
• setup: builds NCOM library and modules only, without halos.
• clean: removes build specific libraries, modules and executables.
• clobber: removes all libraries, modules and executables.
• info: prints information about build settings.
• help: (default) prints help information about build.

For compiling simulations, NCOM_ARCH is set to the appropriate machine type,
NCOM_COMP (the compiler). The NCOM_USER variable refers to user specific compile
settings that are available in the appropriate
config/$(NCOM_ARCH).$(NCOM_COMP).$(NCOM_USER).mk makefile fragment.

4.2.1 Required Build Variables
There are some required build variables that must be set either on the compile line or in the user
environment:

• NCOM_ARCH (platform/architecture):
This variable must be the name as specified by the available platform-specific default
configuration: config/$(NCOM_ARCH).$(NCOM_COMP).default.mk. Each platform
architecture file found in the /config directory contains compiler options for each machine and
each Subversion branch. A directory is then made under /bin with the grid type and Subversion
branch name.

• NCOM_COMP (compiler set):
This build variable is required only when more than one compiler set is available for the selected
platform NCOM_ARCH. If only one compiler is available for the selected platform
NCOM_ARCH, then NCOM_COMP is automatically set to 'default'.

4.2.2 Optional build variables
These optional build variables may be set either on the compile line or in the user environment.

• NCOM_COMM (communication protocol):
 - Choices are:
 'mpi' = Message Passing Interface (MPI).
 'shmem' = Cray/SGI shared memory programming model (SHMEM) (only available on

platforms that support SHMEM).
 'one' = single processor (no external communication library required)
 - Default is 'mpi'.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

14

 - If build target is setup, then NCOM_COMM is overridden and set to 'one'.

• NCOM_PREC (floating point precision):
 - Choices are:
 'r4' = single precision (4-byte real).
 'r8' = double precision (8-byte real).
 - Default is 'r4'.

• NCOM_BOPT (optimization):
 - Choices are:
 'O' = optimized (optimization settings are defined in the platform/compiler specific

makefile fragment.
 'g' = debug.
 - Default is 'O'.

• NCOM_VERT (vertical coordinate code):
 - Choices are:
 'sigz' = enable sigma-z vertical coordinate code.
 'gvc' = enable generalized vertical coordinate code.
 - Default is 'sigz'.

• NCOM_USER (user specific settings):
 - Settings defined in config/$(NCOM_ARCH).$(NCOM_COMP).$(NCOM_USER).mk
 - This makefile fragment is included after the default makefile fragment and can be used to

override or add to the default settings.

• NCOM_ESMF (build with Earth System Modeling Framework, ESMF):
 - Variable need only be defined to enable ESMF (for example, NCOM_ESMF=y).
 - Requires variable ESMF_DIR (location of ESMF install) be set either on command line or in

user environment.

• NCOM_DEV (enable developer build options):
 - Variable need only be defined to enable (for example, NCOM_DEV=y).
 - Currently, this only affects the names of the subdirectories where executables, libraries and

modules are placed.

The executables, libraries and modules for a build are placed in separate subdirectories that are
named according to the optional build variables.

 Executables are placed in: 'bin/$(BUILD_ID)'
 Libraries are placed in: 'lib/$(BUILD_ID)'
 Modules are placed in: 'mod/$(BUILD_ID)'

The default definition of BUILD_ID is:

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

15

 BUILD_ID = '$(NCOM_VERT).$(NCOM_USER)'

When the developer build option is enabled (i.e., NCOM_DEV is defined), then BUILD_ID is
defined as:

 BUILD_ID =
'$(NCOM_COMP).$(NCOM_COMM).$(NCOM_PREC).$(NCOM_BOPT).$(NCOM_VERT)
.$(NCOM_USER)'

Here are some examples of the resulting BUILD_ID for various build options:

make ncom NCOM_ARCH=amd64 NCOM_COMP=pgi
 ==> BUILD_ID = 'sigz.default'
make ncom NCOM_ARCH=amd64 NCOM_COMP=pgi NCOM_VERT=gvc
 ==> BUILD_ID = 'gvc.default'
make ncom NCOM_ARCH=amd64 NCOM_COMP=pgi NCOM_PREC=r8 NCOM_BOPT=g
NCOM_DEV=y
 ==> BUILD_ID = 'pgi.mpi.r8.g.sigz.default'

The NCOM (non-ESMF) executable is named 'ncom.exe'.
The NCOM-ESMF (stand-alone) executable is named 'ncom_esmf.exe'.

Note: See file ncom_4.0/doc/README.make for more discussion.

4.3 Code Modifications
Several code modifications have been made from the original NCOM Version 1.0. For a
complete history of all code changes made, refer to ncom_guide.txt in the \ncom\4.0\doc folder.
The most recent changes are summarized below.

4.3.1 Changes from NCOM 2.6 to NCOM 4.0 (up to 12-26-2007)
• Merged 2.6 (sigma-z) and 3.4 (GVC) versions into single version. This change only

affects libsrc/ncom, libsrc/setup and the build system.
• A new C-preprocessor macro called "GVC" is used to select the sigma-z code or the

GVC code at compile time. The user input build variable NCOM_VERT (=sigz or
=gvc) is used to determine the type of build. The default is NCOM_VERT=sigz.

• The name of the subdirectories for executables, libraries and modules is modified to
include the NCOM_VERT string.

• Source files particular to the type of vertical coordinate system have either "_sigz" or
"_gvc" added to the name of the file.

• Other source files that have subroutines dependent on the coordinate system choice use
the GVC C-preprocessor macro to enable the correct subroutines.

• The top level module (libsrc/ncom/ncom1.F) uses the GVC C-preprocessor macro to
enable the correct array allocation and subroutine calls that are particular to the vertical
coordinate system choice.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

16

• There are changes to the build system interface. The build of multiple internal libraries
has been changed to a single library named libncom.a or libncom_setup.a (depending on
which target is selected). A "setup" target has been added (i.e., make setup) for building
the setup version of the library and modules.

4.3.2 NCOM Sub-Version Repository
NCOM developers at NRL routinely make improvements, changes and bug fixes to the model,
often simultaneously. Therefore, they have created an NCOM Subversion Repository
(http://subversion.tigris.org/; Collins-Sussman et al., 2007), whereby different versions of
NCOM and the complete developmental history are stored and available for user access. The
internet address for the repository is https://www7320.nrlssc.navy.mil/svn/repos/NCOM. For
web browser (read-only) viewing, via WebSVN, the repository is available at
https://www7320.nrlssc.navy.mil/svn/websvn.

The repository is accessible to NRL-SSC personnel as well as to select DoD IP addresses outside
the NRL-SSC system, such as HPCMP MSRC platforms. A user account must be requested
from and created by Tim Campbell (tim.campbell@nrlssc.navy.mil). Send Dr. Campbell a
digitally signed email request and he will reply with an encrypted email containing a username
and initial password. After receiving the initial password, go to
https://www7320.nrlssc.navy.mil/svn/websvn and click on the "Change Your SVN Password"
link to change the password.

4.4 Concept of Execution
The execution of NCOM consists of three main steps 1) making the NCOM executable, 2) setting up
a particular simulation, and 3) running the simulation.

A flow diagram illustrating the basic logic underlying the operation of NCOM is shown in Figure
4.4-1.

https://198.70.52.167/exchweb/bin/redir.asp?URL=http://subversion.tigris.org/
https://www7320.nrlssc.navy.mil/svn/repos/NCOM
https://www7320.nrlssc.navy.mil/svn/websvn
mailto:tim.campbell@nrlssc.navy.mil
https://www7320.nrlssc.navy.mil/svn/websvn

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

17

• Edit “ncom.com” to be sure the
input and output files are
defined.

• Run the NCOM setup program
and generate the model input
files.

Concept of Execution

• Check and set parameters in
MACROS.h and PARAM.h
before making the NCOM
executable.

• Set halo width “nmh” in
PARAM.h.

• Set max. allowed dimensions.
• Set MACRO values in

MACROS.h.
• Make NCOM executable file.

2) Setting up a simulation

3) Running the simulation

• Run the simulation using the
run script, model executable,
and model input files.

• Input parameters in the file
spmd.D_n (version 4.0).

• Run routines to read & write
2D and 3D arrays for use in
multi-processor (MP) with
distributed memory.

• Set flags in OPARM_n.D to
appropriate values (usually =0)
for input values that are not
read.

• Set the date and time integers to
zero in time-varying input files
if the data is fixed in time.

• Modify the output using the
subroutines in ncom1rwio.F if
needed.

• Run post-processing programs.

• Set up subdirectory for a
particular model simulation.

• Modify model input parameter
OPARM_1.D for the sim to
run.

• Modify the setup program
ncom_setup_plib_sigz (or
_gvc).

• Edit script “make.u” to set
computer architecture and
model directory.

• Check the model dir.
ncom_4.0/config for the
presence of a config. file.
Create one if one not present.

• Type “make.u” to make
ncom_setup executable.

1) Making the NCOM
executable

Figure 4.4-1: Flow diagram describing the execution of the NCOM.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

18

4.5 Interface Design

4.5.1 Interface Identification and Diagrams
The only Navy standard NCOM external interfaces are the input and output files. Tables 4.5-1
and 4.5-2 below list the input and output files and give a description of their contents.

Table 4.5-1: List and description of NCOM input files.

File Description Unit
Number

IOS_tidetbl.D General tidal constituent info, e.g., tidal frequencies,
node factors, phase corrections, etc.

OPARM_1.D Input parameters and options. 99+100*nest
odimens.D Grid and array dimensions for all the grids (nests). 99
oextd_n.A Array data for solar extinction (chl or K490 values). 99+100*nest
oextd_n.B Scalar data for solar extinction (chl or K490 values).
ohgrd_n.A Array data for horizontal grid. 99+100*nest
ohgrd_n.B Scalar data for horizontal grid.
oinit_n.A Array data for initial conditions. 99+100*nest
oinit_n.B Scalar data for initial conditions.
opnbc_n.D Data for open boundaries. 41+100*nest
orivs_n.D River inflow data. 42+100*nest
osflx_n.A Array data for surface forcing fields. 31+100*nest
osflx_n.B Scalar data for surface forcing fields.
ossst_n.A Array data for SST and SSS relaxation.
ossst_n.B Scalar data for SST and SSS relaxation.
ossss_n.A Array data for SSS relaxation.
ossss_n.B Scalar data for SSS relaxation.
otloc_n.D List of sections for which transports are to be output. 99+100*nest
otide_n.B List of constituents for which tidal BC data are

supplied.

otide_n.D Tidal BC data (tidal constituent elevation and
velocity data at the model open boundary points).

99+100*nest

otpcn_n.D List of tidal constituents for which tidal potential is
calculated.

otscl_n.A Array data for T-S climatology. 99+100*nest
otscl_n.B Scalar data for T-S climatology.
otsf_n.A Array data to which 3D T and S fields are to be

relaxed.
35+100*nest

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

19

File Description Unit
Number

otsf_n.B Scalar data to which 3D T and S fields are to be
relaxed.

owrlx_n.A Array data for relaxation timescale (3D). 99+100*nest
owrlx_n.B Scalar data for relaxation timescale.
osstf_n.A Array data for which 2D SST and SSS values are to

be relaxed.
33+100*nest

osstf_n.B Scalar data for which 2D SST and SSS values are to
be relaxed.

otsza_n.A Array data for horizontally averaged T and S fields. 99+100*nest
otsza_n.B Scalar data for horizontally averaged T and S fields.
outpt_n.D List of grid indices for points at which model results

are output.
99+100*nest(.
A)

ovgrd_n.A 3D array data for static depth to the top of each grid
cell.

ovgrd_n.B Scalar data describing the vertical grid.
ovgrd_n.D 1D array of static interface depths for z-level grid. 99+100*nest
owmdf_n.D List of water mass definitions for which volumes are

to be calculated.
99+100*nest

ozout_n.D List of depths at which fields are to be output. 99+100*nest
stop.D Stop file, used to pause an interactive run to allow

inspection of model fields.
99

spmd.D_n Parameters describing the processor layout used for
running on multiple processors.

99

Table 4.5-2: The output files and their description.

File Description Unit Number
out3d_n.A Array data for 3D output fields. 51+100*nest
out3d_n.B Scalar data for 3D output fields. 51+100*nest
outsf_n.A Array data for 2D surface output fields. 52+100*nest
outsf_n.B Scalar data for 2D surface output fields. 52+100*nest
 knrgy_n.D Volume averaged kinetic energy. 56+100*nest
 otran_n.D Transport through specified sections. 57+100*nest
 pt_nn.D Profiles of model fields at a specified point (pt

number nn).
61-98+100*nest

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

20

5.0 NCOM DETAILED DESIGN
The following sections give a detailed description of the purpose, variables, logic, and
constraints for the sigma-z version of NCOM 4.0. The GVC version contains similar
subroutines with slight changes in the variables and code for each. Descriptions of the common
blocks are found in Appendix A. Argument definitions for some of the most common subroutine
variables are found in Appendix B. All routines are written in FORTRAN 90.

5.1 Constraints and Limitations
NCOM Version 4.0 is based on fairly well tested ocean model physics and numerics. However,
there are a number of limitations of the model.
1. Since the model is hydrostatic, vertical motions on small horizontal scales may not be

properly described. This does not prevent the model from being applied with high
horizontal resolution to examine the structure of predominantly horizontal flows. However,
non-hydrostatic processes that can occur in these situations will not be correctly simulated.

2. Sigma coordinates can accurately represent the changing bottom depth but can suffer from
truncation errors in their horizontal advection, diffusion, and baroclinic pressure gradient
terms if steep bottom slopes are not adequately resolved. The solution to this problem is to
increase the horizontal grid resolution or artificially decrease the severity of the slope. The
problem of numerical truncation error with sigma coordinates can sometimes be reduced
using generalized sigma coordinates in which the sigma layers in the upper part of the water
column are specified to be nearly level or to have reduced slope. This can be especially
helpful if the strongest stratification occurs where the sigma coordinate slopes are small, so
that the baroclinic pressure gradient errors are also small.

3. The z-level grid does not suffer from these problems but has limitations of its own. Since
the z-level grid used in the original NCOM grid configuration rounds the bathymetry to the
nearest z-level, the accuracy of the representation of the bathymetry on this z-level grid
depends on the vertical grid resolution. The stepwise structure of this z-level grid can cause
some distortion of flows that cross the steps and does not provide very consistent resolution
in the bottom boundary layer unless a large number of levels are used over the depth range
at which the bottom boundary layer exists. The bottom z-level grid cells used in NCOM's
newer GVC vertical grid configuration can be truncated to match the true bathymetry, so
that bottom depths are accurately represented. However, this grid still will not generally
provide consistent resolution in the bottom boundary layer.

4. The second-order centered advection scheme provides fairly good accuracy for advection of
fields in which the gradients are well resolved, but can generate advective overshoots at
sharp fronts. The third-order upwind advection scheme tends to have less overshoot
problems than the second-order scheme and generally does a better job of advection.
However, in steeply sloping sigma layers these higher-order schemes can have more severe
truncation error problems than the second-order schemes. Hence, it is recommended that
second-order schemes be used if the bottom slopes are steep and not well resolved. There is
an option to use a flux-corrected transport (FCT) advection scheme, which combines first-
order upwind advection (which does not overshoot but is highly diffusive) with a user-
selectable high-order advection scheme to eliminate overshoots. FCT computes the
maximum fraction of the advective flux of the higher-order scheme that can be used without

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

21

causing an overshoot. In multi-dimensional applications such as in NCOM, FCT works
best if the high-order scheme being used generates smooth solutions that do not overshoot
much, so as to minimize the use of the first-order scheme. Hence, the third-order upwind
advection scheme is the generally recommended high-order scheme for use with FCT.

5. In setting the timestep for the model, the timestep limitation for the propagation of internal
waves and for horizontal and vertical advection must not be exceeded or numerical
instability may result.

6. The drying out of a grid cell due to depression of the free surface down to the sea bottom in
shallow water or to the bottom of the sigma grid (i.e., where changes in the surface
elevation are accommodated), can cause a model simulation to suddenly terminate. Hence,
the minimum water depth and the bottom of the sigma grid must be deep enough to contain
the maximum expected depression of the sea surface during the model run.

5.2 Logic and Basic Equations
Please refer to Barron et al., (2006) for a complete explanation of the physics and basic equations
of NCOM Version 4.0.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

22

5.3 NCOM Setup Routines
The setup program and main routines for the setting up of the NCOM simulation are found in the
src/setup/ and libsrc/setup/ subdirectories. There is a separate .F file for GVC setup routines
within the same directory.

5.3.1 General Setup Subroutines (ncom_setup_plib_sigz)
This file contains general routines for setting up a simulation for use with the sigma-z vertical
coordinate grid.

Subroutine Description
Adj_topo Subroutine from Dong Shan Ko to adjust a bathymetry file to reduce steep slopes

according to the criteria: abs(h(i) - h(i-1)) * 2/(h(i) + h(i-1)) < slopemax. D.S. Ko
works with the value smax = slopemax/2.
Calling Sequence: adj_topo (slopemax, im, jm, h)
Data Declaration: Integer im, jm
 Real slopemax, h

Bicubc3 Subroutine BICUBC3 computes a bicubic interpolation from a 2D grid of data to a
specified (different) 2D grid. This routine uses polynomials that are cubic in x and y
(not splines). It is assumed that the grid from which the data is being interpolated is
regularly spaced in the two coordinate directions in terms of the coordinate use for the
interpolation.
The constants needed for the interpolation between the two grids are calculated on the
first call (and whenever ireset = 1) to save time when doing repeated interpolations
between the same two grids. With bicubic interpolation, the weightings for the
interpolation depend only on the relative position of the two grids and not on the values
being interpolated.
BICUBC3 differs from BICUBC2 in that the constants that define the bicubic
interpolation (all 2,304 of them) are defined in data statements rather than being read
from a file.
BICUBC2 differs from BICUBIC in that it can interpolate in the boundary rows of the
field being interpolated from. In order to do this, quadratic polynomials are used when
interpolating within the outer boundary row of the grid of data being interpolated from
(cubic polynomials are used in the interior).
This routine will extrapolate values that are just outside the grid being interpolated
from. However, if the routine is asked to extrapolate very far outside the grid of data
being interpolated from, the program will stop and an error message will be written to
unit six.
Calling Sequence: bicubc3 (ni1, n1, m1, x1a, x1b, y1a, y1b, f1, ni2, n2, m2, x2, y2,

f2, ireset, if2, jf2, cf2)
Data Declaration: Integer ni1, n1, m1, ni2, n2, m2, ireset, if2, jf2
 Real x1a, x1b, y1a, y1b, f1, x2, y2, f2, cf2
Common Block: BICUBCN
Comments: Variables if2, jf2, and cf2 must be supplied for storing the constants used
for the interpolation, and cannot be overwritten between calls to BICUBC2 unless the

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

23

Subroutine Description
interpolation constants are recalculated (by setting ireset = 1). If there is a change in the
location of either the grid points being interpolated from, or those being interpolated to,
the interpolation constants need to be recalculated. However, the grids can be changed
without recalculating the interpolation constants, as long as the correct interpolation
constants are passed in for the grids being used.
Although this subroutine is set up to interpolate to a 2D array of locations, the
interpolation does not depend on any regularity in the locations of the points being
interpolated to. For example, a 1D array of randomly located points (e.g., from a finite-
element grid) can be interpolated to by passing the values of x2, y2, and f2 into this
subroutine as 1D arrays with m2 = 1.

Bicublk Subroutine BICUBLK defines constants needed for bicubic polynomial interpolation.
These were derived in program test/intbicube2.f. The constants allow for lower order
quadratic interpolation near the boundaries of the data being interpolated from where
full bicubic is not possible.
The nine sets of coefficients correspond to interpolation within nine "zones" of the data
being interpolated from:

1. Left-lower corner,
2. Middle-lower edge,
3. Right-lower corner,
4. Left-middle edge,
5. Interior,
6. Right-middle edge,
7. Left-upper corner,
8. Middle-top edge, and
9. Right-upper corner.

Common Block: BICUBN
Blend2D Subroutine BLEND2D blends two 2D fields based on minimum distance from the outer

open boundary according to weight w as:
h1 = w*h1 + (1-w)*h2

This routine may give inappropriate blending (too much weight to h2) in interior
regions separated from open boundary point interior regions.
Calling Sequence: blend2d (n, m, nw, w, nobmx, iob, job, h1, h2)
Data Declaration: Integer n, m, nw, nobmx, iob, job
 Real w, h1, h2

Bndydepe Subroutine BNDYDEPE checks if a boundary point is a sea point and sets depth at
boundary point = depth at adjacent interior point.
Calling Sequence: bndydepe (n, m, ibo, indcyc, h)
Data Declaration: Integer n, m, ibo, indcyc
 Real h

Bndydepz Subroutine BNDYDEPZ sets depth at open boundary points less than or equal to the
depth at the adjoining interior point on the z-level part of the grid. This is to avoid
having the inflow hit a wall as it tries to flow in on the z-level grid. The "rule" used
here is:

If h_interior > zw(ls), then h_bndy = max[h_bndy, zw(ls)]

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

24

Subroutine Description
If h_interior < zw(ls), then h_bndy = max[h_bndy, h_interior].

Hence, if the interior point is above the z-level grid, then the boundary point cannot be
deeper than zw(ls), and if the interior point is on the z-level grid, then the boundary
point cannot be deeper than the interior point. (All depths here are defined + upwards.)
This routine can be called before or after the depths have been rounded to z-levels.
Calling Sequence: bndydepz (n, m, l, ls, indcyc, zw, h)
Data Declaration: Integer n, m, indcyc
 Real l, ls, zw, h

Bndyfmc1 This subroutine closes all open boundary points for a refined bathymetry (hr) for a
nested grid (Fine Mesh, FM; also known as the “child grid”) that are closed (not open)
for the coarse, or parent, grid (CM) in which the nested grid is nested. This is done by
comparing values of hr on the FM boundary with values of hc, where hc is a coarse
bathymetry for the FM obtained directly from the parent grid. If hr is open and hc is
closed, hr is set = hc. It is assumed here that all open boundary points on the FM must
be connected to the CM grid. The number of hr pts that are converted from sea to land
is printed. This routine should be called before hc and hr are blended, since the
blending will be based on the location of open boundary pts for hc.
Calling Sequence: subroutine bndyfmcl(n,m,hc,hr)
Data Declaration: Integer n, m
 Real hc, hr

Bndyorp Subroutine BNDYORP checks for open boundary points on a grid where the adjoining
interior point is a land point. It is best to adjust the grid or the coarse grid in which the
grid is nested to avoid this situation.
Calling Sequence: bndyorp (n, m, h)
Data Declaration: Integer n, m
 Real h

Chkdimen Subroutine CHKDIMEN checks the dimensions set in the main setup program.
Calling Sequence: chkdimen (ndx, mdx, ldx, nrdx, ntcdx, nobdx, nrivdx, mxgrds,

no, mo, lo, lso, nro, ntco, nobmaxo, nrivo)
Data Declaration: Integer ndx, mdx, ldx, nrdx, ntcdx, nobdx, nrivdx,mxgrds,

no, mo, lo, lso, nro, ntco, nobmaxo, nrivo
Cm2fm_grd Subroutine CM2FM_GRD interpolates grid parameters from CM to FM, or parent to

nested grid, respectively. For the z-level grid, the FM depths are set to be the same as
the depth on the CM in which the FM point is located. For the sigma grid, the FM
depths are directly interpolated from the CM depths. No bathymetry refinement is done
here. If bathymetry refinement is desired, this must be done as a separate step. A
refined bathymetry can be computed for the FM, and then the refined and unrefined FM
bathymetries must be "blended" so that the unrefined FM bathymetry is retained near
the FM boundary and matches the CM bathymetry.
Calling Sequence: cm2fm_grd (nest1, nest2, gr2, is, js, n1, m1, l1, ls1, elon1, alat1,

dx1, dy1, h1, ang1, amsk1, x1, y1, zw1, n2, m2, l2, ls2, elon2,
alat2, dx2, dy2, h2, ang2, amsk2, x2, y2, zw2, if2, jf2, cf2)

Data Declaration: Integer nest1, nest2, gr2, is, js, n1, m1, l1, ls1, n2, m2, l2,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

25

Subroutine Description
ls2

Real elon1, alat1, dx1, dy1, h1, ang1, amsk1, x1, y1,
zw1, elon2,alat2, dx2, dy2, h2, ang2, amsk2, x2,
y2, zw2, if2, jf2, cf2

Cm2fm_ic Subroutine CM2FM_IC interpolates initial conditions from a parent grid to nested grid.
Calling Sequence: cm2fm_ic (nest1, nest2, gr2, is, js, n1, m1, l1, ls1, nr1, h1,amsk1,

x1, y1, zw1, e1, u1, v1, r1, n2, m2, l2, ls2, nr2, h2, amsk2, x2,
y2, zw2, e2, u2, v2, r2, if2, jf2, cf2)

Data Declaration: Integer nest1, nest2,is, js, n1, m1, l1, ls1, nr1, n2, m2, l2,
ls2, nr2, if2, jf2

Real gr2, h1, amsk1, x1, y1, zw1, e1, u1, v1, r1, h2,
amsk2, x2, y2, zw2, e2, u2, v2, r2, cf2

Cm2fm_ic5 Subroutine CM2FM_IC5 interpolates initial conditions from a CM (“parent” grid) to an
FM (“child” grid). Fields are vertically interpolated to z-levels, horizontally filled, then
horizontally interpolated on z-levels, and finally vertically interpolated back to sigma
layers.
Calling Sequence: cm2fm_ic5(nest1,nest2,intrpo,intv,gr2,nl,ml,l1,ls1,nr1,zw1,h1,

ang1,amsk1,x1,y1,zwt1,e1,u1,v1,r1,n2,m2,l2,ls2,nr2,zw2,h2,ang
2,amsk2,x2,y2,zwt2, e2,u2,v2,r2,if2,jf2,cf2)

Data Declaration: Integer nest1, nest2,is, js, n1, m1, l1, ls1, nr1, n2, m2,
l2, ls2, nr2, if2, jf2

 Real gr2, h1, amsk1, x1, y1, zw1, e1, u1, v1, r1, h2,
amsk2, x2, y2, zw2, e2, u2, v2, r2, cf2

Cm2fm_sfx Subroutine CM2FM_SFX interpolates surface forcing fields from a CM to an FM.
Calling Sequence: cm2fm_sfx (nest1, nest2, indatp, indtau, indsft, indsfs, indsol, n1,

m1, nr1,x1, y1, pa1, tx1, ty1, rs1, qr1, n2, m2, nr2, x2, y2, pa2,
tx2, ty2, rs2, qr2, if2, jf2, cf2)

Data Declaration: Integer nest1, nest2, indatp, indtau, indsft, indsfs,indsol,
n1, m1,nr1,n2, m2, nr2, if2, jf2

Real x1, y1, pa1, tx1, ty1, rs1, qr1, x2, y2, pa2, tx2, ty2,
rs2, qr2,cf2

Conphase Subroutine CONPHASE converts phase angle from 0 to 360 or from -180 to +180 to try
to avoid discontinuity, if it exists.
Calling Sequence: conphase(n,y)
Data Declaration: Integer n
 Real y

Consea Subroutine CONSEA defines a single contiguous area of ocean within a rectangular
region using a 2D array of ocean depths. The largest contiguous ocean area is
determined to be the region of interest. The depth values outside the contiguous main
ocean basin are set to zero. A (real) land-sea mask is returned for the main contiguous
ocean basin with the sea points = 1.0 and all other points = 0.0.
Calling Sequence: consea (ni, n, m, d, dmsk)
Data Declaration: Integer ni, n, m

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

26

Subroutine Description
 Real d, dmsk

Creep4 Subroutine CREEP4 extends values where amsk=1 into regions where amsk=0. The
method replaces "bad" pts with an average of the adjoining "good" pts. Only the
adjoining "good" points to the E,W,N,S are used, i.e., the adjacent corner pts are not
used. When extending for the purpose of interpolation near land-sea boundaries, only a
few iterations may be needed (e.g., itermx=10). To fill the entire field, set itermx >
max(n,m) to be sure all pts will be filled.
Calling Sequence: creep4(t,amsk,n,m,itermx)
Data Declaration: Integer n, m, itermx
 Real t, amsk

Depths_m1 Subroutine DEPTHS_M1 computes an array of mid-layer (static) depths at point (i, j).
There is an assumption here that model variables are defined at the layer mid-depth,
i.e., for which the vertical grid stretching is not accounted.
Calling Sequence: depths_m1 (n, m, l, ls, h, zw, i, j, kb, zm1)
Data Declaration: Integer n, m, l, ls, i, j, kb
 Real h, zw, zm1

Depths_w1 Subroutine DEPTHS_W1 computes an array of (static) depths to top of layers at point
(i, j).
Calling Sequence: depths_w1 (n, m, l, ls, h, zw, i, j, kb, zw1)
Data Declaration: Integer n, m, l, ls, i, j, kb
 Real h, zw, zw1

Depths_w3 Subroutine DEPTHS_W3 calculates 3D arrays of (static) depths at layer interfaces.
Calling Sequence: depths_w3 (n, m, l, ls, h, zw, zw3)
Data Declaration: Integer n, m, l, ls
 Real h, zw, zw3

Gaubmp3 Subroutine GAUBMP3 defines symmetric Gaussian elevation bumps.
Calling Sequence: gaubmp3 (n, m, amsk, bmax, scal, rem, e)
Data Declaration: Integer n, m
 Real amsk, bmax, scal, rem, e

Gaubmpi Subroutine GAUBMPI defines symmetric Gaussian internal bumps.
Calling Sequence: gaubmpi (n, m, l, amp, radius, s)
Data Declaration: Integer n, m, l
 Real amp, radius, s

Getint Subroutine GETINT requests integer numbers from standard input. If no value is input,
the default value is retained.
Calling Sequence: getint (query, format, idefalt)
Data Declaration: Integer idefalt
 Character query, format

Getlog2 Subroutine GETLOG2 requests a logical value from standard input. If no value is input,
the default value is returned.
Calling Sequence: getlog2 (query, default)
Data Declaration: Character query
 Logical default

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

27

Subroutine Description
Getreal Subroutine GETREAL requests real numbers from standard input. If no value is input,

the default value is retained.
Calling Sequence: getreal (query, format, default)
Data Declaration: Character query, format
 Real default

Get_zuw Subroutine GET_ZUW computes grid fields needed to plot grid cells.
Calling Sequence: get_zuw(n,m,l,ls,lz,n1,n2,m1,m2,h,z_w,kb,z_uw,z_vw)
Data Declaration: Integer n,m,l,ls,lz,n1,n2,m1,m2,kb(n,m)
 Real h,z_w,z_uw,z_vw

Getvc2z Subroutine GETVC2Z vertically interpolates a 3D array from a general vertical
coordinate to a specified z-level grid.
Calling Sequence: gvc2z(indpt,intv,n,m,l,n1,n2,m1,m2,zwt,amsk,t,lz,z,amskz,tz)
Data Declaration: Integer indpt,intv,n,m,l,n1,n2,m1,m2,lz
 Real t,zwt,amsk,z,tz,amskz

Hminmax Subroutine HMINMAX sets the minimum and maximum depth for bathymetry. All
depths are defined + upward, i.e., points with h >= 0 are land points.
Calling Sequence: hminmax (n, m, hmin, hmax, h, ind)
Data Declaration: Integer n, m, ind
 Real hmin, hmax, h

Hor_av2 Subroutine HOR_AV2 calculates horizontally averaged values of a 3D model field (t)
at specified depths (z2). Uses Ko's cubic spline routines.
Calling Sequence: hor_av2 (n, m, l, ls, h, zw, t, l2, z2, t2, k2max)
Data Declaration: Integer n, m, l, ls, l2, k2max

Hor_avts Subroutine HOR_AVTS calculates horizontally averaged T and S fields on the model
grid.
Calling Sequence: hor_avts (n, m, l, ls, h, zw, t, s)
Data Declaration: Integer n, m
 Real l, ls, h, zw, t, s

Logrid Subroutine LOGRID calculates the interface depths (zb) for a vertical grid that is
linearly spaced (constant) near the surface and logarithmically stretched below a
particular depth.
Calling Sequence: logrid (lp1, ll, dz1, depth, strfac, zb)
Data Declaration: Integer lp1, l1
 Real dz1, depth, strfac, zb

Lsmask2 Subroutine LSMASK2 calculates a 2D land-sea mask based on where the depth (h) is
below a "small" value.
Calling Sequence: lsmask2 (n, m, h, amsk)
Data Declaration: Integer n, m
 Real h, amsk

Lsmask3 Subroutine LSMASK3 calculates a 3D land-sea mask.
Calling Sequence: lsmask3 (n, m, l, ls, h, zw, amsk)
Data Declaration: Integer n, m, l, ls
 Real h, zw, amsk

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

28

Subroutine Description
Minmax Subroutine MINMAX finds the minimum and maximum values of an array t.

Calling Sequence: minmax (t, n, tmin, tmax)
Data Declaration: Integer n
 Real t, tmin, tmax

Minmaxm Subroutine MINMAXM calculates minimum and maximum of a function f over points
where the mask array amsk is set to one.
Calling Sequence: minmaxm (n, m, l, n1, n2, m1, m2, l1, l2, f, amsk, fmin, fmax)
Data Declaration: Integer n, m, l, n1, n2, m1, m2, l1, l2
 Real f, amsk, fmin, fmax

Orphan Subroutine ORPHAN removes orphan grid points from bathymetry file, i.e., points that
have land on three sides.
Calling Sequence: orphan (n, m, h, amsk)
Data Declaration: Integer n, m
 Real h, amsk

Pause2 Subroutine PAUSE2 pauses the execution of a program that is being run interactively.
Plotuv Subroutine PLOTUV prints or plots scalar or horizontal vector fields. It does this

through the following steps:
• Prints/plots contours of u or v (x and y components of vector field).
• Prints/plots contours of vector magnitude.
• Plots vector arrows.

Calling Sequence: plotuv (indp, u, nu, mu, lu, v, nv, mv, lv, n1, n2, m1, m2, l1, l2,
indgrd, amsk, nm, mm, lm, name, amult, cint, vscale)

Data Declaration: Integer indp, nu, mu, lu, nv, mv, lv, n1, n2, m1, m2, l1, l2,
indgrd, nm, mm, lm, name

 Real u, v, amsk, amult, cint, vscale
Common Block: CONRE4

Prnplt1 Subroutine PRNPLT1 prints or plots a scalar or horizontal vector field.
Calling Sequence: prnplt1 (time, indgrd, n, m, l, am, nam, mam, lam, u, nu, mu, lu,

v, nv, mv,lv, name, amult, cint, vscale)
Data Declaration: Integer indgrd, n, m, l, nam, mam, lam, nu, mu, lu, nv,

mv, lvm
 Real time, am, u, v, amult, cint, vscale
 Character name

Prnpltic Subroutine PRNPLTIC prints and/or plots a model grid and initial conditions.
Calling Sequence: prnpltic (nest, n, m, l, nr, elon, alat, zw3, h, amsk, e, u, v, r)
Data Declaration: Integer nest, n, m, l, nr
 Real elon, alat, zw3, h, amsk, e, u, v, r

Read_hgrid Subroutine READ_HGRID gets NCOM horizontal grid arrays.
Calling Sequence: read_hgrid(infile, n,m, elon,alat,dx,dy,h,ang)
Data Declaration: Character infile
 Integer n, m
 Real elon,alat,dx,dy,h,ang

Read_out3h Subroutine READ_OUT3H gets model output fields for time=timed. This is an

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

29

Subroutine Description
alternative for using RW_OUT3F and is set up to use direct access to skip directly to
desired fields at the desired time.
Note: This subroutine is for single processor use only and the model arrays do not have
halos. Do not use with halos.
Note: The flags ind* return the specified field when set =1. This choice is provided
since reading output can be accelerated if fields not needed are not requested.
Note: This subroutine currently assumes that ALL the fields were written to the output
file. If this is not the case, some modifications to this subroutine will be needed to
account for the smaller number of fields on the file.
Calling Sequence: read_out3h(infile,timed,dt,inde,indvb,indv,indw,indt,inds,inda,

n,m,l, e,udb,vdb,u,v,w,t,s, patm,usflx,vsflx,tflx,sflx,solar,surruf)
Data Declaration: Character infile
 Integer inde,indvb, indw,indt,inds,inda,n,m,l
 Real timed,dt, e,udb,vdb,u,v,w,t,s, patm, usflx, vsflx,

tflx, sflx, solar,surruf
Read_outsfc Subroutine READ_OUTSFC gets model surface output fields for time=timed. This is

an alternative to using rw_outsfa and is set up to use direct access to skip directly to
desired fields at the desired time.
Calling Sequence: read_outsfc(infile,timed,dt,inde,indvb,indv,indt,inds,inda,n,m,

e,udb,vdb,u,v,t,s,usflx,vsflx)
Data Declaration: Character infile
 Integer inde,indvb,indv,indt, inds,inda,n,m
 Real timed, dt,e,udb, vdb,u, v,t, s, usflx, vsflx

Read_vgrid Subroutine READ_VGRID reads input files for the NCOM vertical grid.
Calling Sequence: read_vgrid(infile,l,ls,zw)
Data Declaration: Character infile
 Integer l,ls
 Real zw

Repeat Subroutine REPEAT repeats (propagates) an array an integer multiple of times.
Calling Sequence: repeat (mult, ipos, ivec, n, m, l, n2, m2, f, f2)
Data Declaration: Integer mult, ipos, ivec, n, m, l, n2, m2
 Real f, f2

Rnd_zlev

Subroutine RND_ZLEV rounds off bottom depth (h) to nearest z-level.
Calling Sequence: rnd_zlev (n, m, l, ls, zw, h)
Data Declaration: Integer n, m, l, ls
 Real zw, h

Slope2 Subroutine SLOPE2 examines the rate of change of slopes.
Calling Sequence: slope2 (n, m, h, amsk)
Data Declaration: Integer n, m
 Real h, amsk

Slopmax Subroutine SLOPMAX calculates the maximum relative slopes in x and y.
Calling Sequence: slopmax (n, m, h, amsk)
Data Declaration: Integer n, m

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

30

Subroutine Description
 Real h, amsk

Smth2m Subroutine SMTH2M applies a Hanning-type box filter to a 2D array f. The array f is
only filtered at points where amsk is greater than 0.5.
Calling Sequence: smth2m (ni, n, m, amsk, f)
Data Declaration: Integer ni, n, m
 Real amsk, f

Strlen Subroutine STRLEN finds the total number of characters in a string not including
trailing blanks.
Calling Sequence: strlen (string, nc)
Data Declaration: Integer nc
 Character string

Sz_trans Subroutine SZ_TRANS inspects the sigma/z-level transition for a FM grid nested in a
CM grid.
Calling Sequence: sz_trans (n1, m1, l1, ls1, h1, zw1, amsk1, n2, m2, l2, ls2, h2,

zw2, amsk2)
Data Declaration: Integer n1, m1, l1, ls, ls1, n2, m2, l2, ls2
 Real h1, zw1, amsk1, h2, zw2, amsk2

Tablk2 Subroutine TABLK2 interpolates a value from a 2D array using linear interpolation (i.
e., table lookup). The array f varies with both x and y and the spacing of the values of f
along the x- and y-axes is assumed to be constant.
Calling Sequence: tablk2 (ni, n, m, xa, xb, ya, yb, f, x2, y2, f2, indext)
Data Declaration: Integer ni, n, m, indext
 Real xa, xb, ya, yb, f, x2, y2, f2

Tablk3 Subroutine TABLK3 interpolates a value from a 3D array f using linear interpolation (i.
e. table lookup). The spacing of the x and y arguments of f is assumed to be constant.
Spacing in z can be variable.
Calling Sequence: tablk3 (ni, mj, n, m, l, x, y, z, f, x2, y2, z2, f2, indext)
Data Declaration: Integer ni, mi, n, m, l, indext
 Real x, y, z, f, x2, y2, z2, f2

Tablok Subroutine TABLOK interpolates a value from a 2D array f using linear interpolation
(i.e. table lookup). The spacing of the x and y arguments of f is assumed to be constant.
Calling Sequence: tablok (ni, n, m, x y, f, x2, y2, f2, indext)
Data Declaration: Integer ni, n, m, indext
 Real x, y, f, x2, y2, f2

Topave Subroutine TOPAVE obtains water depth at location (elon, alat) by performing an
average over a region of size dlon x dlat centered at (elon, alat). The dlon x dlat region
is subdivided into a 5 x 5 grid of sub-regions, and the bathymetry is obtained for each
sub-region and is averaged over the region. If the number of sub-regions that are on
land is >= nlndmin, the grid point is set to land.
Calling Sequence: topave (elon, alat, dlon, dlat, nlndmin, h)
Data Declaration: Integer nlndmin
 Real elon, alat, dlon, dlat, h

Vgrid_plt Subroutine VGRID_PLT is a program to plot the layout of grid cells for specified

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

31

Subroutine Description
vertical sections. Plots of the grid cell layout can be either along x or y coordinates.
Calling Sequence: vgrid_plt(n,m,l,ls,lz,h,z_w)
Data Declaration: Integer n,m,l,ls,lz
 Real h,z_w

Z2gvc Subroutine Z2GVC interpolates a 3D array in the vertical from z-levels (fixed depths)
to a general vertical coordinate at all the sea points on the general vertical grid (as
denoted by amsk).
Calling Sequence: z2gvc(indpt,intv,lz,z,amskz,tz, n,m,l, n1,n2,m1,m2,zwt,amsk,t)
Data Declaration: Integer indpt,intv,lz,n,m,l,n1,n2,m1,m2
 Real t,zwt,amsk,z,tz,amskz

5.3.2 Spline Interpolation Subroutines (ncom_setup_spln)
This file contains spline interpolation routines from Dong Shan Ko.

Subroutine Description
Spak1d Subroutine SPAK1D is a 1D interpolation using Akima spline Y = f(X) (Akima,

1970).
Calling Sequence: spak1d (x, y, n, xi, yi, ni)
Data Declaration: Integer n, ni
 Real x, y, xi, yi

Spak2d Subroutine SPAK2D is a 2D interpolation using an Akima spline F = f(x, y) (Akima,
1970).
Calling Sequence: spak2d (f, x, y, nx, ny, fi, xi, yi, nxi, nyi)
Data Declaration: Integer nx, ny, nxi, nyi
 Real f, x, y, fi, xi, yi

Splakm

Subroutine SPLAKM calculates coefficients of an Akima spline (Akima, 1970).
Some changes have been made by D. S. Ko. Subroutine SPLAKM should not be
separated from the following subroutine SPLDER. This version uses Lagrangian
polynomials to extrapolate. The arguments are changed in the subroutine statement
for efficiency (s = WORK, slope = WORK2).
Calling Sequence: splakm (x, y, nx, coef, work, work2)
Data Declaration: Integer nx
 Real x, y, coef, work, work2

Splder Calling Sequence: splder (x, y, n, nbr, break, coef)
Data Declaration: Integer n, nbr
 Real x, y, break, coef

5.4 Main NCOM Subroutines (libsrc/ ncom/)
This is a directory of main NCOM Fortran routines.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

32

 5.4.1 File ncom1
This file contains all of the old ncom1 files except the driver module (found in ncom.F on
directory src/ncom/).

Subroutine Description
Coamm Subroutine COAMM coordinates the calculation of the various atmospheric and

oceanic model grids.
Calling Sequence: coamm (nto, mto, iec, no, mo, lo, lso, nro, nqo, ntypo, ntco,

nobmaxo,nrvmaxo, ni4s, nl4s, nr4s)
Data Declaration: Integer nto, mto, iec, no, mo, lo, lso, nro, nqo, ntypo,

ntco,nobmaxo, nrvmaxo, ni4s, nl4s, nr4s
Get_nestseq Subroutine GET_NESTSEQ computes grid calculation sequences.

Calling Sequence: get_nestseq(nstepsmx,nsteps,nestseq)
Data Declaration: Integer nstepsmx,nsteps,nestseq

Logico2 Subroutine LOGICO2 computes a grid calculation sequence table "nestseq" on the first
calculation pass to define the ocean grid calculation sequence during a single ocean
calculation cycle. An ocean calculation cycle consists of the updating of all the ocean
grids over a time period corresponding to one timestep of the main grid. The same
sequence of calculations is repeated for each ocean calculation cycle. Being in a simple
table, the grid calculation sequence can easily be inverted to get the calculation sequence
for the ocean model inverse.
Calling Sequence: logico (ocean, modeocn, surfbco, bndvalo, relaxo, feedbko)
Data Declaration: Integer modeocn
 Logical ocean, surfbco, bndvalo, relaxo, feedbko

Memmo Subroutine MEMMO sets pointers and allocates memory for ocean model forecast
grids.
Calling Sequence: memmo (no, mo, lo, lso, nro, nqo, ntypo, ntco, nobmaxo,

nrvmaxo, ni4s,nl4s, nr4s)
Data Declaration: Integer no, mo, lo, lso, nro, nqo, ntypo, ntco, nobmaxo,

nrvmaxo, ni4s, nl4s, nr4s
Memmo2 Subroutine MEMMO2 sets pointers and allocates memory for an ocean model nest.

Calling Sequence: memmo2 (no, mo, lo, lso, nro, nqo, ntypo, ntco, nobmaxo,
nrvmaxo, ni4s, nl4s, nr4s)

Data Declaration: Integer no, mo, lo, lso, nro, nqo, ntypo, ntco, nobmaxo,
nrvmaxo,ni4s, nl4s, nr4s

Common Blocks: OBLK
Ncom_Init Initializes NCOM message passing.

Calling Sequence: NCOM_Init(mpi_comm)
Data Declaration: Integer mpi_comm

NCOM_Run Initializes flag for the end of the run.
Calling Sequence: NCOM_Run(end_time)
Data Declaration: Real end_time

NCOM_Final Initializes NCOM message passing.
Calling Sequence: NCOM_Final(no_stop)
Data Declaration: Logical no_stop

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

33

Subroutine Description
Omodel Subroutine for NCOM ocean model.

Calling Sequence: omodel (modeocn, na, ma, iec, n, m, l, ls, nr, nq, ntyp, ntc,
nobmax,nrvmax, il, i2, i3, j1, j2, kb, kbu, kbv, is, ie, ism, iem,
isp, iep, js, je, ibo, ke, ilx1, ilx2, iob1, iob2, irv1, irv2, iter,
ramp, times, dti2, de, fda, botruf, cbu, cbv, istype, iptype, qrf,
ext, elon, alat, ang, dx, dxu, dxv, dxr, dxur, dxvr, dy, dyu, dyv,
dyr, dyur, dyvr, ddx, ddy, da, dau, dav, dar, daur, davr, h, hu,
hv, h1, h1u, h1v, sw, sm, dsw, dsm, dsm5, dswr, dsmr, zw, zm,
dzw, dzm, dzm5, dzwr, dzmr, amsk, umsk, vmsk, e, d, du, dv,
d1, d1u, d1v, udb, vdb, ub, vb, u, v, r, q, rmean, zkm, zkh,
wubot, wvbot, sor, sorb, patm, usflx, vsflx, rsflx, solar, surruf,
rlx, wlx, tmlx, nob, neob, nuob, nvob, iob, job, iobi, jobi, ivob,
jvob, eob, ubob, vbob, cgwb, uob, vob, rob, tmob, etab, etpb,
utab, utpb, vtab, vtpb, nriv, nrriv, lriv, iriv, jriv, isriv, ieriv,
wtriv, qriv, rriv, tmriv, w, tl, rho, sos, xk, yk, zkb, wxy, wxz, o)

Data Declaration: Integer modeocn, na, ma, iec, n, m, l, ls, nr, nq, ntyp,
ntc, nobmax,nrvmax, il, i2, i3, j1, j2, kb, kbu,
kbv, is, ie, ism, iem, isp, iep, js, je, ibo, ke, ilx1,
ilx2, iob1, iob2, irv1, irv2, iter, istype, iptype,
nob, neob, nuob, nvob, iob, job, iobi, jobi, ivob,
jvob, nriv, nrriv, lriv, iriv, jriv, isriv, ieriv

Real ramp, times, dti2, de, fda, botruf, cbu, cbv, qrf,
ext, elon,alat, ang, dx, dxu, dxv, dxr, dxur, dxvr,
dy, dyu, dyv, dyr,
dyur, dyvr, ddx, ddy, da, dau, dav, dar, daur,
davr, h, hu, hv, h1, h1u, h1v, sw, sm, dsw, dsm,
dsm5, dswr, dsmr, zw, zm, dzw, dzm, dzm5,
dzwr, dzmr, amsk, umsk, vmsk, e, d,du, dv, d1,
d1u, d1v, udb, vdb, ub, vb, u, v, r, q,
rmean,zkm, zkh, wubot, wvbot, sor, sorb, patm,
usflx, vsflx, rsflx,solar, surruf, rlx, wlx, tmlx,
eob, ubob, vbob, cgwb, uob,vob, rob, tmob,
etab, etpb, utab, utpb, vtab, vtpb, wtriv,qriv,
rriv, tmriv, w, tl, rho, sos, xk, yk, zkb, wxy,
wxz, o

Common Blocks : PAR5O
 PAR6O
 PAR7O
 PAR8O

Padr4add Subroutine PADR4ADD adds a padding zone to the real*4 allocation array.
Calling Sequence: padr4add (nr4s, cdesc)
Data Declaration: Integer nr4s
 Character cdesc
Common Blocks: PADR4I

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

34

Subroutine Description
 PADR4C

Padr4set Subroutine PADR4SET sets all padding zones (defined by PADR4ADD) to
PADVAL.
Calling Sequence: padr4set (o)
Data Declaration: Real o

Padr4tst Subroutine PADR4TST tests all padding zones for a nesting nest. Padding zones are
defined by PADR4ADD and set by PADR4SET.
Calling Sequence: padr4tst (o, ctest)
Data Declaration: Real o
 Character ctest

Timeset Subroutine TIMESET sets current time and resets certain parameters that depend on
the time (if indicated).
Calling Sequence: timeset(iter,dtfrac,times)
Data Declaration: Real dtfrac,times
 Integer iter

Xcspmd An interface needed for the compiler to properly resolve subroutines.
Calling Sequence: xcspmd(mpi_comm_in)
Data Declaration: Integer mpi_comm_in

5.4.2 Free-Surface Calculation Subroutines (ncom1baro)
Subroutine Description

Baro1 Subroutine BARO1 calculates new surface elevation and barotropic velocity
explicitly with a timestep that is the same as that (dti2) used for the baroclinic
calculations.
Calling Sequence: baro1 (ind, fu, fv, n, m, l, i1, i2, i3, is, ie, ism, iem, js, je, iec,

locate, dti2,dxv, dyu, dar, sorb, e, udb, vdb)
Data Declaration: Integer ind, n, m, l, i1, i2, i3, is, ie, ism, iem, js, je, iec,

locate
 Real fu, fv, dti2, dxv, dyu, dar, sorb, e, udb, vdb

Baro2 Subroutine BARO2 calculates new surface elevation and barotropic velocity
implicitly using the same timestep (dti2) used for the baroclinic calculations. The
calculation has been split into two parts (called with ind = 1 and ind = 2) to allow the
open boundary condition to be set from subroutine UPDATE.
Calling Sequence: baro2 (ind, fu, fv, aax, aay, na, ma, n, m, l, i1, i2, i3, is, ie, ism,

iem, isp, iep, js, je, iec, indbaro, indsolv, indrag, indcyc,
indiag, shrnkwp, locate, batch, dti2, eg1, vg1, vg2, vg3, g, cbu,
cbv, small, dxv, dxur, dyu, dyvr, da, dar, amsk, umsk, vmsk,
sorb, e, du, dv, udb, vdb, u, v, wubot, wvbot, ax, ay, bb, ff,
wk1, wk2, wk3, wk4, wk5)

Data Declaration: Integer ind, na, ma, n, m, l, i1, i2, i3, is, ie, ism, iem,
isp, iep, js, je, iec, indbaro, indsolv, indrag,
indcyc, indiag, locate

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

35

Subroutine Description
Real fu, fv, aax, aay, shrnkwp, , batch, dti2, eg1, vg1,

vg2, vg3,g, cbu, cbv, small, dxv, dxur, dyu,
dyvr, da, dar, amsk, umsk, vmsk, sorb, e, du, dv,
udb, vdb, u, v, wubot, wvbot,ax, ay, bb, ff, wk1,
wk2, wk3, wk4, wk5

Cgssor Subroutine CGSSOR conjugates the gradient elliptic solver with red-black SSOR
preconditioner.
Calling Sequence: cgssor (indiag, indcyc, na, ma, n, m, is, ie, js, je, ax, ay, bb, ff,

e, zz, rr, pp,qq, rbb)
Data Declaration: Integer indiag, indcyc, na, ma, n, m, is, ie, js, je
 Real ax, ay, bb, ff, e, zz, rr, pp, qq, rbb

Cgssorc Subroutine CGSSORC is a red-black SSOR preconditioner for CGSSOR.
Calling Sequence: cgssorc (indcyc, na, ma, n, m, is, isr, isb, ie, js, je, ax, ay, zz, rr,

rbb)
Data Declaration: Integer indcyc, na, ma, n, m, is, isr, isb, ie, js, je
 Real ax, ay, zz, rr, rbb

Sorcyc2 Subroutine SORCYC2 is a SOR solver designed to be used with cyclic BC.
Calling Sequence: sorcyc2 (batch, indsolv, indiag, indcyc, n, m, is, ie, js, je, ax,

ay, bb, gg, e, wk1, wk2)
Data Declaration: Integer indsolv, indiag, indcyc, n, m, is, ie, js, je
 Real batch, ax, ay, bb, gg, e, wk1, wk2

5.4.3 COAMPS Specific Subroutines (ncom1coam)
Subroutine Description

Bulk_ls Subroutine BULK_LS calculates the latent and sensible heat flux using bulk
formulas, the SST from the ocean model, and some atmospheric fields. Net longwave
radiation is not calculated since this depends on cloud conditions that are not
available. The latent heat flux calculated here is used to provide the evaporation for
the surface salt flux if indsfs=4. Variables "times" and "solar" are passed in only for
diagnostics.
Calling Sequence: bulk_ls(nt,mt,n,m,nr, is,ie,js,je,ico1,ico2, w1co, times, ramp,

amsk, t,s, patm2,wspd2,tair2,humd2, rsflx,solar, evap)
Data Declaration: Integer nt,mt, n,m,nr,is, ie, js, je, ico1, ico2
 Real w1co, times, ramp,amsk, t,s,patm2, wspd2, tair2,

humd2, rsflx, solar
get_csfx Subroutine to get COAMPS surface flux fields for the ocean model. It is set up for

real-time data only. Fractional hrs (itmsec) must be incorporated.
Calling Sequence: get_csfx(indatp,indtau,indsft,indsfs,indsol,nt,mt,n,m,nr,

is,ie,js,je,ico1,ico2,idate,itime,timed,climatp,w1co,elon,alat,an
g,amsk, patm2,usflx2,vsflx2,rsflx2,solar2,wspd2,tair2,humd2,
tmcoa2, wxy)

Data Declaration: Integer indatp,indtau,indsft, indsfs, indsol, nt, mt,
n,m,nr,ico1,ico2,idate,itime, is,ie,js,je

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

36

Subroutine Description
 Real timed,climatp,w1co,elon, alat, amsk, patm2,

usflx2,vsflx2,rsflx2,
solar2,wspd2,tair2,humd2,wxy,tmcoa2

Get_csst Subroutine GET_CSST gets COAMPS SST and/or SSS fields. This is set up for real
time data only.
Calling Sequence: get_csst(indsst,indsss,nt,mt,n,m,is,ie,js,je,ist1,ist2,iss1,iss2,

idate,itime,timed,climatp, w1st,w1ss, elon,alat,amsk, sst2,sss2,
tmsst2,tmsss2, wxy)

Data Declaration: Integer indsst, indsss, nt, mt, n, m, ist1, ist2, iss1, iss2,
idate, itime, is,ie,js,je

Real timed,climatp,w1st,w1ss,elon,alat,amsk,
sst2,sss2,tmsst2,tmsss2, wxy

Interp2d Subroutine INTERP2D performs 2D bilinear interpolation. It interpolates f(x,y) to
the m points g where 1 < x < nx, 1 < y < ny.
Calling Sequence: interp2d(f,nx,ny, g,x,y,m)
Data Declaration: Integer nx, ny, m
 Real f,g,y,x

Misng_cf Subroutine MISNG_CF prints out an error message and halts the program when a
missing COAMPS field is detected.
Calling Sequence: misng_cf(istat,sub,field)
Data Declaration: Integer istat
 Character sub, field

Ncom_bicubcc Subroutine NCOM_BICUBCC computes a bicubic interpolation from a 2D grid of
data to a specified set of points. This routine uses polynomials that are cubic in x and
y (not splines). It is assumed that the grid being interpolated from is regularly spaced
in terms of the two coordinates being used for the interpolation. This routine will
extrapolate values that are just outside the grid being interpolated from. However, if
the routine is asked to extrapolate very far outside the grid from which data is being
interpolated, the program will stop and an error message will be written to unit 6.
Calling Sequence: ncom_bicubcc(f1,n1,m1,x2,y2,f2,n2,m2,irange)
Data Declaration: Integer n1,m1,n2,m2,irange
 Real f1,x2,y2,f2

Ncom_biliner Subroutine NCOM_BILINER performs bilinear interpolation of surface flux fields
to the model grid.
Calling Sequence: ncom_biliner(f,md,nd,x,y,g,n,m)
Data Declaration: Integer md,nd,n,m
 Real f,x,y,g

Ncom_creep4 Subroutine NCOM_CREEP4 extends values where amsk=1 into regions where
amsk=0. The method is to replace "bad" pts with an average of the adjoining "good"
pts. Only the adjoining "good" points to the E,W,N,and S are used, i.e., the adjacent
corner pts are not used. When extending for the purpose of interpolation near land-
sea boundaries, only a few iterations may be needed (e.g., itermx=10). To fill the
entire field, set itermx > max(n,m) to be sure all pts will be filled.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

37

Subroutine Description
Calling Sequence: ncom_creep4(t,amsk,n,m,itermx)
Data Declaration: Integer n,m,itermx
 Real amsk, t

Ncom_rotang2 Subroutine NCOM_ROTANG2 determines the rotation angle for wind vectors when
converting from a COAMPS Lambert conformal or polar stereographic grid-relative
projection to earth-relative (true) coordinates.
Calling Sequence: ncom_rotang2(igrid,grdlon,gcon,stdlon,m,n,grdrot)
Data Declaration: Integer igrid,m,n
 Real gcon,grdlon,gridrot,stdlon,a

R_coa_dr Subroutine R_COA_DR gets parameters needed for COAMPS fields. These are
stored in common block COAMPS, which is in COAMPS.h.
Calling Sequence: r_coa_dr (nest, idate, itime, batch, indsbc, indatp, indtau,

indsft, indsfs,indsol,indsst,indsss)
Data Declaration: Integer nest,idate,itime,indsbc, indatp, indtau, indsft,

indsfs, indsol, indsst, indsss
 Logical batch

Rcoamps4 Subroutine RCOAMPS4 gets wind stress, heat and moisture fluxes generated by the
COAMPS model and interpolates them to the ocean model grid. RCOAMPS4 has
been updated to include the option to calculate the latent and sensible heat fluxes via
bulk formulas using the current model SST.
Calling Sequence: rcoamps4(indatp,indtau,indsft,indsfs,indsol,nt,mt,n,m,nr,

is,ie,js,je,idate,itime,elon,alat,ang,amsk,curdtg,itmsec,md,nd,pa
tm2,usflx2,vsflx2,rsflx2,solar2,wspd2,tair2,humd2)

Data Declaration: Character curdtg
 Integer indatp,indtau,indsft,indsfs,indsol,nt,mt,n,m,nr,

idate,itime,itmsec,md,nd,is,ie,js,je
 Real elon, alat, ang, amsk, patm2, usflx2, vsflx2,

rsflx2, solar2, wspd2, tair2, humd2
Rcoasst4 Subroutine RCOASST4 reads COAMPS reanalysis SST.

Calling Sequence: rcoasst4(indsst,indsss,nt,mt,n,m,is,ie,js,je,elon,alat,amsk,
curdtg,itmsec, md,nd, sst2,sss2)

Data Declaration: Character curdtg
 Integer indsst,indsss,nt, mt,n, m, itmsec, md, nd, is, js, je
 Real elon,alat, amsk, sst2, sss2

Sigz2z Subroutine SIGZ2Z interpolates model fields to specified depths. Put a special value
at land points or simply set to zero.
Calling Sequence: sigz2z(n,m,l1,kb1,spval,z1,t1,l2,kb2,z2,t2)
Data Declaration: Integer n,m,l1,l2,kb1,kb2
 Real z1,t1,t2,spval,z2

Write_ff Subroutine WRITE_FF outputs NCOM fields as COAMPS-style flat files.
Calling Sequence: write_ff(nt, mt,n,m,l,ls,kb,iter,h,hu,hv,h1,h1u,h1v, z_w,z_t,

zm,amsk,umsk,vmsk,e,u,v,w,t,s,patm,usflx,vsflx,tsflx,ssflx,sol
ar,surruf,zm3)

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

38

Subroutine Description
Data Declaration: Integer nt,mt,n,m,l,ls,iter
 Real h,hu,hv,h1,h1u,h1v,z_w, z_t,zm,amsk, umsk,
 vmsk,e,u,v,w,t,s, patm, usflx, vsflx, tsflx, ssflx,

solar, surruf, zm3

5.4.4 Flux Corrected Transport Subroutines (ncom1fct_sigz)
Subroutine Description

Advr_fct1 Subroutine ADVR_FCT1 calculates:
• the first step for FCT advection of scalar fields:
• low-order upwind advective fluxes for scalar fields.
• high-order advective fluxes for scalar fields.
• anti-diffusive fluxes = (high-order fluxes) - (upwind fluxes).
• intermediate values of scalar fields using upwind fluxes.

Note: Anti-diffusive fluxes (ADFs) must be saved in 3D arrays.
Calling Sequence: advr_fct1(j,jf,jb,ua,va,wa,flyr, adxr,adyr,adzr,ro,n,m,l,ls,nr,

i1,i3,j1,j2,is,ie,isp,iep,js,je,iec,sigdif,locate,ramp,times,dti2,sm
all,da,dar,sw,sm,dsm,zw,zm,dzm,amsk,sor,d1,r,rmean,xk,yk,
flx,flz,dv_i3,dvpr)

Data Declaration: Integer j,jf,jb,n,m,l,ls,nr,i1,i3,j1,j2, ie, is, isp, iep, js, je,
iec

 Real ua, va,wa, flyr, adxr, adyr, adzr, ro, ramp, times,
dti2,small, da, dar, sw, sm, dsm, zw,zm,dzm,
amsk,sor,d1,r,rmean,xk,yk

Advr_fct2 Subroutine ADVR_FCT2 limits anti-diffusive fluxes, updates the intermediate scalar
values for the anti-diffusive fluxes, and adds some additional source terms (surface
flux, solar flux, river inflows).
Calling Sequence: advr_fct2(j, adxr,adyr,adzr,rp,rn, n,m,l,ls,nr,i1,j1,j2,is,ie,

isp,iep,js,je,ke,iec,indriv,indrivr,indbio,locate,idate,itime,iter,ra
mp,times,dti2,ext,small,da,dar,sw,sm,dsm,zw,zm,dzmr,amsk,s
or,d1,r,rsflx,solar,nrvmax,lriv,iriv,jriv,isriv,ieriv,irv1,irv2,rriv,
w1riv, rsor, dtdvr, dr)

Data Declaration: Integer j,n,m,l,ls,nr,i1,j1,j2,is, ie,isp,iep,ke,js,je,iec,
indriv, indrivr, indbio idate, itime, iter

Real adxr, adyr, adzr, rp, rn, ramp, times, dti2,small,
ext, da, dar, sw, sm,dsm,zw, zm, dzmr,amsk, sor,
d1, r, rsflx, solar

Logical locate
Updatrq_fct Subroutine UPDATRQ_FCT updates scalar and turbulence fields. Scalar fields are

updated using FCT advection. A slab calculation is used for some of the calculations
whereby the calculation proceeds through the model domain in x-z sections from the
back of the domain to the front.
Calling Sequence: updatrq_fct(nt,mt,n,m,l,ls,nr,nq,i1,i2,i3,j1,j2,kb,is,ie,

isp,iep,js,je,iec,ke,mode,indadvr,indxk,indzk,indtkes,indlxts,in

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

39

Subroutine Description
driv,indrivr,indbio,indiag,noslip,sigdif,largmix,vector,shrnkwp
,locate,idate,itime,iter,ramp,times,dti2,asf,vg1,vg2,vg3,g,rho0,
xkmin,ykmin,xkre,prnxi,zkmmin,zkhmin,zkre,botruf,rlax_ts,rl
ax_ds,ext,small,dxur,dxv,dyu,dyvr,da,dar,h1,sw,sm,dsw,dsm,d
sm5,dswr,dsmr,zw,zm,dzw,dzm,dzm5,dzwr,dzmr,amsk,umsk,v
msk,sor,sorb,e,d,du,dv,d1,d1u,d1v,udb,vdb,u,v,w,r,q,tl,rho,sos,
rmean,xk,yk,zkm,zkh,usflx,vsflx,rsflx,solar,surruf,wubot,wvbo
t,ilx1,ilx2,rlx,wlx,tmlx,nobmax,nob,iob,job,nrvmax,lriv,iriv,jri
v,isriv,ieriv,irv1,irv2,rriv,w1riv,uacr,vacr,wpf,flyr,flyq,qold,ua
,va,wa,rjp1, wxz)

Data Declaration: Integer nt,mt,n,m,l,ls, nr,np,i1,i2,i3,j1,j2,kb,is,ie,
isp,iep,ke,js,j3,iec,mode,indadvr,indxk,indzk,in
dtkes,indlxts,indriv,indrivr,indbio,indiag,idate,
itime,iter,ilx1,ilx2,nobmax,nob,iob,job,nrvmax,l
riv,irv1,irv2,iriv,jriv,isriv,ieriv,

Real ramp,times,dti2,asf, vg1,vg2,vg3,g,rho0,xkmin,
ykmin,skre,prnxi,zkmmin,zkhmin,zkre,botruf,rl
ax_ts,rlax_ds,ext,small,dxur,dxv,dyu,dyvr,da,da
r,h1,sw,sm,dsw,dsm,dsm5,dswr,dsmr,zw,zm,dz
w,dzm,dzm5,dzwr,dzmr,amsk,umsk,vmsk,sor,s
orb,e,d,du,dv,d1,d1u,d1v,udb,vdb,u,v,w,r,q,t1,r
ho,sos,rmean,xk,yk,zkm,zkh,usflx,vsflx,rsflx,so
lar,surruf,wubot,wvbot rriv,w1riv,rlx,wlx

Logical noslip,sigdif,largmix,vector, shrnkwp,locate

5.4.5 Initialization Subroutines (ncom1init_sigz)
Subroutine Description

Check Subroutine CHECK checks the model inputs.
Calling Sequence: check (na, ma, n, m, l, ls, nr, ntyp, i1, i2, i3, j1, j2, times, fda,

botruf, cbu,cbv, istype, iptype, qrf, ext, elon, alat, ang, dx, dxu,
dxv, dxr, dxur, dxvr, dy, dyu, dyv, dyr, dyur, dyvr, da, dau,
dav, dar, daur, davr, h, hu, hv, h1, h1u, h1v, sw, sm, dsw, dsm,
dsm5, dswr, dsmr, zw, zm, dzw, dzm, dzm5, dzwr, dzmr,
amsk, umsk, vmsk, sor, sorb, e, d, du, dv, d1, d1u, d1v, udb,
vdb, ub, vb, u, v, w, r, rmean)

Data Declaration: Integer na, ma, n, m, l, ls, nr, ntyp, i1, i2, i3, j1, j2,
istype, iptype

 Real times, fda, botruf, cbu, cbv, qrf, ext, elon, alat,
ang, dx, dxu, dxv, dxr, dxur, dxvr, dy, dyu, dyv,
dyr, dyur, dyvr, da, dau, dav, dar, daur, davr, h,
hu, hv, h1, h1u, h1v, sw, sm, dsw, dsm, dsm5,
dswr, dsmr, zw, zm, dzw, dzm, dzm5, dzwr,
dzmr, amsk, umsk, vmsk, sor, sorb, e, d, du, dv,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

40

Subroutine Description
d1, d1u, d1v, udb, vdb, ub, vb, u, v, w, r, rmean

Chkarr Subroutine CHKARR checks the range of a real array.
Calling Sequence: chkarr (name, a, n, m, l, na, ma, ind, amin, amax, ierr, ie)
Data Declaration: Integer name, n, m, l, na, ma, ind, ierr, ie

Real a, amin, amax
Chkint Subroutine CHKINT checks the range of an integer variable.

Calling Sequence: chkint (name, iv, ind, imin, imax, ierr, ie)
Data Declaration: Integer name, iv, ind, imin, imax, ierr, ie

Chklog Subroutine CHKLOG checks the value of the logical variable.
Calling Sequence: chklog (name, iv, val, ierr, ie)
Data Declaration: Integer name, iv, ierr, ie
 Real val

Chkrel Subroutine CHKREL checks the range of the real variable.
Calling Sequence: chkrel (name, a, ind, amin, amax, ierr, ie)
Data Declaration: Integer name, ind, ierr, ie
 Real a, amin, amax

Chkrit Subroutine CHKRIT prints out an error message.
Calling Sequence: chkrit (string, ierr, ie)
Data Declaration: Integer ierr, ie
 Real string

Define Subroutine DEFINE defines the model parameters.
Calling Sequence: define (na, ma, n, m, botruf)
Data Declaration: Integer na, ma, n, m
 Real botruf

Dragcb Subroutine DRAGCB calculates the bottom drag coefficients.
Calling Sequence: dragcb (wetdry, n, m, l, ls, is, ie, ism, iem, js, je, iec, amsk, kb,

h1, d1,dsm5, dzm5, botruf, cbmin, cbu, cbv)
Data Declaration: Integer n, m, l, ls, is, ie, ism, iem, js, je, iec, kb
 Logical wetdry
 Real amsk, h1, d1, dsm5, dzm5, botruf, cbmin, cbu,

cbv
Initial Subroutine INITIAL defines initial values for model fields.

Calling Sequence: initial (na, ma, n, m, l, ls, nr, i1, j1, forward, locate, e, u, v, r)
Data Declaration: Integer na, ma, n, m, l, ls, nr, i1, j1
 Logical forward, locate
 Real e, u, v, r

Lsmasks Subroutine LSMASKS calculates land-sea masks.
Calling Sequence: lsmasks (na, ma, n, m, l, ls, i1, is, ie, js, je, iec, kb, amsk, umsk,

vmsk, d,wpf)
Data Declaration: Integer na, ma, n, m, l, ls, i1, is, ie, js, je, iec, kb
 Real amsk, umsk, vmsk, d, wpf

Meanr Subroutine MEANR defines (1) the horizontal mean (horizontally averaged) density
field on the model grid and (2) the mean or "climate" scalar (T and S) fields on the

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

41

Subroutine Description
model grid.
Calling Sequence: meanr (nt, mt, n, m, l, ls, nr, j1, is, ie, js, je, iec, indden, indcyc,

indiag,rho0, g, sm, zm, h1, amsk, r, rmean, ae, be, ce, de, sos)
Data Declaration: Integer nt, mt, n, m, l, ls, nr, j1, is, ie, js, je, iec, indden,

indcyc,indiag
 Real rho0, g, sm, zm, h1, amsk, r, rmean, ae, be, ce,

de, sos
Paramset Subroutine PARAMSET copies model parameters between the common blocks for

all the grids (in COMMON.inc) and the common blocks for the current grid
(NCOMPAR.inc).
ind = flag to denote:
 =1 get parameters from common blocks for all nests;
 =2 put parameters into common blocks for all nests.
Calling Sequence: paramset(ind)
Data Declaration: Integer ind

Prntpar Subroutine PRNTPAR prints out model parameters.
Calling Sequence: prntpar(na,ma,n,m,l,ls,kb,kbu,kbv,is,ie,js,je,iec,fda,botruf,dx,

dy,da,dar,h,sw,sm,dsw,dsm,dsm5,dswr,dsmr,zw,zm,dzw,dzm,d
zm5,dzwr,dzmr,amsk,umsk,vmsk, wpf)

Data Declaration: Integer na,ma,n,m,l,ls,kb,kbu,kbv,is,ie,js,je,iec
 Real fda, botruf,dx,dy,da,dar,h,sw,sm, dsw,dsm,

dsm5,dswr,dsmr,zw,zm,dzw,dzm,dzm5,dzwr,dz
mr,amsk,umsk,vmsk,wpf

Region Subroutine REGION defines the model region.
Calling Sequence: region(na,ma,n,m,indcyc,iec,ibo,elon,alat,dx,dy,h,ang,amsk,

wsp)
Data Declaration: Integer na,ma,n,m,indcyc,iec,ibo
 Real elon,alat,dx,dy,h,ang,amsk,wsp

Setup1 Subroutine SETUP1 performs some setup calculations.
Calling Sequence: setup1(na,ma,n,m,l,ls,i1,i2,i3,j1,j2,kb,kbu,kbv,is,ie,ism,iem,

isp,iep,js,je,iec,ibo,ke,indcor,indobc,indcyc,shrnkwp,locate,iter
times,fda,pi,raddeg,degrad,small,elon,alat,ang,dx,dxr,dxu,dxur,
dxv,dxvr,dy,dyr,dyu,dyur,dyv,dyvr,ddx,ddy,da,dar,dau,daur,da
v,davr,h,hu,hv,h1,h1u,h1v,sw,sm,dsw,dsm,dsm5,dswr,dsmr,zw
zm,dzw,dzm,dzm5,dzwr,dzmr,wpf)

Data Declaration: Integer na,ma,n,m,l,ls,i1,i2,i3,j1,j2,kb,kbu,kbv,is,ie,
ism,iem,isp,iep,ke,js,je,iec,ibo,indcor,indobc,indcyc,

 iter
Real times,fda,pi, raddeg, degrad, small, elon, alat,ang,dx,

dxr,dxu,dxur,dxv,dxvr,dy,dyr,dyu,dyur,dyv,dyvr,ddx,
ddy,da,dar,dau,daur,dav,davr,h,hu,hv,h1h1u,h1v,sw,d
sm5,dswr,dsmr,zw,zm,dzw,dzm,dzm5,dwr,dzmr,wpf

Setup2 Subroutine SETUP2 performs more setup calculations.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

42

Subroutine Description
Calling Sequence: setup2(na,ma,n,m,l,ls,nr, i1,i2, j1,j2,kb, is,ie,ism,iem,

isp,iep,js,je,iec,indcyc,wetdry,rstart,forward,
locate,botruf,cbmin,cbu,cbv,small,h,hu,hv,h1,h1u,h1v,dsm,ds
m5,dswr,dsmr,zw,zm,dzw,dzm,dzm5,amsk,umsk,vmsk,e,d,du,
dv,d1,d1u,udb,vdb,ub,vb,u,v,r,wpf)

Data Declaration: Logical rstart,wetdry,forward,locate
 Integer na,ma,n,m,l,ls,nr, i1,i2,j1,j2,kb,is,ism,iem,isp,
 iep,js,je,iec, indcyc
 Real botruf,cbmin,cbu,cbv,smmall,h,hu,h1,h1u,hv,h1v,

dsm,dsm5,dzm,dzm5,amsk,umsk,vmsk,e,d,du,dv,d1
d1u,d1v,udb,vdb,ub,vb,u,vbv,r,wpf

Setzero Subroutine SETZERO initializes some arrays to zero.
Calling Sequence: setzero(n,m,l,ls,nr,nq,ntyp, kb,kbu,kbv,is,ie,ism,iem,isp,iep,ke,

fda,botruf,cbu,cbv,istype,iptype,qrf,ext,elon,alat,ang,dx,dxu,dx
v,dxr,dxur,dxvr,dy,dyu,dyv,dyr,dyur,dyvr,da,dau,dav,dar,daur,
davr,h,hu,hv,h1,h1u,h1v,sw,sm,dsw,dsm,dsm5,dswr,dsmr,
zw,zm,dzw,dzm,dzm5,dzwr,dzmr, amsk,umsk,vmsk, sor,sorb,
e,d,du,dv,d1,d1u,d1v,udb,vdb,ub,vb,u,v,w,r,q,tl,rho,sos,rmean,
xk,yk,zkm,zkh,wubot,wvbot,patm,usflx,vsflx,rsflx,solar,surruf,
nobmax,iob,job,iobi,jobi,ivob,jvob,eob,ubob,vbob,cgwb,uob,v
ob,rob,ntc,etab,etpb,utab,utpb,vtab,vtpb,nrvmax,iriv,jriv,isriv,i
eriv,rriv)

Data Declaration: Integer n,m,l,ls,nr,nq,ntyp, kb,kbu,kbv,is,ie,ism,iem,
isp,iep,ke,istype,iptype,nobmax,iob,job,iobi,
jobi,ivob,jvob,ntc, nrvmax,iriv,jriv,isriv,ieriv

 Real qrf,ext,elon,alat,ang,dx,dxu,dxv,dxr,dxur,
dxvr,dy,dyu,dyv,dyr,dyur,dyvr,da,dau,dav,dar,d
aur,davr,h,hu,hv,h1,h1u,h1v,sw,sm,dsw,dsm,ds
m5,dswr,dsmr,zw,zm,dzw,dzm,dzm5,dzwr,dzm
r,amsk,umsk,vmsk,sor,sorb,e,d,du,dv,d1,d1u,d1
v,udb,vdb,ub,vb,u,v,w,r,q,tl,rho,sos,rmean,xk,y
k,zkm,zkh,wubot,wvbot,patm,usflx,vsflx,rsflx,s
olar,surruf

Vergrid Subroutine VERGRID defines the vertical grid.
Calling Sequence: vergrid(l,ls,zw)
Data Declaration: Integer l,ls
 Real zw

5.4.6 Nested Grid Boundary Condition Interpolation Subroutines (ncom1nest2)
Subroutine Description

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

43

Subroutine Description
Feebko Subroutine FEEBKO feeds back information from FM, or nested grid to a CM, or

parent grid. The CM values are replaced with FM values only if there is at least one
FM point within the CM grid-cell volume. This calculation is valid for any FM to
CM grid-spacing ratio.
Calling Sequence: feebko(nestf, nestc, nratio, isf, jsf, nc, mc, lc, nrc, nf, mf, lf,

nrf, kbc, kbf,j1c, j1f, amskc, rc, amskf, rf)
Data Declaration: Integer nestf, nestc, nratio, isf, jsf, nc, mc, lc, nrc, nf,

mf, lf, nrf,kbc, kbf, j1c, j1f
 Real amskc, rc, amskf, rf

Intbln2 Subroutine INTBLN2 spatially interpolates from a CM to a point on a nested FM.
Calling Sequence: intbln2 (r,ncg,id,ec,i,j,a,b,ef)
Data Declaration: Integer ncg, i,j, id

Real r, ec, a, b, ef
Nestbco2 Subroutine NESTBCO2 computes the boundary values needed for calculations on

the nest. The grid for which values are being calculated is referred to here as the fine
mesh, or nested grid (FM). The grid from which values are being taken is referred to
as the coarse mesh (CM), or parent grid, to the nested grid.
Calling Data: nestbco2 (nest, nestc, nratio, isf, jsf, nct, mct, nc,mc, lc, nrc, nf,

mf, lf, nft,mft,nrf, ibof, kbf,kbuf, kbvf, i1, i2, j1, j2, timesc,
timesf, amskc, ec, udbc, vdbc, uc, vc, rc, amskf,hf, nobmax,
nob, neob, nuob, nvob, iob, job, ivob, jvob, iob1, iob2, eob,
ubob, vbob, uob, vob, rob, tmob)

Data Declaration: Integer nest, nestc, nratio, isf, jsf, nct,mct,nc, mc, lc,
nrc, nft,mft, ieecf, nf,mf, lf, nrf, ibof,kbf,kbuf,
kbvf, i1, i2, j1, j2, nobmax, nob, neob, nuob,
nvob, iob, job, ivob, jvob, iob1, iob2

 Real timesc, timesf, amskc, ec, udbc, vdbc, uc, vc,
rc, amskf, hf, eob, ubob,vbob, uob, vob, rob,
tmob

Nestbwtr2 Subroutine NESTBWTR2 calculates weights needed to interpolate from a coarse
mesh to a point on a nested fine mesh at grid cell centers.
Calling Sequence: nestbwtr2 (nft,mft,ibofg,ncg,icg1,jcg1,amc,r, isf,jsf,ifg,jfg,id,i,
 j,a,b)
Data Declaration: Integer nft,mft,ibofg,ncg,icg1,jcg1,isf,jsf,ifg,jfg,id,i,j
 Real amc, r, a, b

Nestbwtu2 Subroutine NESTBWTU2 calculates weights needed to interpolate from a coarse
mesh to a point on a nested fine mesh at a normal velocity point. These normal
velocity points lie on the boundary on the FM and also lie along grid-cell boundaries
of the CM.
Calling Sequence: nestbwtu2 (nft,mft,ibofg,ncg,icg1,jcg1,amc,r, isf,jsf,ifg,jfg,id,i,
 j,a,b)
Data Declaration: Integer nft,mft,ibofg,ncg,icg1,jcg1,isf,jsf,ifg,jfg,id,i,j
 Real amc, r, a, b

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

44

Subroutine Description
Nestbwtv2 Subroutine NESTBWTV2 calculates weights needed to interpolate from a coarse

mesh to a point on a nested fine mesh at a tangent normal velocity point.
Calling Sequence: nestbwtv2 (nft,mft,ibofg,ncg,icg1,jcg1,amc,r, isf,jsf,ifg,jfg,id,i,
 j,a,b)
Data Declaration: Integer nft,mft,ibofg,ncg,icg1,jcg1,isf,jsf,ifg,jfg,id,i,j
 Real amc, r, a, b

Nestindx Subroutine NESTINDX calculates indices for XCLGET calls for all tiles. XCLGET
calls are to get CM values for interpolation to the FM, or nested grid. This same
calculation is done on each tile. This subroutine also calculates CM mask values
along open boundaries of the FM. These are used to calculate indices and weights
for interpolation.
Calling Sequence: nestindx(nest,nestc,gratio,isf,jsf,nct,mct,nc,mc,lc,nft,mft,nf,mf,

lf,ibofg,amskc,amskf,hf,ncg,icg1,jcg1,amc, udbc)
Data Declaration: Integer nest,nestc,isf,jsf,nct,mct,nc,mc,lc,nft,mft,nf,

 mf,lf,ibofg,ncg,icg1,jcg1
 Real gratio,amskf,hf,amskc,amc,udbc

Testxclg Subroutine TESTXCLG tests calls to XCLGET.
Calling Sequence: testxclg(ind,ncg,icg1,jcg1,udbc,nc,mc)
Data Declaration: Integer ind,nc,mc,ncg,icg1,jcg1
 Real udbc

Xclget2 Subroutine XCLGET2 acts as an interface to XCLGET to keep aline from being
over-written on a call to XCLGET unless the local node=mnflg.
Calling Sequence: xclget2(aline,nl, a,n,m, i1,j1,ii,ji, mnflg)
Data Declaration: Integer nl,n,m,i1,j1,ii,ji,mnflg
 Real aline, a

5.4.7 Open Boundary Condition Subroutines (ncom1obc_sigz)
Subroutine Description

Cycbc Subroutine CYCBC sets lateral boundary values on cyclic boundaries for problems
with cyclic BC. With a C grid and second-order spatial differences, three grid cells at
the end of the grid mask overlap in the direction taken to be cyclic.
Calling Sequence: cycbc (ind, aax, aay, n, m, l, nr, nq, i1, j1, j2, indbaro, indxk,

indzk,indcyc, locate, e, udb, vdb, ub, vb, u, v, w, r, q, tl, zkm,
zkh, wubot, wvbot)

Data Declaration: Integer ind, n, m, l, nr, nq, i1, j1, j2, indbaro, indxk,
indzk, indcyc

 Real e, udb, vdb, ub, vb, u, v, w, r, q, tl, zkm, zkh,
wubot, wvbot

 Logical locate
Cycset Subroutine CYCSET sets cyclic boundary conditions for model variables.

Calling Sequence: cycseti (indcyc, iloc, iset, n, m, ld, f)
Data Declaration: Integer indcyc, iloc, iset, n, m, ld

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

45

Subroutine Description
 Real f

Cycseti Subroutine CYCSETI sets cyclic boundary conditions for model variables.
CYCSETI differs from CYCSET in that an integer array, rather than a real array, is
set cyclic.
Calling Sequence: cycseti (indcyc, iloc, iset, n, m, ld, f)
Data Declaration: Integer indcyc, iloc, iset, n, m, ld
 Real f

Halo Subroutine HALO updates halos.
Calling Sequence: halo (ind, aax, aay, na, ma, n, m, l, nr, nq, i1, j1, j2, indbaro,

indxk, indzk,locate, e, udb, vdb, ub, vb, u, v, w, r, q, tl, zkm,
zkh, wubot, wvbot)

Data Declaration: Integer ind, na, ma n, m, l, nr, nq, i1, j1, j2, indbaro,
indxk, indzk

 Real aa., aay, e, udb, vdb, ub, vb, u, v, w, r, q, tl,
zkm, zkh,wubot, wvbot

 Logical locate
Openbc Subroutine OPENBC defines values at open boundaries. Most of the open boundary

conditions in this routine have been consolidated.
Calling Sequence: openbc (ind, ax, aay, nt, mt, n, m, l, nr, nq, i1, i2, i3, j1, j2, kb,

kbu, kbv,is, ie, ism, iem, isp, iep, iec, ibo, ramp, times, dti2,
elon, alat, ang, dxr, dxur, dxvr, dyr, dyur, dyvr, h, hu, hv, h1,
dsm, dzm, du, dv, amsk, umsk, vmsk, e, d, d1, udb, vdb, ub,
vb, u, v, w, r, q, tl, zkm, zkh, wubot, wvbot, nobmax, nob,
neob, nuob, nvob, iob, job, iobi, jobi, ivob, jvob, iob1, iob2,
eob, ubob, vbob, cgwb, uob, vob, rob, tmob, ntc, etab, etpb,
utab, utpb, vtab, vtpb)

Data Declaration: Integer ind, nt, mt, n, m, l, nr, nq, i1, i2, i3, j1,j2, kb,
kbu, kby, is,ie, ism, iem, isp, iep, iec, ibo,
nobmax, nob, neob, nuob,nvob, iob, job, iobi,
jobi, ivob, jvob, iob1, iob2, ntc

 Real ax, aay, ramp, times, dti2, elon, alat, ang, dxr,
dxur, dxvr,dyr, dyur, dyvr, h, hu, hv, h1, dsm,
dzm, du, dy, amsk, umsk, vmsk, e, d, d1, udb,
vdb, ub, vb, u, v, w, r, q, tl, zkm, zkh, wubot,
wvbot, eob, ubob, vbob, cgwb, uob, vob, rob,
tmob, etab, etpb, utab, utpb, vtab, vtpb

Readobc Subroutine READOBC reads OBC data from an input file and computes the
weighting to be used for linear interpolation to the model time.
Calling Sequence: readobc (nt ,mt, n, m, l, nr, iec, idate, itime, times, nobmax,

nob, neob,nuob, nvob, iob, job, ivob, jvob, iob1, iob2, eob,
ubob, vbob, uob, vob, rob, tmob, w1)

Data Declaration: Integer nt, mt, n, m, l, nr, iec, idate, itime, nobmax, nob,
neob,nuob, nvob, iob, job, ivob, jvob, iob1, iob2

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

46

Subroutine Description
 Real times, eob, ubob, vbob, uob, vob, rob, tmob, w1

5.4.8 Output Subroutines (ncom1out_sigz)
Subroutine Description

Bndypro Subroutine BNDYPRO inspects profiles at open boundary points. This subroutine is
for diagnostics only.
Calling Sequence: bndypro (n, m, l, ls, nr, nobmax, nob, i1, j1, sw, sm, zw, zm,

d1,iob, job, rob)
Data Declaration: Integer n, m, l, ls, nr, nobmax, nob, il, jl, iob, job
 Real sw, sm, zw, zm, dl, rob

Kinergy Subroutine KINERGY calculates total kinetic energy.
Calling Sequence: kinergy (nest,nt,mt,n, m, l, i1, times, rho0, d1, da, dsm, dzm,

amsk, u, v, wsp1,wsp2,ake)
Data Declaration: Integer nest,nt,mt,n,m,l,i1
 Real times, rho0, ake,d1, da, dsm, dzm, amsk, u, v,

wsp1, wsp2
Ncom_Output Subroutine NCOM_OUTPUT outputs model results.

Calling Sequence: ncom_output (nt, mt, n, m, l, ls, nr, nq, i1, i2, i3, j1, j2, kb, iter,
times,botruf, cbu, cbv, ext, elon, alat, ang, dx, dxu, dxv, dxr,
dxur, dxvr, dy, dyu, dyv, dyr, dyur, dyvr, da, dau, dav, dar,
daur, davr, h, hu, hv, h1, h1u, h1v, sw, sm, dsw, dsm, dsm5,
dswr, dsmr, zw, zm, dzw, dzm, dzm5, dzwr, dzmr, amsk,
umsk, vmsk, sor, sorb, e, d, du, dv, d1, d1u, d1v, udb, vdb, ub,
vb, u, v, w, r, q, tl, rho, sos, rmean, xk, yk, zkm, zkh, patm,
usflx, vsflx, rsflx, solar, surruf, zlay, amp2, pha2, vmax, hneg)

Data Declaration: Integer nt, mt, n, m, l, ls, nr, nq, i1, i2, i3, j1, j2, kb, iter
 Real times, botruf, cbu, cbv, ext, elon, alat, ang, dx,

dxu,dxv, dxr, dxur, dxvr, dy, dyu, dyv, dyr,
dyur, dyvr, da, dau, dav, dar, daur, davr, h, hu,
hv, h1, h1u, h1v, sw, sm, dsw, dsm, dsm5, dswr,
dsmr, zw, zm, dzw, dzm, dzm5, dzwr, dzmr,
amsk, umsk, vmsk, sor, sorb, e, d, du, dv, d1,
d1u, d1v, udb, vdb, ub, vb, u, v, w, r, q, tl, rho,
sos, rmean, xk, yk, zkm, zkh, patm, usflx, vsflx,
rsflx, solar, surruf, zlay, amp2, pha2, vmax,
hneg

Outpt Subroutine OUTPT outputs values and profiles at particular (horizontal) grid points.
Calling Sequence: outpt(nest, ii, ig,jg, i,j, nt,mt,n,m,l,ls,nr,kb,elon,alat,dx,dy,h,h1,

ang,sw,sm,zw,zm,botruf,cbu,cbv,times,e,u,v,w,t,s,rho,rmean,q
2,q2l,tl,zkm,zkh,ext,patm,usflx,vsflx,rsflx,solar,surruf)

Data Declaration: Integer nest,ii,ig,jg, i,j,nt,mt,n,m,l,ls,nr,kb
 Real elon,alat,dx,dy,h,h1,ang,sw,sm,zw,zm,botruf,cbu,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

47

Subroutine Description
cbv,times,e,u,v,w,t,s,rho,rmean,q2,q2l,t1,

 zkmzkh,ext,patm,usflx,vsflx,rsflx,solar,arruf
Trans_st Subroutine TRANS_ST calculates transport through a single point. The location of

the strait may involve a single section along the x or y axes, or two sections that meet
at right angles in the case that is1 ne is2 and js1 ne ns2.
Calling Sequence: trans_st(is1,js1,is2,js2,idir,n,m,l,kb,dxv,dyu,dsm,dzm,d1u,d1v,

u,v,tin,tot)
Data Declaration: Integer is1,js1,is2,js2,idir,n,m,l,kb
 Real dxv,dyu,dsm,d1u,d1v,u,v,tin,tot

Transp Subroutine TRANSP computes transport through a single x-z or y-z section.
Calculation below assumes that velocities are zero at land points.
Calling Sequence: transp(n,m,l,isg,jsg,ns,ii,ji,isgn,dsm,dzm,vs,dxs,d1s,tin,tot)
Data Declaration: Integer n,m,l,isg,ns,ii,ji,isgn
 Real vs,dxs,d1s,dsm,dzm,tin,tot

Transprt Subroutine TRANSPRT calculates transports through straits or other sections. The
rules for defining the location of the strait and the direction of flow through it are:
 (1) Looking downstream (i.e., in the direction defined to be the direction of

positive transport) through the strait, pt [is1,js1] is on the left and pt [is2,js2]
is on the right. The strait can be defined as a single section along the x or y
axis, or two sections that form a right angle in the case that the left end of the
section has different i and j indices than the right end of the section. This
attempts to accommodate straits that do not lie along either the x or y axes.

 (2) The direction from pt [is1,js1] to pt [is2,js2] or to the corner pt (if there is a
corner pt), is indicated by idir. The idir values are: =1 +x; =2 -x; =3 +y;
=4 -y. The indices [is1,js1] and [is2,js2] correspond to the velocity points
along which the transport is calculated.

Calling Sequence: transprt(nest,nt,mt,n,m,l,kb,dxv,dyu,dsm,dzm,iter,dti,times,
d1u,d1v,u,v)

Data Declaration: Integer nest,nt,mt,n,m,l,kb,iter
 Real dxv,dyu,dsm,dti,times,d1u,d1v,u,v

Wm_vol Subroutine WM_VOL computes the volume of various water masses that are present
in the model domain. The water mass T, S, and potential density bounds are defined
within an input file that is read in.
Calling Sequence: wm_vol(nest,nt,mt,n,m,l,ls,j,times, dx,dy,d1,dsm,dzm,amsk,r)
Data Declaration: Integer nest,nt,mt,n,m,l,ls,j1
 Real times,dx,dy,d1,amsk,r,dsm

5.4.9 Generic and Plotting Subroutines (ncom1plib)
File ncom1plib contains generic routines from Paul Martin’s library “plib” as well as plotting
subroutines.

Subroutine Description
Akcoll Subroutine AKCOLL provides attenuation coefficients for pure seawater at

wavelength w for range (700-2650 nm). For wavelengths below 800 nm, the data

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

48

Subroutine Description
from Smith and Baker (1981) in subroutine AKSMITH should be used since these
data should have more accuracy and better resolution.
Calling Sequence: akcoll (w, ak)
Data Declaration: Real w, ak

Akmorl Subroutine AKMORL calculates attenuation coefficient (in seawater) for light of
wavelengths from 200 to 800 nm (Morel, 1988). Morel's data actually only cover the
range 400 to 700 nm. Above and below this range, attenuation coefficients for pure
seawater (Smith and Baker, 1981) are used, along with an extrapolation of Morel's
chlorophyll parameters. Hence, the effects of chlorophyll on attenuation will not be
very accurate outside the range 400-700 nm (but may be better than nothing).
Calling Sequence: akmorl (c, w, ak)
Data Declaration: Real c, w, ak

Ce_mel Subroutine CE_MEL calculates coefficients of thermal expansion for temperature
and salinity using the equation of state from POM developed by George Mellor,
which is described in Mellor (1991).
Calling Sequence: ce_mel(t,s,zm,alpha,beta)
Data Declaration: Real t,s,zm,alpha,beta

Dateadd Subroutine DATEADD calculates idate and itime, which is timed days (real) after the
reference date idate0, itime0. For time differences of about one year, the calculation
of the time difference is accurate to within about one minute for 32-bit integers.
Calling Sequence: dateadd (idate0, itime0, timed, idate, itime)
Data Declaration: Integer idate0, itime0, idate, itime
 Real timed

Dateadd2m Subroutine DATEADD2M calculates idate and itime, which is timed days (real) after
the reference date idate0, itime0. For time differences of about one year, the
calculation of the time difference is accurate to within about one minute for 32-bit
integers.
Calling Sequence: dateadd2m (idate0, itime0, timed, idate, itime)
Data Declaration: Integer idate0, itime0, idate, itime
 Real timed

Datedfc Subroutine DATEDFC determines the type of date input and (a) for a climate date,
calculates elapsed time in days from the beginning of the year, (b) for non-climate
(real time) date, calculates elapsed time in days from the reference date.
Calling Sequence: datedfc (idate, itime, idate0, itime0, indclim, timed)
Data Declaration: Integer idate, itime, idate0, itime0, indclim

Real timed
Datedif Subroutine DATEDIF calculates elapsed time in days (real) from the reference date.

For time differences of about one year, the calculation of the time difference is
accurate to within approximately one minute for 32-bit integers.
Calling Sequence: datedif (idate, itime, idate0, itime0, timed)
Data Declaration: Integer idate, itime, idat0, itime0
 Real timed

Daycen Subroutine DAYCEN converts a specific date and time to the fractional day-of-the-

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

49

Subroutine Description
century, which is defined as the number of days since 00Z, January 1, 1900. This is
used for temporal interpolation and to compute time differences between dates.
Calling Sequence: daycen (idate, timed, dcen, dcend)
Data Declaration: Integer idate
 Real timed, dcen, dcend

Dayceni Subroutine DAYCENI converts a fractional day-of-the-century, which is defined as
the number of days since 00Z, January 1, 1900, to a date and time. The year must lie
between 1901 and 2099. This subroutine is the inverse of subroutine DAYCEN. All
years divisible by four are leap years except for century years not divisible by 400,
e.g., 1900 was NOT a leap year. Also, use dcend (double precision) or if dcend is
zero, use dcen (single precision).
Calling Sequence: dayceni (dcen, dcend, idate, timed)
Data Declaration: Integer idate
 Real dcen, dcend, timed

Dayyr Subroutine DAYYR converts a specific date and time to the year and the fractional
day of the year, which is defined as the (fractional) number of days since 00Z
January 1.
Calling Sequence: dayyr (idate, timed, iyear, dayr)
Data Declaration: Integer idate, iyear
 Real timed, dayr

Dena_mel Subroutine DENA_MEL calculates in situ density minus 1000 kg/m3 (rho) using the
equation of state from POM developed by George Mellor, which is described in
Mellor (1991).
Calling Sequence: dena_mel (t,s,zm,rho)
Data Declaration: Real t,s,zm,rho

Ext2bnd Subroutine EXT2BND provides extinction parameters for 2-band representations of
Jerlov's solar extinction profiles (Jerlov, 1968).
Calling Sequence: ext2bnd (itype, fr1, fr2, ex1, ex2)
Data Declaration: Integer itype
 Real fr1, fr2, ex1, ex2

Extmrl5 Subroutine EXTMRL5 computes solar flux attenuance as a function of the
chlorophyll-like (mean) pigment concentration (c) according to the chlorophyll-
attenuation model of Andre Morel (1988), along with attenuation data from Smith
and Baker (1981) and Neumann and Pierson (1966).
EXTMRL5 differs from EXTMRL4 in that some simplifications have been made to
streamline the calculation. The solar spectrum for the fraction of total solar radiation
is defined internally here in a data statement rather than being computed, and the
number of wavelength bands is significantly reduced; no distinction is made between
direct and diffuse radiation (the effective mean in water angles for these two
components was not that much different). Compare with EXTMRL5 to note the
simplifications that have been made.
Calling Sequence: extmrl5 (c, n, z, gam)
Data Declaration: Integer n

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

50

Subroutine Description
 Real c, z, gam

Idateadd Subroutine IDATEADD adds elapsed time in the form of days (iday), hrs (ihr), min
(min), sec (isec), and hundredths of sec (ihsec) to a date and time of the form idate1 =
YYYYMMDD and itime1 = HHMMSSCC (where CC indicates hundredths of sec)
to generate a resultant date and time (idate2, itime2) of the same form as the input
date and time.
Calling Sequence: idateadd(idate1,itime1,iday,ihr,min,isec,ihsec, idate2,itime2)
Data Declaration: Integer idate1,itime1,ihr, iday, isec,ihsec,idate2,itime2

Idatedif Subroutine IDATEDIF computes the temporal difference between two dates, i.e., the
temporal difference between the date specified by (idate2,itime2) and the date
specified by (idate1,itime1). The temporal difference is returned as an integer
number of days (iday), hours (ihr), minutes (min), seconds (isec), and hundredths of
seconds (ihsec).
Calling Sequence: idatedif(idate1,itime1, idate2,itime2, iday,ihr,min,isec,ihsec,)
Data Declaration: Integer idate1,itime1,ihr, iday, isec,ihsec,idate2,itime2

Idayyr Subroutine IDAYYR calculates the integer day of the year given the year, month,
and day of the month. All years divisible by four are leap years except for century
years not divisible by 400, e.g., 1900 and 2100 are NOT leap years. Treat iyear = 0 as
a non-leap year. Iyear = 0 is sometimes used when specifying dates for annually
varying climatological data, e.g., see subroutine DATEDFC.
Calling Sequence: idayyr (iyear, month, iday, idayr)
Data Declaration: Integer iyear, iday, idayr, month

Idcen2idt Subroutine IDCEN2IDT converts the number of days since 00Z, Jan 1, 1900 to a
date of the form (YYYYMMDD).
Calling Sequence: idcen2idt(idays,idate)
Data Declaration: Integer idays, idate

Idt2idcen Subroutine IDT2IDCEN converts a date of the form (YYYYMMDD) to the number
of days since 00Z, Jan 1, 1900.
Calling Sequence: idcen2idt(idate, idays)
Data Declaration: Integer idays, idate

Idt2ymd Subroutine IDT2YMD converts an integer of the form YYYYMMDD to year,
month, and day.
Calling Sequence: idt2ymd (idate, iyear, month, iday)
Data Declaration: Integer idate, iyear, iday, month

Intrpb Subroutine INTRPB performs linear interpolation. The data t1 at points z1 are
interpolated to the points z2. Z1(k) and z2(k) are assumed to be either both
increasing or both decreasing with the index k. No extrapolation is used outside the
range z1(1) to z1(n1), i.e. for z2 < z1(1) t2 = t1(1), and for z2 > z1(n1) t2 = t1(n1).
Calling Sequence: intrpb (n1, z1, t1, n2, z2, t2)
Data Declaration: Integer n1, n2
 Real z1, t1, zl, zr, z2, t2

Intrpz2 Subroutine INTRPZ2 computes weights for vertically averaging a field to a particular
depth z2. INTRPZ2 differs from INTRPZ in that depths are input as a 3D field, rather

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

51

Subroutine Description
than as a sigma or z-level grid. This allows the use of more general vertical grids.
Calling Sequence: intrpz2 (z, nz, mz, lz, amsk, nm, mm, lm, indgrd, nv, indf, iz, i,

j, z2, k1, a,b, amsk2)
Data Declaration: Integer nz, mz, lz, nm, mm, lm, indgrd, nv, indf, iz, i, j,

k1
 Real z, amsk, z2, a, b, amsk2
Comments: If z2 is above the uppermost model level, the uppermost model value is
used. If z2 is below the lowest model level, but above the bottom, the lowest model
value is used. If z2 is below the bottom, the value of the land-sea mask (amsk2) is set
to zero. Set horizontal indices to accommodate offset (staggered) fields. Offset plots
are made only when (i) the field is a vector field (nv > 1), (ii) the x or y component of
the vector field is plotted (indf = 1 or 2), and (iii) the grid is staggered (indgrd > 1).
Zb is the mean depth of the model points used for the interpolation. The following
calculation of zb accounts for whether the model field is located at layer interfaces or
layer midpoints, and whether or not values are being calculated at staggered grid
points:
 zb = 0.25*(z(ia, ja, 1) + z(ib, jb, 1) + z(ia, ja, 1+kp) + z(ib, jb ,1+kp))
For points (z2) above the shallowest model point, the value at the shallowest model
point is used, i.e., a = 1.0 (no extrapolation). For points (z2) below the deepest model
point, but above the bottom, one has several choices: (a) use the value at the deepest
model point (set a = 0), or (b) use some type of downward extrapolation, e.g., for
linear extrapolation set a = (zb-z2)/(zb-za), or (c) mask the value. Either (a) or (b)
will result in spurious looking values near a sloping bottom, either too high or too
low. Choice (c) avoids spurious looking values on the plot, but truncates the bottom
to the midpoint of the bottom layer for fields defined at layer midpoints. The best
choice would probably be to interpolate to z-levels and horizontally extend values to
fill in areas between the deepest model value and the bottom, but this would require
more effort for the user.

Itm2hms Subroutine ITM2HMS converts an integer of the form HHMMSSCC to hours,
minutes, seconds, and hundredths of seconds.
Calling Sequence: itm2hms (itime, ihr, min, isec, ihsec)
Data Declaration: Integer itime, ihr, min, isec, ihsec

Itm2tm Subroutine ITM2TM converts an integer of the form HHMMSSCC to the fractional
time of day.
Calling Sequence: itm2tm (itime, timed)
Data Declaration: Integer itime
 Real timed

Mld_tb Subroutine MLD_TB calculates surface mixed-layer depth (MLD) from the
temperature, salinity, or density field. The MLD is calculated as the depth at which
the temperature, salinity, or density becomes "delt" less than the surface value, or
"delt" greater than the bottom value if computing the bottom MLD.
Calling Sequence: mld_tb(iu,indmld,indmld2,delt,t,nt,mt,lt,s,ns,ms,ls,nr,mr,lr,

z,nz, mz,lz,amsk,nm,mm,lm,n1,n2,m1,m2,d)
Data Declaration: Integer iu,indmld,indmld2,nt,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

52

Subroutine Description
mt,lt,ns,ms,ls,nr,mr,lr,nz,mz,lz,nm,mm,lm,n1,n2
,m1,m2

 Real delt,t,s,r,z,amsk,d
Obcpts Subroutine OBCPTS sets up open boundary points for an ocean model grid. A land-

sea mask or the depth can be used to define which points are open boundary points.
For most grids, the boundary rows are at the edge of the grid, i.e., n1 = 1, n2 = n, m1
= 1, m2 = m. Some models, such as ECOM-si, use the second row in from the edge
of the grid for the open boundary points, in which case the scenario would be n1 = 2,
n2 = n-1, m1 = 2, m2 = m-1.
Calling Sequence: obcpts (indcyc, n, m, iec, n1, n2, m1, m2, h, hmin, hs, nobmax,

nob, neob,nuob, nvob, iob, job, iobi, jobi, ivob, jvob)
Data Declaration: Integer indcyc, n, m, iec, n1, n2, m1, m2, nobmax, nob,

neob,nuob, nvob, iob, job, iobi, jobi, ivob, jvob
 Real h, hmin, hs

Openptt Subroutine OPENPTT sets up open boundary points for an ocean model grid. A land-
sea mask or the depth can be used to define which points are open boundary points.
OPENPTT differs from OPENPTS in that it can be used for tiles in a parallel
computing environment where some of the edges are interior edges that abut
neighboring tiles. For most grids, the boundary rows are at the edge of the grid, i.e.,
n1 = 1, n2 = n, m1 = 1, m2 = m. Some models, such as ECOM-si, use the second row
in from the edge of the grid for the open boundary points, which would be n1 = 2, n2
= n-1, m1 = 2, m2 = m-1.
Calling Sequence: openptt (indcyc, n, m, iec, n1, n2, m1, m2, h, hmin, hs,

nobmax, nob, iob,job, iobi, jobi, kob)
Data Declaration: Integer indcyc, n, m, iec, n1, n2, m1, m2, nobmax, nob,

iob, job,iobi, jobi, kob
 Real h, hmin, hs

Plot_tsd Subroutine PLOT_TSD plots a T-S scatter diagram overlaid on potential density.
Calling Sequence: plot_tsd(nest,t,nt,mt,lt,s,ns,ms,ls,n1,n2,m1,m2,z,nz,mz,

lz,amsk,nm,mm,lm)
Data Declaration: Integer nest,nt,mt,lt,ns,ms,ls,nz,mz,lz,nm,mm,lm,

 n1,n2,m1,m2
 Real t,s,z,amsk

Plotuv5 or
Xplotuv5

Subroutine PLOTUV5 prints or plots scalar or horizontal vector fields. It prints/plots
contours of u or v (x and y components of vector field) or contours of vector
magnitude. It also plots vector arrows. PLOTUV5 differs from PLOTUV4 in that
PRNPLT4 has been modified to allow for a halo around the model grid (used in tiling
for paralleling). Also, calls to plot routines can be turned off. PLOTUV4 differs from
subroutine PLOTUV3 in that arbitrary vertical grids can be accommodated (the input
depth array z is changed to 3D). To turn off plotting on computers where plotting
software is not available, either comment out calls to or provide dummy routines for
the following subroutines: PSETSPV, PSETVFR, PRNTE, PSETAX, PSETLOC,
PLTCON, and PLTVEC.
Calling Sequence: plotuv5 (nest, indp, u, nu, mu, lu, v, nv, mv, lv, n1, n2, m1,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

53

Subroutine Description
m2, l1, l2,indgrd, iu, iz, z, nz, mz, lz, e, ne, me, h, nh, mh,
amsk, nm, mm, lm, name, amult, cint, vscale)

Data Declaration: Integer nest, indp, nu, mu, lu, nv, mv, lv, n1, n2, m1,
m2, l1, l2,indgrd, iu, iz, nz, mz, lz, ne, me, nh,
mh, nm, mm, lm

 Real u, v, z, e, h, amsk, amult, cont, vscale
 Character name
Common Blocks: CONRE4
 PRNTEI4
 PRNTER4

Prnplt0 Subroutine PRNPLT0 prints or plots a scalar or horizontal vector field. Modified to
allow for nests, multi-processors, and halos for use in NCOM.
Calling Sequence: prnplt0 (nest, time, indgrd, n, m, l, am, nam, mam, lam, u, nu,

mu, lu, v,nv, mv, lv, name, amult, cint, vscale)
Data Declaration: Integer nest, indgrd, n, m, l, nam, mam, lam, nu, mu, lu,

nv, mv, lv
 Real time, am, u, v, amult, cint, vscale
 Character name

Prntplt10 Subroutine PRNPLT10 prints or plots sections of 2D and 3D model fields.
PRNPLT10 differs from subroutine PRNPLT9 in that a number of additional fields
have been added.
Calling Sequence: prnplt10(nest,time,indgrd,iu,n,m,l, x,nx,mx,y,ny,my,dx,

ndx,mdx,dy,ndy,mdy,z,nz,mz,lz,h,nh,mh,am,nam,mam,lam,e,n
e,me,ue,nue,mue,ve,nve,mve,sorb,nsorb,msorb,sor,nsor,msor,l
sor,u,nu,mu,lu,v,nv,mv,lv,w,nw,mw,lw,phi,nphi,mphi,lphi,p,n
p,mp,lp,t,nt,mt,lt,s,ns,ms,ls,r,nr,mr,lr,ta,nta,mta,lta,sa,nsa,msa,l
sa,ra,nra,mra,lra,bn,nbn,mbn,lbn,bp,nbp,mbp,lbp,bz,nbz,mbz,l
bz,bd,nbd,mbd,lbd,q,nq,mq,lq,ql,nql,mql,lql,xkm,nxkm,mxkm,
lxkm,ykm,nykm,mykm,lykm,xkh,nxkh,mxkh,lxkh,ykh,nykh,m
ykh,lykh,zkm,nzkm,mzkm,lzkm,zkh,nzkh,mzkh,lzkh,cbfx,ncbf
x,mcbfx,cbfy,ncbfy,mcbfy,sr,nsr,msr,br,nbr,mbr,ext,next,mext,
lext,pa,npa,mpa,tx,ntx,mtx,ty,nty,mty,qr,nqr,mqr,q0,nq0,mq0,e
p,nep,mep,tlx,ntlx,mtlx,ltlx,slx,nslx,mslx,lslx,wlx,nwlx,mwlx,l
wlx)

Data Declaration: Integer nest,indgrd,iu,n,m,lnx,mx,ny,my,ndx,mdx,ndy,
mdy,nz,mz,lznh,mh,nam,mam,lam,ne,me,nue,m
ue,nve,mve, nsorb,msorb,nsor,msor,
lsor,nu,mu,lu,nv,mv,lv,nw,mw,lw,nphi,mphi,lp
hi,np,mp,lpnt,mt,lt,ns,ms,ls,nr,mr,lr,nta,mta,lta,
nsa,msa,lsa,nra,mra,lra,nbn,mbn,lbn,nbp,mbp,lb
p,nbz,mbz,lbz,nbd,mbd,lbdnq,mq,lq,nql,mql,lql,
nxkm,mxkm,lxkm,nykm,mykm,lykm,nxkh,mxk
h,lxkh,nykh,mykh,lykh,nzkm,mzkm,lzkm,nzkh,
mzkh,lzkh,ncbfx,mcbfx,ncbfy,mcbfy nsr,msr,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

54

Subroutine Description
nbr,mbr,next,mext,lext,npa,mpa,ntx,mtx,nty,mt
y,nqr,mqr,nq0,mq0,nep,mepntlx,mtlx,ltlx,nslx,
mslx,lslx,nwlx,mwlx,lwlx

Real x, y, dx,dy,z, h, am, e, ue, ve, sorb, sor,u, v, w,
phi, p, t, s, r, ta,sa, ra,bn, bp, bz, bd, q, ql, xkm,
ykm, xkh, ykh, zkm, zkh, cbfx, cbfy, sr,
br,ext,pa,tx, ty, qr, q0, e, tlx,slx,wlx

Prnte Subroutine PRNTE prints out all or part of a 2D array with a real or integer format. It is
similar to PRNTD but land areas can be masked out.
Calling Sequence: prnte (fld, n, n1, n2, m1, m2, ncolum, length, ndec, title, amult,

ad, iflip)
Data Declaration: Character title
 Integer n, n1, n2, m1, m2, ncolum, length, ndec, iflip
 Real fld, amult, ad

Prnte Subroutine PRNTE prints out all or part of a 2D array with a real or integer format. It
is similar to PRNTD but land areas can be masked out. The variable max is the
maximum number of characters that are allowed to be printed across the page. If
ncolumn and length are such that lmax is exceeded, the number of columns printed
across the page is reduced to the point where lmax is not exceeded.
Calling Sequence: prnte (fld, n, n1, n2, m1, m2, ncolum, length, ndec, title, amult,

ad, iflip)
Data Declaration: Integer n, n1, n2, m1, m2, ncolum, length, ndec
 Real fld, amult, ad, iflip
 Character title

Prntf Subroutine PRNTF prints out all or part of a 2D array with real or integer format.
This is similar to PRNTD but land areas can be masked out in PRNTF. Subroutine
PRNTF is set up for arrays that may have halos.
Calling Sequence: prntf (fld, n, m, n1, n2, m1, m2,ncolum, length, ndec, title,

amult, ad,iflip, wsp)
Data Declaration: Integer n, m, n1, n2, m1, m2, ncolum, length, ndec,

iflip
 Real fld, amult, ad, wsp
 Character title
Common Blocks: PRNTFI4
 PRNTFR4

Prntf2 Subroutine PRNTF2 prints out all or part of a 2D array with a real or integer format.
This is similar to PRNTD but land areas can be masked out in PRNTF2. It is also
similar to PRNTF, but the input arrays do not have halos.
Calling Sequence: prntf2 (fld, n, n1, n2, m1, m2, ncolum, length, ndec, title,

amult, ad, iflip)
Data Declaration: Integer n, n1, n2, m1, m2, ncolum, length, ndec, iflip
 Real fld, amult, ad
 Character title

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

55

Subroutine Description
Common Blocks: PRNTFI4
 PRNTFR4

Prntspv Subroutine PRNTSPV sets special values to mask regions of the table.
Calling Sequence: prntspv (indspvd, spvalud)
Data Declaration: Integer indspvd
 Real spvalud

Prntsv2

Subroutine PRNTSV2 sets special values to mask regions of the table.
Calling Sequence: prntsv2 (indspvd, spvalud)
Data Declaration: Integer indspvd
 Real spvalud
Common Blocks: PRNTFI4
 PRNTFR4

Roll3 Subroutine ROLL3 rolls (switches) three index values.
Calling Sequence: roll3 (i1, i2, i3)
Data Declaration: Integer i1, i2, i3

Roll4 Subroutine ROLL4 rolls (switches) four index values.
Calling Sequence: roll4 (i1, i2, i3, i4)
Data Declaration: Integer i1, i2, i3, i4

Stat3d Subroutine STAT3D prints out statistics on fld.
Calling Sequence: stat3d (fld, n, m, l, na, ma, title)
Data Declaration: Integer n, m, l, na, ma
 Real fld
 Character title
Common Block: PRNTFR4

Switch Subroutine SWITCH switches the value of two integers.
Calling Sequence: switch (i1, i2)
Data Declaration: Integer i1, i2

Tridd Subroutine TRIDD solves a tri-diagonal system of linear equations. TRIDD differs
from TRID in that TRIDD is double precision.
Calling Sequence: tridd (n, a, b, c, g)
Data Declaration: Integer n
 Real a, b, c, g

Wscurl Subroutine WSCURL calculates wind stress curl. The grid is assumed to be a
regularly spaced spherical or Cartesian grid. The strange wind stress curl units that
are output were designed to get wind stress curl values of approximately order one.
Calling Sequence: wscurl (n, m, tx, ntx, ty, nty, elon, nelon, alat, nalat, wsc)
Data Declaration: Integer n, m, ntx, nty, nelon, nalat
 Real tx, ty, elon, alat, wsc

Wtcyc Subroutine WTCYC determines if a value t lies between t2 and t1, i.e., t2 < t <= t1
for values of t that are periodic with period pd. If t does lie between t2 and t1, a
weighting for point t1 is returned that can be used for linear interpolation of function
values at points t2 and t1 to point t. The method used here depends on the fact that t2
< t1 unless t2 and t1 span the end of the periodic domain, i.e., the values of t must be

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

56

Subroutine Description
monotonically increasing over the range of the domain of t.
Calling Sequence: wtcyc (t, t2, t1, pd, between, wt1)
Data Declaration: Real t, t2, t1, pd, wt1
 Logical between

Ymd2idt Subroutine YMD2IDT converts the year, month, and day to an integer of the form
YYYYMMDD.
Calling Sequence: ymd2idt (iyear, month, iday, idate)
Data Declaration: Integer iyear, iday, idate, month

5.4.10 Read/Write Subroutines (ncom1rwio)
Subroutine Description

Cr_fname2 Subroutine CR_FNAME2 creates COAMPS-style, 64-character filenames.
It is adapted from Jim Cummings’ subroutine CR_FNAME.
Calling Sequence: cr_fname2(out_dir,idbms,file_dtg,nest,m,n,file_type,fld_name,
 fluid,lev1,lev2,lvl_type,itau_hr,itau_mn,itau_sc, file_name,len)
Data Declaration: Integer idbms,nest,m,n,lev1,lev2,itau_hr,

itau_mn,itau_sc,len
 Character out_dir,file_dtg,file_type,fld_name,fluid,
 file_name,lvl_type

Ncom_init_io Subroutine NCOM_INIT_IO initializes io_unit offset and istdo_unit for NCOM.
This should be called immediately after mpi_init. It has no arguments.

Rd_out3d Subroutine RD_OUT3D reads surface elevation, 3D velocity, temperature or salinity,
one field at a time.
Calling Sequence: rd_out3d(ind,indv,nest,nt,mt,n,m,l,field3d,timed)
Data Declaration: Integer ind,indv,nest,nt,mt,n,m,l,nl
 Real timed,field3d

Rw_bsfx Subroutine RW_BSFX reads and writes surface flux fields including air temperature
and water vapor mixing ratio to allow internal calculation of latent and sensible heat
flux following the Kara (2000) formulation. Fields may be climatological or real
time.
Calling Sequence: rw_bsfx(ind,indatp,indtau,indsft,indsfs,indsol,nest,nt,mt,n,

m,nr,patm2,usflx2,vsflx2,rsflx2,solar2,tair2,vapmx2,idate,
itime,indclim,close, wxy)

Data Declaration: Integer ind,indatp,indtau,indsft,indsfs,indsol,nest,nt,mt,
n,m,nr,idate,itime,indclim

 Logical close
 Real patm,usflx2,vsflx2,rsflx2,solar2,tair2,vapmx2,

wxy
Rw_extd Subroutine RW_EXTD reads and writes solar extinction data. Fields can be

climatological or real time.
Calling Sequence: rw_extd(ind,indextd,nest,nt,mt,n,m,extd,idate,itime,indclim,

close)
Data Declaration: Integer ind, indextd,nest, nt, mt, n, m, idate,itime,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

57

Subroutine Description
indclim

Logical close
 Real extd

Rw_fld1 Subroutine RW_FLD1 reads or writes a file for a single 2D or 3D field.
Calling Sequence: rw_fld1 (ind, nest, nt, mt, n, m, mon, name, t)
Data Declaration: Integer ind, nest, nt, mt, n, m, mon

Character name
 Real t

Rw_fld1f Subroutine RW_FLD1F reads or writes a file for a single 2D or 3D field.
Calling Sequence: rw_fld1f (ind, nest, nt, mt, n, m, mon, cfile, t)
Data Declaration: Integer ind, nest, nt, mt, n, m, mon

Character cfile
 Real t

Rw_fld2

Subroutine RW_FLD2 reads or writes a file for a pair of fields.
Calling Sequence: rw_fld2 (ind, nest, nt, mt, n, m, mon, name, t, s)
Data Declaration: Integer ind, nest, nt, mt, n, m, mon
 Character name

Real t, s
Rw_ic1 Subroutine RW_IC1 reads or writes a file for initial fields.

Calling Sequence: rw_ic1 (ind, nest, nt, mt, n, m, l, ls, e, u, v, t, s)
Data Declaration: Integer ind, nest, nt, mt, n, m, l, ls
 Real e, u, v, t, s

Rw_ic2 Subroutine RW_IC2 reads or writes a file for initial fields. RW_IC2 differs from
RW_IC1 in that scalar fields (e.g., temperature and salinity) are handled in a single
array r. When only two scalar fields are being used (T and S), the two subroutines
should read and write the same file.
Calling Sequence: rw_ic2 (ind, nest, nt, mt, n, m, l, ls, nrt, nr, j1, e, u, v, r)
Data Declaration: Integer ind, nest, nt, mt, n, m, l, ls, nrt, nr, j1
 Real e, u, v, r

Rw_obc Subroutine RW_OBC reads and writes open boundary condition data. Data may be
climatological or real-time. Data is read for the entire grid, but retained only for a
local tile. Indices (neobx, nvobx) are set to denote the range of the boundary data that
lie within the local tile.
Calling Sequence: rw_obc (ind, nest, nt, mt, n, m, l, nr, iec, idate, itime, nobmax,

nob, neob, nuob, nvob, iob, job, ivob, jvob, eob, ubob, vbob,
uob, vob, rob, indclim, close)

Data Declaration: Integer ind, nest, nt, mt, n, m, l, nr, iec, idate, itime,
nobmax, nob, neob, nuob, nvob, iob, job, ivob,
jvob, indclim

 Logical close
 Real eob, ubob, vbob, uob, vob, rob

Rw_out3h Subroutine RW_OUT3H reads or writes surface elevation, depth-averaged transports
(depth-averaged velocity x depth), 3D velocity, temperature, and salinity fields, and

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

58

Subroutine Description
surface atmospheric forcing fields.
Calling Sequence: rw_out3d1 (ind, inde, indv, indt, inds, nest, nt, mt, n, m, l, e, u,

v, t, s,timed, idate, itime)
Data Declaration: Integer ind, inde, indv, indt, inds, nest, nt, mt, n, m, l,

idate, itime
 Real e, u, v, t, s, timed

Rw_outpts Subroutine RW_OUTPTS reads or writes global (i,j) indices for model grid points at
which data are to be saved.
Calling Sequence: rw_outpts(ind,nest,nt,mt,n,m,nsav,isav,jsav)
Data Declaration: Integer ind, nest, nt, mt, n, m, nsav,isav,jsav

Rw_riv Subroutine RW_RIV reads and writes river inflow data. River data may be
climatological or real-time. When reading river data, data is only retained for the
local tile.
Calling Sequence: rw_riv (ind, nest, nt, mt, n, m, l, nr, nrvmax, nriv, nrriv, lriv,

indrivr, idate,itime, iriv, jriv, wtriv, qriv, rriv, indclim, close)
Data Declaration: Integer ind, nest, nt, mt, n, m, l, nr, nrvmax, nriv, nrriv,

lriv,indrivr, idate, itime, iriv, jriv, indclim
 Logical close
 Real wtriv, qriv, rriv

Rw_rmean Subroutine RW_RMEAN reads or writes files for horizontal mean values of scalar
fields and density anomaly at the sigma grid points.
Calling Sequence: rw_rmean (ind, nest, z7, r7, lmax, l7, nr)
Data Declaration: Integer ind, nest, lmax, l7, nr
 Real z7, r7

Rw_rmean2 Subroutine RW_RMEAN2 reads or writes files for mean/climate/background fields
for scalar variables.
Calling Sequence: rw_rmean2 (ind, nest, nt,mt,n,m,lm1,nr,rmean)
Data Declaration: Integer indrw,nest,nt,mt,n,m,lls,,nr,nq,i1,i2,i3,j1, j2,iter,

indzk
 Real e,udb,vdb,u,v,r,q,zkm,zkh,wubot,wvbot,rmean

Rw_rstrt3 Subroutine RW_RSTRT3 reads or writes restart files.
Calling Sequence: rw_rstrt3(indrw,nest,nt,mt,n,m,l,ls,nr,nq,i1,i2,i3,j1,j2,iter,

times,indzk,e,udb,vdb,u,v,r,q,rmean,zkm,zkh, wubot,wvbot)
Data Declaration: Integer ind, nest, nt,mt,n,m,lm1,nr
 Real rmean

Rw_sfx Subroutine RW_SFX reads and writes surface flux fields. Surface flux fields may be
climatological or real time.
Calling Sequence: rw_sfx (ind, indatp, indtau, indsft, indsfs, indsol, nest, nt, mt,

n, m, nr, patm2, usflx2, vsflx2, rsflx2, solar2, idate, itime,
indclim, close, wxy)

Data Declaration: Integer ind, indatp, indtau, indsft, indsfs, indsol, nest, nt, mt, n,
m,nr, idate, itime, indclim
Logical close

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

59

Subroutine Description
Real patm2, usflx2, vsflx2, rsflx2, solar2, wxy

Rw_sss Subroutine RW_SSS reads and writes prescribed surface salinity fields. Fields may
be climatological or real time.
Calling Sequence: rw_sss (ind,indsss, nest, nt, mt, n, m, sss2, idate, itime,

indclim, close)
Data Declaration: Integer ind,indsss, nest, nt, mt, n, m, idate, itime,

indclim
 Logical close
 Real sss2

Rw_sst Subroutine RW_SST reads and writes prescribed surface temperature and salinity
fields. Fields may be climatological or real time.
Calling Sequence: rw_sst (ind, indsst, indsss, nest, nt, mt, n, m, sst2, sss2, idate,

itime,indclim, close)
Data Declaration: Integer ind, indsst, indsss, nest, nt, mt, n, m, idate,

itime, indclim
 Logical close
 Real sst2, sss2

Rw_stop Subroutine RW_STOP reads or writes the stop file.
Calling Sequence: rw_stop (ind, istop)
Data Declaration: Integer ind, istop

Rw_tide2 Subroutine RW_TIDE2 reads and writes open boundary tidal data.
Calling Sequence: rw_tide2 (ind, nest, nt, mt, n, m, ntc, iec, tidecn, nobmax, nob,

neob, nuob,nvob, iob, job, ivob, jvob, etab, etpb, utab, utpb,
vtab, vtpb)

Data Declaration: Integer ind, nest, nt, mt, n, m, ntc, iec, nobmax, nob,
neob, nuob, nvob, iob, job, ivob, jvob

 Real tidecn, etab, etpb, utab, utpb, vtab, vtpb
Rw_tpcn Subroutine RW_TPCN reads and writes names of tidal constituents used for tidal

potential forcing.
Calling Sequence: rw_tpcn (ind, nest,nc,tidecn)
Data Declaration: Integer ind, nest, nc
 Character tidecn

Rw_trsec Subroutine RW_TRSEC reads/writes locations of transport sections to be computed.
Calling Sequence: rw_trsec(ind,nest,nt,mt,n,m,nstmax,nst,is1,js1,is2,js2,idir,

section)
Data Declaration: Integer ind, nest, nt,mt,n,m,nstmax,nst,is1,js1,is2,js2,idir
 Character section

Rw_ts Subroutine RW_TS reads and writes prescribed 3D temperature and salinity fields.
Fields may be climatological or real time.
Calling Sequence: rw_ts (ind, indt, inds, nest, nt, mt, n, m, l, t2, s2, idate, itime,

indclim,close)
Data Declaration: Integer ind, indt, inds, nest, nt, mt, n, m, l, idate, itime,

indclim

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

60

Subroutine Description
 Logical close
 Real t2, s2

Rw_wmdef Subroutine RW_WMDEF reads water mass definitions.
Calling Sequence: rw_wmdef(ind,nest,nwmmax,nwm,namewm,twm,swm,dwm)
Data Declaration: Integer ind, nest, nwmmax,nwm
 Real twm,swm,dwm
 Character namewm

Rw_zout Subroutine RW_ZOUT reads or writes files for depths for output fields.
Calling Sequence: rw_zout(ind,nest,lzoutmx,lzout,zout)
Data Declaration: Integer ind, nest, lzoutmx,lzout
 Real zout

Rwdimen Subroutine RWDIMEN reads or writes model dimensions to file for all grids.
Calling Sequence: rwdimen (ind, nto, mto, lo, lso, lzo, nro, nqo, ntypo, ntco,

nobmaxo, nrivo)
Data Declaration: Integer ind, nto, mto, lo, lso, lzo, nro, nqo, ntypo, ntco,

nobmaxo, nrivo
Rwhgrid Subroutine RWHGRID reads or writes files for a horizontal grid.

Calling Sequence: rwhgrid (ind, nest, nt, mt, n, m, ibo, elon, alat, dx, dy, h, ang)
Data Declaration: Integer ind, nest, nt, mt, n, m, ibo
 Real elon, alat, dx, dy, h, ang

Rwspmd Subroutine RWSPMD reads SPMD processor layout.
Calling Sequence: rwspmd (iprsum, jprsum)
Data Declaration: Integer iprsum, jprsum

Rwvgrid Subroutine RWVGRID reads or writes a file for vertical grid.
Calling Sequence: rwvgrid (ind, nest, l, ls, zw)
Data Declaration: Integer ind, nest, l, ls
 Real zw

Timetag Subroutine TIMETAG generates date-time tags used for input/output files.
Calling Sequence: timetag(ind,nest,cdate)
Data Declaration: Integer ind, nest
 Character cdate

Wffmp Subroutine WFFMP reads or writes fields to output files. This is similar to Julie
Pullen’s WTFF, but scaleable.
Calling Sequence: wffmp(ind,itimes,nt,mt,n,m,mon,t,out_dir,idbms,file_dtg,nest,

file_type, fld_name,fluid, lev1, lev2, lvltyp)
Data Declaration: Integer ind, nest,itimes,nt,mt,n,m,mon,idbms,lev1,lev2
 Character out_dir,file_dtg,file_type,fld_name,fluid,lvltyp
 Real t

5.4.11 Surface Forcing Subroutines (ncom1sbc)
Subroutine Description

Atmflux Subroutine ATMFLUX calculates dummy atmospheric fluxes to check the selection
of surface fluxes in OSURFBC. Ocean model input parameters provide for surface

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

61

Subroutine Description
fluxes to be obtained from the coupled atmospheric model, from an input data file, or
to be set to zero.
Calling Sequence: atmflux (nest, nt, mt, n, m, nr, is, ie, js, je, iat1, iat2, times,

elon, alat, ang, amsk, patm2, usflx2, vsflx2, rsflx2, solar2,
tmatm2, wxy)

Data Declaration: Integer nest, nt, mt, n, m, nr, is, ie, js, je, iat1, iat2
 Real times, elon, alat, ang, amsk, patm2, usflx2,

vsflx2, rsflx2,solar2, tmatm2, wxy
Comments: All surface fluxes (usflx, vsflx, rsflx, solar) are defined as (+)
downward. This means that a (+) value of usflx or vsflx indicates a stress acting to
drive the surface current in the x or y direction, and a (+) value of the solar or surface
heat flux will act to warm the surface layer of the ocean. This is the reverse of the
convention used by POM, where the surface fluxes are defined to be (+) upward. The
surface atmospheric pressure (patm) is expressed in terms of meters of water. Only
the horizontal gradient of patm drives the ocean, the mean value of patm does not
affect the ocean. For a surface pressure (pa) given in mb, it is suggested that patm be
calculated as (Note: 1 mb = 100 newtons/m2 = 100 kg - m/s2 - m2):

patm = (pa-1000)*100/(g*rho0)
where rho0 is the seawater density. From this it is evident that a 10 mb air-pressure
differential is equivalent to a sea surface elevation differential of approximately one
cm.

Bulk_lsb Subroutine BULK_LSB calculates the latent and sensible heat flux using the bulk
formulas of Kara et al. (2000), the SST from the ocean model, and the input surface
atmospheric air temperature and mixing ratio. The existence of ice is checked and if
it does exist, then heat flux from the Polar Ice Prediction System (PIPS; Posey et al.,
2008) is employed.
Calling Sequence: bulk_lsb(nt,mt,n,m,nr,is,ie,js,je,ifx1,ifx2,w1fx,times,ramp,

amsk,t,s,patm2,wspd2,tair2,humd2,usflx,vsflx,rsflx,solar,evap)
Data Declaration: Integer nt, mt, n, m, nr, is, js, je, ifx1,ifx2
 Real w1fx,times,ramp,amsk,t,s,patm2,wspd2,tair2,

humd2, usflx,vsflx,rsflx,solar
Get_bsfx Subroutine GET_BSFX grabs surface flux fields from the input file. It loads atm

pressure, wind stress, scalar fluxes, solar (shortwave) heat flux, air temperature and
water vapor mixing ratio. It is set up for data on a single input file.
Calling Sequence: get_bsfx(indatp,indtau,indsft,indsfs,indsol,nt,mt,n,m,nr,

ifx1,ifx2,idate,itime,timed,climatp,w1fx,patm2,usflx2,vsflx2,
rsflx2,solar2,tair2,vapmx2,tmsfx2, wxy)

Data Declaration: Integer indatp,indtau,indsft,indsfs,indsol,nt,mt,n,m,nr,if
x1,ifx2,idate,itime

 Real timed,climatp,w1fx,patm2,usflx2,vsflx2,rsflx2,
solar2,tair2,vapmx2,tmsfx2,wxy

Get_sfx Subroutine GET_SFX grabs surface flux fields from the input file. It is set up for
data on a single input file.
Calling Sequence: get_sfx(indatp,indtau,indsft,indsfs,indsol,nt,mt,n,m,nr,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

62

Subroutine Description
ifx1,ifx2,idate,itime,timed,climatp,w1fx,patm2,usflx2,vsflx2,
rsflx2,solar2, tmsfx2, wxy)

Data Declaration: Integer indatp,indtau,indsft,indsfs,indsol,nt,mt,n,m,nr,if
x1,ifx2,idate,itime

 Real timed,climatp,w1fx,patm2,usflx2,vsflx2,rsflx2,
solar2,tmsfx2,wxy

Get_sss Subroutine GET_SSS gets surface salinity fields (only SSS, not SST) from the input
file.
Calling Sequence: get_sst(indsss,nt,mt,n,m,iss1,iss2,idate,itime,timed,climatp,

w1, sss2,tmsst2)
Data Declaration: Integer indsss,nt,mt,n,m,iss1,iss2, idate, itime
 Real timed,climatp,w1,sss2,tmsst2

Get_sst Subroutine GET_SST gets surface temperature and/or salinity fields from the input
file.
Calling Sequence: get_sst(indsst,indsss,nt,mt,n,m,ist1,ist2,idate,itime,timed,

climatp, w1, sst2,sss2,tmsst2, wxy)
Data Declaration: Integer indsst,indsss,nt,mt,n,m,ist1,ist2, idate, itime
 Real timed,climatp,w1,sst2,sss2,tmsst2,wxy

Osurfbc Subroutine OSURFBC defines model surface forcing fields.
Calling Sequence: osurfbc (nt, mt, iec, n, m, l, nr, is, ie, js, je, ifx1, ifx2, iat1, iat2,

iss1, iss2,times, elon, alat, ang, amsk, t, s, patm2, usflx2,
vsflx2, rsflx2, solar2,tmsfx2, tmatm2, sst2, sss2, tmsst2, patm,
usflx, vsflx, rsflx, solar, surruf,wxy)

Data Declaration: Integer nt, mt, iec, n, m, l, nr, is, ie, js, je, ifx1, ifx2,
iat1, iat2, iss1,iss2

 Real times, elon, alat, ang, amsk, t, s, patm2, usflx2,
vsflx2,rsflx2, solar2, tmsfx2, tmatm2, sst2, sss2,
tmsst2, patm, usflx, vsflx, rsflx, solar, surruf,
wxy

Wtset Subroutine WTSET sets appropriate weighting for temporal interpolation of surface
forcing fields.
Calling Sequence: wtset(ramp,ind, ifx1,iat1,ico1, w1fx,w1at,w1co, i1,i2,w1,w2)
Data Declaration: Integer ind,ifx1,iat1,ico1,i1,i2
 Real ramp,w1fx,w1at,w1co,w1,w2

5.4.12 Tidal Calculation Subroutines (ncom1tide)
Subroutine Description

Astr Subroutine ASTR calculates the following five ephermides of the sun and moon: h,
pp, s, p, np. Units are cycles for the ephermides and cycles/365 days for their
derivatives.
Calling Sequence: astr (d1, h, pp, s, p, np, dh, dpp, ds, dp, dnp)
Data Declaration: Integer np
 Real d1, h, pp, s, p, dh, dpp, ds, dp, dnp

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

63

Subroutine Description
Gday Given day, month, (each two digits) and year (four digits), subroutine GDAY returns

the day number kd based on the Gregorian calendar. GDAY is valid only for
Gregorian calendar dates.
Calling Sequence: gday (idd, imm, iyear, kd)
Data Declaration: Integer idd, imm, iyear, kd

Opnvuf Subroutine OPNVUF reads in KONTAB and calls SETVUF.
Calling Sequence: opnvuf (kh, konk, xlat, fk, vuk, freqk)
Data Declaration: Integer kh
 Real xlat, fk, vuk, freqk
 Character konk
Common Blocks: VUFC5
 VUFI4
 VUFR4

Setvuf Subroutine SETVUF evaluates f and vu for all constituents in KONTAB.
Calling Sequence: setvuf (kh, konk, xlat, fk, vuk, freqk)
Data Declaration: Integer kh
 Real xlat, fk, vuk, freqk
 Character konk
Common Blocks: VUFC5
 VUFI4
 VUFR4
Comments: Ntidal is the number of main constituents. Ntotal is the number of
constituents (main + shallow water) for the given time kh, the table of f and v+u
values is calculated for all the constituents. F is the nodal modulation adjustment
factor for amplitude. U is the nodal modulation adjustment factor for phase. V is the
astronomical argument adjustment for phase. The astronomical arguments are
calculated by linear approximation at the midpoint of the analysis period. Only the
fractional part of a solar day needs to be retained for computing the lunar time tau.

Tc_amp Subroutine TC_AMP returns amplitude for equilibrium tide for a specified tidal
constituent. The returned equilibrium tidal amplitudes need to be corrected for the
"earth tide" (by multiplying by factor of ~ 0.69) and, if simulating a particular time
period, corrected for that particular time period by multiplying by a "node factor"
(this is generally a small < 10% correction). These corrections are NOT done here.
Calling Sequence: tc_amp(tidecn,amp)
Data Declaration: Real amp
 Character tidecn

Tidepot Subroutine TIDEPOT calculates tidal potential (ep). It is currently set up only for the
M2 tide.
Calling Sequence: tidepot (times, ramp, n, m, is, ie, j, amsk, elon, alat, ep)
Data Declaration: Integer n, m, is, ie, j
 Real times, ramp, amsk, elon, alat, ep

Tide_dat Subroutine TIDE_DAT gets tidal forcing data for open boundaries.
Calling Sequence: tide_dat(nt,mt,n,m,iec,ntc,hu,hv,idate,itime,alatave,tidecn,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

64

Subroutine Description
tidefq,nobmax,nob,neob,nuob,nvob,iob,job,ivob,jvob,etab,etp,
utab,utpb,vtab,vtpb)

Data Declaration: Integer nt,mt,n,m,iec,tnc,idate,itime,nobmax,nob,
neob,nuob,nvob

 Real hu,hv,alatave,tidefq,etab,utab,etpb,utpb,
vtab,vtpb

 Character tidecn
Tide_fac Subroutine TIDE_FAC calculates tidal data needed for predicting the tides for a

particular time period. A particular tidal constituent can be calculated as:
 tide = fx2*amp*cos(freqx2*(t - t0) - phase + vud2), where amp and phase are

the equilibrium amplitude and phase for the tidal constituent at a particular location, t
is the time, and t0 is the time at which the tidal data was calculated (i.e., the input
date to tide_fac).
Calling Sequence: tide_fac (ihh, idd, imm, iyear, xlat, ntides, iprint, kon2, freqx2,

fx2, vud2)
Data Declaration: Integer ihh, idd, imm, iyear, ntides, iprint
 Real xlat, freqx2, fx2, vud2
 Character kon2

Vuf Subroutine VUF finds appropriate f, vu and sig for a specified constituent.
Calling Sequence: vuf (kh, konk, xlat, fk, vuk, freqk)
Data Declaration: Integer kh
 Real xlat, fk, vuk, freqk
 Character konk
Common Blocks: VUFC5
 VUFI4
 VUFR4

5.4.13 Update Subroutines for U, V, T, S (ncom1updt_sigz)
Subroutine Description

Advq Subroutine ADVQ calculates advection and horizontal diffusion terms for turbulence
fields. Note on slabbing and tiling: advq is called for j = je+1, js, -1. The call for j =
je+1 is only to calculate the y-flux at j = je+1.
Calling Sequence: advq (j, jf, jb, ua, va, wa, flyq, qold, n, m, l, ls, nq, i1, i3, j1, j2,

is, ie, isp,iep, js, je, dti2, small, dar, dsw, dsm5, dzm5, dzwr,
sor, d1, q, xk, yk, dtdazr, flx, flz)

Data Declaration: Integer j, jf, jb, n, m, l, ls, nq, i1, i3, j1, j2, is, ie, isp,
iep, js, je

 Real ua, va, wa, flvq, qold, dti2, small, dar, dsw,
dsm5, dzm5,dswr, sor, d1, q, xk, yk, dtdazr, flx,
flz

Advr Subroutine ADVR calculates explicit forcing terms for scalar fields. Note on
slabbing and tiling: advr is called for j = je+1, js, -1. The call for j = je+1 is only to

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

65

Subroutine Description
calculate the y-flux at j = je+1.
Calling Sequence: advr (j, jf, jb, ua, va, wa, flyr, rjp1, n, m, l, ls, nr, i1, i3, j1, j2,

is, ie, isp,iep, js, je, iec, ke, indriv, indrivr, indbio, sigdif,
locate, idate, itime, iter, ramp, times, dti2, asf, ext, small, da,
dar, sw, sm, dsm, zw, zm, dzmr, amsk, sor, sorb, d1, r, rmean,
xk, yk, rsflx, solar, nrvmax, lriv, iriv, jriv, isriv, ieriv, irv1,
irv2, rriv, w1riv, rsor, dtdazr, flx, flz, dr)

Data Declaration: Integer j, jf, jb, n, m, l, ls, nr, i1, i3, j1, j2, is, ie, isp,
iep, js, je, iec,ke, indriv, indrivr, indbio, idate,
itime, iter, nrvmax, lriv,iriv, jriv, isriv, ieriv,
irv1, irv2

 Real ua, va, wa, flyr, rjp1, ramp, times, dti2, asf, ext,
small, da,dar, sw, sm, dsm, zw, zm, dzmr, amsk,
sor, sorb, d1, r, rmean, xk, yk, rsflx, solar, rriv,
w1riv, rsor, dtdazr, flx, flz, dr

 Logical sigdif, locate
Comments: When masking advective and diffusive fluxes and variables, the
advective transports need not be masked since the velocities from which these
transports are calculated will be zero on land-sea boundaries. This is true for all
variables, i.e., the averaged transports calculated at offset grid cells (u, v, and q grid
cells) should be correct without any need for masking. Diffusive fluxes, however,
must be masked at land-sea boundaries for scalar fields. This can be done by masking
the horizontal (xk, yk) and vertical eddy coefficient variables. For offset scalar grid
cells, averages of xk and yk that have been masked for the t-grid cells should result
in fluxes at land-sea boundaries for offset grid cells that are correct. For momentum,
xk and yk should NOT be masked for no-slip boundary conditions but must be
masked for free-slip boundary conditions. Vertical eddy coefficients need to be
masked for the particular variable when the calculation of vertical diffusion is being
made. Calculated velocities and the forcing terms for the barotropic mode (fu, fv)
must be masked, since forcing terms at land-sea boundaries may be non-zero. Scalar
fields do not need to be masked since transport fluxes are masked. However, be sure
surface fluxes, the solar extinction array (ext), and vertical eddy coefficients are
masked. Turbulence variables (q) for MYL2.5 model do not need to be masked, since
transports will be zero on land-sea boundaries and other forcing terms are either
proportional to q or are multiplied by vertical eddy coefficients, which will be zero
on land-sea boundaries.
With fourth-order advection and diffusion, values of r at row j must be saved (in
rjp1) at time j1 and j2 for calculating fourth-order terms for y flux in the next pass.
For second-order advection set a = 0 and for fourth-order set a = 2/12. For third-order
upwind advection set a = b = 2/12, c = 4/12. When advection is second-order, mixing
is Laplacian with a grid-cell Reynolds of six. For Laplacian mixing, make xk =
A2*dy*dz/dx and b = 0.0. For biharmonic mixing, make xk =
2*(A4/dx**2)*dy*dz/dx and set b = 0.5. Set values of rjp1 on first pass when j = je +
1. These need to be set when the N boundary is an interior or periodic boundary (i.e.,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

66

Subroutine Description
j = je+1 = m+1) and fourth-order differences are used. For an exterior N boundary,
they must be set to something for computers like the T3E where a local scratch array
may be initialized to be undefined. An alternative for the latter case is to initialize the
wxz scratch arrays to zero.

Advuv Subroutine ADVUV calculates explicit forcing terms for 3D momentum.
Calling Sequence: advuv (j, jf, jb, jc1, jc2, jc3, jc4, ua, va, wa, pgx, pgy, es, et, fc,

fcu, flyu,flyv, fu, fv, na, ma, n, m, l, ls, i1, i2, i3, is, ie, ism,
iem, isp, iep, js, je, iec, ibo, indbaro, indatp, curved, tidpot,
iterm, ramp, times, dti, dti2, eg1, eg2, eg3, g, fda, small, elon,
alat, dx, dy, ddx, ddy, dau, dav, dxur, dyvr, daur, davr, dsm,
dzm, dzmr, amsk, umsk, vmsk, sor, du, dv, d1, d1u, d1v, e, u,
v, xk, yk, patm, usflx, vsflx, flx, flz, wpf)

Data Declaration: Integer j, jf, jb, jc1, jc2, jc3, jc4, na, ma, n, m, l, ls, i1,
i2, i3, is, ie,ism, iem, isp, iep, js, je, iec, ibo,
indbaro, indatp, iterm

 Real ua, va, wa, pgx, pgy, es, et, fc, fcu, flyu, flyv,
fu, fv, ramp,times, dti, dti2, eg1, eg2, eg3, g,
fda, small, elon, alat, dx, dy, ddx, ddy, dau, dav,
dxur, dyvr, daur, davr, dsm, dzm, dzmr, amsk,
umsk, vmsk, sor, du, dv, d1, d1u, d1v, e, u, v,
xk, yk, patm, usflx, vsflx, flx, flz, wpf

 Logical curved, tidpot
Comments: Note on calculating in x-z slabs ("slabbing") and decomposition into
tiles ("tiling"): The procedure to convert from the original 3D loop structure to
"slabbing" is to replace j-loops with “if” statements that span the same range (when
such an “if” statement is necessary). However, if a flip-flop array (an array in which
two adjacent j values are stored) is being evaluated at j-1, the range of j over which
the array is calculated must be increased by one at both ends. All of the flip-flop
arrays are evaluated at j-1 except flyu (flyu for u(j) is needed at j and j+1, not at j and
j-1). When calculating a flip-flop array at j-1, all the j-indices in the original 3D
loops must be replaced by j-1. The procedure used here to convert from a code for a
single domain to a parallelizable code that allows for the calculation of subdomain
"tiles" with either exterior or interior edges is (1) to put "halos" around all
horizontally dimensioned arrays to provide for setting boundary conditions for
interior tile edges, and (2) to define the region of calculation of scalar fields on each
tile to be in the range "is" to "ie" and "js" to "je". These indices can provide the
proper range of calculation of scalar fields for either interior or exterior tile edges.
The is and ie indices can also be used to shrink-wrap calculations in the x direction
(though this may not be of much benefit for parallelization with uniformly sized tiles,
since the tile with the most calculation will determine the model's execution time).
With is, ie, js, je defined as the range of calculation of scalar fields, which are
horizontally located at grid cell centers, some additional specification is needed for
the range of calculation of velocity fields, which are at staggered grid locations. This
is accomplished by adjusting individual calculation loops using an "edge correction"

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

67

Subroutine Description
variable iec(8). The first four dimensions of iec correspond to the four edges of a tile
(W = 1, E = 2, S = 3, N = 4), and each edge is specified with a "0" or a "1" depending
on whether it is an interior or exterior edge. Hence, with iec = 0, all the model loops
are dimensioned for an interior tile.

Advvel Subroutine ADVVEL calculates advective transport. This is the advective velocity
multiplied by 0.5*(area of the corresponding grid cell face). All the advective
transports (ua, va, wa) are multiplied by 0.5 to anticipate the averaging that occurs in
calculating the advection terms.
Calling Sequence: advvel (ind, j, jf, jb, ua, va, wa, uacr, vacr, na, ma, n, m, l, ls,

i1, i2, i3, is,ie, isp, iep, js, je, iec, indadv, indiag, shrnkwp,
locate, dti2, vg1, vg2, vg3, small, dxv, dyu, da, dar, dsm, dsm5,
dzm5, umsk, vmsk, sor, e, du, dv, d1u, d1v, udb, vdb, u, v, w,
wpf)

Data Declaration: Integer ind, j, jf, jb, na, ma, n, m, l, ls, i1, i2, i3, is, ie,
isp, iep, js,je, iec, indadv, indiag

 Real ua, va, wa, uacr, vacr, dti2, vg1, vg2, vg3,
small, dxv, dyu,da, dar, dsm, dsm5, dzm5,
umsk, vmsk, sor, e, du, dv, d1u, d1v, udb, vdb,
u, v, w, wpf

 Logical shrnkwp, locate
Biology Subroutine BIOLOGY is for a biological model. BIOLOGY calculates change in

biological constituents due to biological interactions within each grid cell.
Calling Sequence: biology (dr, n, m, l, ls, nr, is, ie, j, ke, i3, j1, dti2, sw, sm, zw,

zm, amsk,d1, r)
Data Declaration: Integer n, m, l, ls, nr, is, ie, j, ke, i3, j1
 Real dt, dti2, sw, sm, zw, zm, amsk, d1, r
Comments: To implement BIOLOGY in the ocean model, set dimension nr to the
number of biological constituents +2 (i.e. nr = 6). Initialize biological constituent
arrays in subroutine INITIAL. Be sure subroutine SURFBC provides surface fluxes
for biological constituents (these are usually just set to zero). Check that subroutine
OPENBC provides open BC for biological constituents (the default is usually an
Orlanski radiation condition for outflow, with inflow based on the initial values at
open boundary locations). Check the treatment of available light in this routine to be
sure it is adequate. Modify the OUTPUT subroutine to provide the desired output of
biological fields.

Cor_curv Subroutine COR_CURV calculates combined Coriolis and curvature-correction
parameter (fc). COR_CURV also calculates fcu = fc*(u interpolated to t-point).
Calling Sequence: cor_curv (j, jf, jb, fc, fcu, n, m, l, ls, i1, i2, i3, is, ie, js, je, iec,

ibo, curved,fda, ddx, ddy, dsm, dzm, amsk, umsk, d1, u, v)
Data Declaration: Integer j, jf, jb, n, m, l, ls, i1, i2, i3, is, ie, js, je, iec, ibo
 Real fc, fcu, fda, ddx, ddy, dsm, dzm, amsk, umsk,

d1, u, v
 Logical curved
Comments: Put the negative of the curvature correction in the open boundary rows.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

68

Subroutine Description
The horizontal averaging will then (approximately) cancel the curvature term for the
normal velocities at open boundary points, which is desired (i.e., since no horizontal
advection of momentum is currently applied at normal velocity points at open
boundaries, a curvature correction should not be applied at these points). If horizontal
advection is included at open boundary points, then combine the curvature correction
with the Coriolis term (fda) since these two terms are treated the same way. Array
"fda" has been stored as:

0.25*(Coriolis_parameter)*(grid_cell_area).
Dens1 Subroutine DENS1 calculates (density - 1000 kg/m3) using the Fredrich-Levitus

equation of state. This equation of state as used here is limited to the range:
 -2 < T < 30, 30 < S < 38, Z < 2000m.
Calling Sequence: dens1 (ja, jb, n, m, l, ls, is, ie, iec, zm, amsk, t, s, rho, ae, be,

ce, de)
Data Declaration: Integer ja, jb, n, m, l, ls, is, ie, iec
 Real zm, amsk, t, s, rho, ae, be, ce, de

Dens3 Subroutine DENS3 calculates in situ density minus 1000 kg/m3. The United Nations
Educational, Scientific, and Cultural Organization (UNESCO) equation of state is
taken from POM. This density calculation includes the effect of pressure and uses the
"potential" temperature, NOT the in situ temperature. This is an expensive density
calculation (over 48 operations per point including a square root and a divide). In
many situations, a simpler and more efficient equation of state would be adequate,
though one must be sure the equation is approximately valid over the range of T, S,
and depth used.
Calling Sequence: dens3 (ja, jb, n, m, l, ls, is, ie, iec, rho0, g, sm, zm, h1, amsk, t,

s, sos, rho)
Data Declaration: Integer ja, jb, n, m, l, ls, is, ie, iec
 Real rho0, g, sm, zm, h1, amsk, t, s, sos, rho

Dep_var Subroutine DEP_VAR calculates depth variables that depend on (and hence change
with) the surface elevation. All depth variables that depend on the surface elevation
are defined to be (+).
Note on tiling: du and d1u at i = 0 are needed at interior tile edges. These cannot be
calculated here since this would require e(i = -1) (and also hu and h1u at i = -1).
Hence, du and d1u at i = 0 must be set by inter-tile passing after the call to
DEP_VAR. During the momentum calculation, du and d1u are needed at time i2 for
the calculation of ua and xk, but the values at time i1 are not needed until the
correction of momentum by MEANUV at the end of the timestep; likewise for y
variables.
Calling Sequence: dep_var (ii, j, n, m, l, is, ie, isp, iep, js, je, iec, h, hu, hv, h1,

h1u, h1v, e, d,du, dv, d1, d1u, d1v)
Data Declaration: Integer ii, j, n, m, l, is, ie, isp, iep, js, je, iec
 Real h, hu, hv, h1, h1u, h1v, e, d, du, dv, d1, d1u,

d1v
Get_extd Subroutine GET_EXTD gets solar extinction data from the input file. It is set up for

data on a single input file.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

69

Subroutine Description
Calling Sequence: get_extd(indextd,nt,mt,n,m,iex1,iex2,idate,itime,timed,climatp,

w1, extd, tmext2)
Data Declaration: Integer indextd,nt,mt,n,m,iex1,iex2,idate,time
 Real timed,climatp,w1,extd,tmext2

Meanuv Subroutine MEANUV corrects 3D velocity fields to match barotropic transport. All
velocities are corrected, including normal values at open boundary points and values
in boundary rows. Correct the baroclinic velocities so that the transport of the
baroclinic velocities matches the barotropic transport. Set the baroclinic velocities at
land points to zero.
If the user is employing an explicit scheme with the same timestep for the baroclinic
and barotropic modes, and the baroclinic velocities have all the forcing specified,
including the surface pressure gradient, the correction here (for interior points)
should be approximately zero. If the Flather open BC is being used, the normal
barotropic transport at the open boundary points is calculated based on other criteria
and will NOT agree with the baroclinic calculation of the transport. Hence, there will
be a non-zero correction to the transport normal to the boundary at open boundary
points.
Note on tiling: Correct all values including boundary values for both exterior and
interior tile edges. Boundary values should have been updated via open, periodic, or
tiling BC.
Calling Sequence: meanuv (ii, jj, j, ucr, vcr, na, ma, n, m, l, ls, is, ie, ism, iem, js,

je, iec,indiag, small, dsm, dzm, umsk, vmsk, du, dv, d1u, d1v,
udb, vdb, u, v, wpf)

Data Declaration: Integer ii, jj, j, na, ma, n, m, l, ls, is, ie, ism, iem, js, je,
iec, indiag

 Real ucr, vcr, small, dsm, dzm, umsk, vmsk, du, dv,
d1u, d1v,udb, vdb, u, v, wpf

Presgrd Subroutine PRESGRD calculates horizontal baroclinic pressure terms (pgx and pgy).
These are calculated as horizontal pressure "differentials" (not gradients), i.e., the
terms are not divided by dx or dy here. The method of calculation of pgx and pgy on
the sigma part of the grid is taken from POM.

A few things to note:

1) The baroclinic pressure terms are ramped.
2) The horizontally averaged density is subtracted from the density at the

sigma layer points when calculating the baroclinic pressure terms. This is
to remove the mean vertical gradient from the density, and to reduce
truncation error in the calculation of horizontal density gradients on the
sigma grid.

3) Invalid values of pgx and pgy will be calculated at land-sea boundaries.
However, since the velocity is zero at these points, the invalid values of
pgx and pgy will not be used.

4) In relation to slabbing, pgx and pgy are calculated for row j on a single
call. No part of the calculation is saved between calls, i.e., each call to

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

70

Subroutine Description
PRESGRD for row j is independent of other calls.

5) For tiling the user must calculate pgx at all u-points being calculated. Do
the same thing for pgy. PRESGRD is called for j = je+1 + iec(4), js -1. No
calculation is done for j = je+1 + iec(4). For j = je+iec(4), pgy(j = je+1) is
calculated for an exterior open boundary. The range for i-loops can run to
ie+iec(2) or ie + 1. Either one will work.

6) Fourth-order interpolations and differences used here implicitly assume
that horizontal grid stretching is very weak; otherwise there will be
significant spatial truncation error.

Calling Sequence: presgrd (j, jc1, jc2, jc3, jc4, rho_a, pgx, pgy, n, m, l, ls, nr, i2,
is, ie, js, je,iec, bclinic, g, rho0, ramp, sw, sm, dsw, zw, zm,
amsk, d1, d1u, d1v, rho, rmean, rsx, rsy, rdx, rdy)

Data Declaration: Integer j, jc1, jc2, jc3, jc4, n, m, l, ls, nr, i2, is, ie, js, je,
iec

 Real rho_a, pgx, pgy, g, rho0, ramp, sw, sm, dsw,
zw, zm, amsk, d1, d1u, d1v, rho, rmean, rsx,
rsy, rdx, rdy

 Logical bclinic
Rlaxdts3 Subroutine RLAXDTS3 relaxes the 3D T and S fields to specified values. This

routine allows for the specified T and S fields to be either fixed in time or time-
varying. The time-varying T and S relaxation fields can be used to provide a
nudging form of data assimilation.
Calling Sequence: rlaxdts3(j,nt,mt,n,m,l,ls,is,ie,idate,itime,times,indlxts,rlax_ts,

rlax_ds,h1,sm,zm,amsk,t,s,tmean,smean,ilx1,ilx2,rlx,wlx,tmlx)
Data Declaration: Integer j, nt, mt, n, m, l, ls, is, ie, idate, itime, ilx1, ilx2

Real times, rlax_ts, rlax_ds, h1, sm, zm, amsk, t, s,
tmean,smean, rlx, wlx,tmlx

Solext Subroutine SOLEXT calculates solar extinction. Extinction should be set to zero at
the bottom of each column. This effectively masks out land points.
Calling Sequence: solext (j, n, m, l, ls, nr, kb, is, ie, js, ext, h1, sw, zw, amsk, e,

d1, r)
Data Declaration: Integer j, n, m, l, ls, nr, kb, is, ie, js
 Real ext, h1, sw, zw, amsk, e, d1, r

Source1 Subroutine SOURCE1 defines source flow arrays sor and sorb for river inflows and
defines river data arrays used in SOURCE2. The source flow arrays sor and sorb can
be used to define various sources/sinks of water including rivers, runoffs,
rainfall/evaporation, or other inflows or outflows.
Calling Sequence: source1 (nt, mt, n, m, l, nr, is, ie, js, je, kb, nrvmax, nriv, nrriv,

lriv, indriv,indrivr, locate, idate, itime, times, ramp, dti, irv1,
irv2, iriv, jriv, isriv, ieriv, wtriv, qriv, rriv, tmriv, w1riv, sor,
sorb)

Data Declaration: Integer nt, mt, n, m, l, nr, is, ie, js, je, kb, nrvmax, nriv,
nrriv, lriv,indriv, indrivr, idate, itime, irv1, irv2,
iriv, jriv, isriv, ieriv

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

71

Subroutine Description
 Real times, ramp, dti, wtriv, qriv, rriv, tmriv, w1riv,

sor, sorb
 Logical locate
Comments: In regards to tiling, sor and sorb need to be defined for 0, n and 0, m for
the interior edges because of averaging needed for velocity points. For exterior
edges, sor is not needed at normal velocity points. For real-time data associated with
temporal interpolation of river data, use model elapsed time in days since start of the
model run. For climate data, use elapsed time in days since the beginning of the year.

Source2 Subroutine SOURCE2 defines values of scalar fields for source flows. If the source
flow at a grid cell is zero, the value of the scalar field does not need to be defined at
that grid cell since it will be multiplied by zero.
Calling Sequence: source2 (j, ir, n, m, l, nr, is, ie, indriv, indrivr, locate, nrvmax,

lriv, irv1,irv2, iriv, jriv, isriv, ieriv, rriv, w1riv, r, rsor)
Data Declaration: Integer j, ir, n, m, l, nr, is, ie, indriv, indrivr, nrvmax,

lriv, irv1,irv2, iriv, jriv, isriv, ieriv
 Real rriv, w1riv, r, rsor
 Logical locate

Update Subroutine UPDATE updates model fields in one timestep.
Calling Sequence: update (na, ma, n, m, l, ls, nr, nq, ntyp, i1, i2, i3, j1, j2, kb, kbu,

kbv, is, ie,ism, iem, isp, iep, js, je, iec, ibo, ke, iter, ramp,
times, dti2, de, fda, botruf, cbu, cbv, istype, iptype, qrf, ext,
elon, alat, ang, dx, dxu, dxv, dxr, dxur, dxvr, dy, dyu, dyv, dyr,
dyur, dyvr, ddx, ddy, da, dau, dav, dar, daur, davr, h, hu, hv,
h1, h1u, h1v, sw, sm, dsw, dsm, dsm5, dswr, dsmr, zw, zm,
dzw, dzm, dzm5, dzwr, dzmr, amsk, umsk, vmsk, sor, sorb, e,
d, du, dv, d1, d1u, d1v, udb, vdb, ub, vb, u, v, w, r, q, tl, rho,
sos, rmean, xk, yk, zkm, zkh, patm, usflx, vsflx, rsflx, solar,
surruf, wubot, wvbot, ilx1, ilx2, rlx, wlx, tmlx, nobmax, nob,
neob, nuob, nvob, iob, job, iobi, jobi, ivob, jvob, iob1, iob2,
eob, ubob, vbob, cgwb, uob, vob, rob, tmob, ntc, etab, etpb,
utab, utpb, vtab, vtpb, nrvmax, nriv, nrriv, lriv, iriv, jriv, isriv,
ieriv, irv1, irv2, wtriv, qriv, rriv, tmriv, fu, fv, aax, aay, ucr1,
vcr1, ucr2, vcr2, wxy, wxz, o)

Data Declaration: Integer na, ma, n, m, l, ls, nr, nq, ntyp, i1, i2, i3, j1, j2,
kb, kbu,kbv, is, ie, ism, iem, isp, iep, js, je, iec,
ibo, ke, iter, istype,iptype, ilx1, ilx2, nobmax,
nob, neob, nuob, nvob, iob, job,iobi, jobi, ivob,
jvob, iob1, iob2, ntc, nrvmax, nriv, nrriv,lriv,
iriv, jriv, isriv, ieriv, irv1, irv2

 Real ramp, times, dti2, de, fda, botruf, cbu, cbv, qrf,
ext, elon,alat, ang, dx, dxu, dxy, dxr, dxur, dxvr,
dy, dyu, dyv, dyr, dyur, dyvr, ddx, ddy, da, dau,
dav, dar, daur, davr, h, hu, hv, h1, h1u, h1v, sw,
sm, dsw, dsm, dsm5, dswr, dsmr, zw, zm, dzw,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

72

Subroutine Description
dzm, dzm5, dzwr, dzmr, amsk, umsk, vmsk, sor,
sorb, e, d, du, dv, d1, d1u, d1v, udb, vdb, ub,
vb, u, v, w, r, q, tl, rho, sos, rmean, xk, yk, zkm,
zkh, patm, usflx, vsflx, rsflx, solar, surruf,
wubot, wvbot, rlx, wlx, tmlx, eob, ubob, vbob,
cgwb, uob, vob, rob, tmob, ntc, etab, etpb, utab,
utpb, vtab, vtpb, wtriv, qriv, rriv, tmriv, fu, fv,
aax, aay, ucr1, vcr1, ucr2, vcr2, wxy, wxz, o

Comments: Definition of the timestep: If "forward" is set to true, use a forward
difference for the first timestep (i.e., for iter = 1). If a forward timestep is used,
values at the old (previous) time level (i3 or j1) should have been set equal to the
current (i2 or j2) values.
The time level indices are: i3 and j1 = old (n-1) time level
 i2 and j2 = present (n) time level
 i1 = new (n+1) time level
The scalar fields (e.g., T and S), which are stored in array r, are only stored at two
time levels. The old values at j1 are replaced with new values. The momentum
calculation can be iterated to correct the advection and bottom drag terms by setting
itermom > 1. One reason for doing this is that the advection field for momentum
depends on the new surface elevation and the advective transports, which are not
known exactly if the free-surface equations are solved implicitly or with a split-
explicit scheme. By iterating the solution of the 3D momentum and free-surface
equations, the slight error can be removed. This procedure is costly and is usually not
necessary since the error tends to be small.

Updatrq Subroutine UPDATRQ updates scalar and turbulence fields. A slab calculation is
used whereby the calculation proceeds through the model domain in x-z sections.
The calculation proceeds from the back of the domain to the front.
Calling Sequence: updatrq (na, ma, n, m, l, ls, nr, nq, i1, i2, i3, j1, j2, kb, is, ie,

isp, iep, js, je,iec, ke, mode, indadvr, indxk, indzk, indtkes,
indlxts, indriv, indrivr, indbio, indiag, noslip, sigdif, shrnkwp,
locate, idate, itime, iter, ramp, times, dti2, asf, vg1, vg2, vg3,
g, rho0, xkmin, ykmin, xkre, prnxi, zkmmin, zhmin, botruf,
rlax_ts, ext, small, dxur, dxv, dyu, dyvr, da, dar, h1, sw, sm,
dsw, dsm, dsm5, dswr, dsmr, zw, zm, dzm, dzm5, dzwr, dzmr,
amsk, umsk, vmsk, sor, sorb, e, d, du, dv, d1, d1u, d1v, udb,
vdb, u, v, w, r, q, tl, rho, sos, rmean, xk, yk, zkm, zkh, usflx,
vsflx, rsflx, solar, surruf, wubot, wvbot, ilx1, ilx2, rlx, wlx,
tmlx, nrvmax, lriv, iriv, jriv, isriv, ieriv, irv1, irv2, rriv, w1riv,
uacr, vacr, wpf, flyr, flyq, qold, ua, va, wa, rjp1, wxz)

Data Declaration: Integer na, ma, n, m, l, ls, nr, nq, i1, i2, i3, j1, j2, kb, is,
ie, isp, iep,js, je, iec, ke, mode, indadvr, indxk,
indzk, indtkes, indlxts, indriv, indrivr, indbio,
indiag, idate, itime, iter, ilx1, ilx2, nrvmax, lriv,
iriv, jriv, isriv, ieriv, irv1, irv2

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

73

Subroutine Description
 Real ramp, times, dti2, asf, vg1, vg2, vg3, g, rho0,

xkmin,ykmin, xkre, prnxi, zkmmin, zhmin,
botruf, rlax_ts, ext, small, dxur, dxv, dyu, dyvr,
da, dar, h1, sw, sm, dsw, dsm, dsm5, dswr,
dsmr, zw, zm, dzm, dzm5, dzwr, dzmr, amsk,
umsk, vmsk, sor, sorb, e, d, du, dv, d1, d1u,
d1v, udb, vdb, u, v, w, r, q, tl, rho, sos, rmean,
xk, yk, zkm, zkh, usflx, vsflx, rsflx, solar,
surruf, wubot, wvbot, rlx, wlx, tmlx, rriv, w1riv,
uacr, vacr, wpf, flyr, flyq, qold, ua, va, wa, rjp1,
wxz

 Logical noslip, sigdif, shrnkwp, locate
Updatuv Subroutine UPDATUV updates 3D momentum fields. A slab calculation is used

whereby the calculation proceeds through the model domain in x-z sections. The
calculation proceeds from the back of the domain to the front.
Calling Sequence: updatuv (fu, fv, na, ma, n, m, l, ls, nr, i1, i2, i3, j1, j2, kb, kbu,

kbv, is, ie,ism, iem, isp, iep, js, je, iec, ibo, ke, indbaro, indden,
indadv, indxk, indzk, indrag, indatp, indiag, bclinic, curved,
noslip, largmix, tidpot, vector, shrnkwp, locate, iter, iterm,
ramp, times, dti, dti2, eg1, eg2, eg3, vg1, vg2, vg3, g, rho0,
fda, xkmin, ykmin, xkre, prnxi, zkmmin, zkhmin, zkre, botruf,
cbu, cbv, small, ae, be, ce, de, cet, ces, elon, alat, dx, dxur,
dxv, dy, dyu, dyvr, ddx, ddy, da, dar, dau, daur, dav, davr, h1,
sw, sm, dsw, dsm, dsm5, dswr, dsmr, zw, zm, dzw, dzm, dzm5,
dzwr, dzmr, amsk, umsk, vmsk, sor, e, du, dv, d1, d1u, d1v,
udb, vdb, u, v, w, r, tl, rho, sos, rmean, xk, yk, zkm, zkh, patm,
usflx, vsflx, surruf, wubot, wvbot, uacr, vacr, wpf, ua, va, wa,
fc, fcu, flyu, flyv, rho_a, pgx, pgy, wxz)

Data Declaration: Integer na, ma, n, m, l, ls, nr, i1, i2, i3, j1, j2, kb, kbu,
kbv, is, ie,ism, iem, isp, iep, js, je, iec, ibo, ke,
indbaro, indden, indadv, indxk, indzk, indrag,
indatp, indiag, iter, iterm

 Real fu, fv, ramp, times, dti, dti2, eg1, eg2, eg3, vg1,
vg2, vg3,g, rho0, fda, xkmin, ykmin, xkre,
prnxi, zkmmin, zkhmin, zkre, botruf, cbu, cbv,
small, ae, be, ce, de, cet, ces, elon, alat, dx,
dxur, dxv, dy, dyu, dyvr, ddx, ddy, da, dar, dau,
daur, dav, davr, h1, sw, sm, dsw, dsm, dsm5,
dswr, dsmr, zw, zm, dzw, dzm, dzm5, dzwr,
dzmr, amsk, umsk, vmsk, sor, e, du, dv, d1, d1u,
d1v, udb, vdb, u, v, w, r, tl, rho, sos, rmean, xk,
yk, zkm, zkh, patm, usflx, vsflx, surruf, wubot,
wvbot, uacr, vacr, wpf, ua, va, wa, fc, fcu, flyu,
flyv, rho_a, pgx, pgy, wxz

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

74

Subroutine Description
Logical bclinic, curved, noslip, largmix, tidpot, vector,

shrnkwp,locate
Xk_re Subroutine XK_RE calculates horizontal eddy coefficients at the u and v-points. The

eddy coefficients are stored as the eddy coefficient times the area of the grid cell face
normal to the diffusion direction divided by the grid spacing in the diffusion
direction. The magnitude of the eddy coefficients is calculated based on the
maximum of the local grid cell Reynolds number and a background value. The
horizontal eddy coefficients need to be masked for diffusion of scalars and for
momentum for "free-slip" lateral boundaries. They should not be masked for
momentum for the "no-slip" lateral boundaries. Consider increasing viscosity near
open boundaries to dampen noise (as a last resort).
Calling Sequence: xk_re (ind, j, n, m, l, ls, i2, isp, iep, js, je, iec, indxk, noslip,

locate,xkmin, ykmin, xkre, prnxi, dxv, dxur, dyu, dyvr, dsm,
dzm, d1u, d1v, umsk, vmsk, u, v, xk, yk)

Data Declaration: Integer ind, j, n, m, l, ls, i2, isp, iep, js, je, iec, indxk
 Real xkmin, ykmin, xkre, prnxi, dxv, dxur, dyu,

dyvr, dsm, dzm,d1u, d1v, umsk, vmsk, u, v, xk,
yk

 Logical noslip, locate
Xk_smag2 Subroutine XK_SMAG2 calculates the horizontal eddy coefficients using a modified

Smagorinsky scheme. The calculation here differs from that used in POM in that the
eddy coefficients, which are calculated at the grid-cell centers, are averaged to the
grid-cell boundaries and the cross momentum diffusion terms are not used, i.e., the
momentum diffusion is purely Laplacian. In this way, the calculation of horizontal
diffusion is the same as what is used for the grid-cell Reynolds diffusion. The
momentum diffusion calculation itself does not need to be changed.
Calling Sequence: xk_smag2 (ind, na, ma, n, m, l, ls, i2, is, ie, isp, iep, js, je, iec,

ibo,indxk, indcyc, noslip, locate, xkmin, ykmin, prnxi, smag,
dxr, dyr, dxv, dxur, dyu, dyvr, da, dsm, dzm, d1u, d1v, amsk,
umsk, vmsk, u, v, xk, yk, aa, bb)

Data Declaration: Integer ind, na, ma, n, m, l, ls, i2, is, ie, isp, iep, js, je,
iec, ibo,indxk, indcyc

 Real xkmin, ykmin, prnxi, smag, dxr, dyr, dxv, dxur,
dyu, dyvr,da, dsm, dzm, d1u, d1v, amsk, umsk,
vmsk, u, v, xk, yk, aa, bb

 Logical noslip, locate
Boundary conditions for diffusion coefficients:
Land-sea boundaries:
Since the eddy coefficients are averaged from grid-cell centers to grid-cell
boundaries, values at land cells adjacent to sea cells are needed for momentum
diffusion (for scalar diffusion, eddy coefficients at land-sea boundaries are set to
zero). POM sets a constant value at land points to use for this averaging. Here a zero
gradient relative to the adjacent sea point is used by (a) first setting values at land
points to zero, and then (b) multiplying averages taken at land-sea boundaries by two

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

75

Subroutine Description
through multiplying by (2-umsk) at u-points and (2-vmsk) at v-points. The gradient
normal to the boundary of the flow and tangent to the boundary is underestimated by
half in the momentum diffusion term because the zero velocity 1/2 grid cell from the
boundary is used rather than taking tangential velocity = 0 right at the boundary
(there is an underestimate (33%) in the calculation of the Smagorinsky coefficient in
this subroutine for the same reason). This could be accounted for in the momentum
diffusion term by multiplying by (2-cmsk) where cmsk is a land-sea mask defined at
horizontal grid cell corners.
Free slip:
Free slip at land-sea boundaries can be implemented by masking eddy coefficients at
land-sea boundaries to zero. This has two problems, however: (1) momentum
diffusion at an open corner will not be zero, and (2) the normal velocity grid point
from a land-sea boundary will have diffusion reduced by half. It is better to define a
"corner" mask that is set to zero at land-sea boundaries and apply it when calculating
u diffusion in y or v diffusion in x.
Open boundaries:
Set a zero gradient at open boundaries. This could be done via a call to OPENBC, but
it could also just be done within this subroutine.
Periodic/tile boundaries:
Call periodic or halo setting routines either in OPENBC or within this subroutine to
set values.
Model calculation procedure for XK_SMAG2:

1) For diffusion of momentum, call XK_SMAG2 before the x-z slabbing
loop, and calculate eddy coefficients for the entire grid on a single call,
since boundary and halo values have to be set. Values defined are:

 xk = (diffusion coefficient in x)*dzm*dyu/dxu at a u-point.
 yk = (diffusion coefficient in y)*dzm*dxv/dyv at a v-point.

2) For diffusion of scalars, call from within the slabbing loop (just as for the
grid-cell-Reynolds scheme) and calculate eddy coefficients for a single
slab. Since the eddy coefficients have already been calculated, just
multiply by the inverse Prandtl Number and mask the values to zero at
land-sea boundaries. Currently, all the eddy coefficients are calculated
for scalar diffusion at once rather than slab-by-slab.

5.4.14 Utility Subroutines (ncom1util)
Subroutine Description

Bc_sym8 Subroutine BC_SYM8 enforces an eight-fold symmetry in the boundary condition.
This is used to test nesting since the interpolations used to calculate the nesting
boundary conditions are inherently asymmetric. This routine is for single processor
use only.
Calling Sequence: bc_sym8 (l, nr, nob, neob, nuob, nvob, eob, ubob, vbob, uob,

vob, rob)
Data Declaration: Integer l, nr, nob, neob, nuob, nvob

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

76

Subroutine Description
 Real eob, ubob, vbob, uob, vob, rob

Cfl Subroutine CFL calculates and prints maximum values of CFL parameters for
advection and diffusion over the entire 3D grid.
Calling Sequence: cfl (n, m, l, ls, i2, is, ie, ism, iem, isp, iep, js, je, iec, dti, xkmin,

ykmin,zkhmin, small, dxu, dxv, dxur, dyu, dyv, dyvr, dz_t,
amsk, umsk, vmsk, d1, u, v, w, xk, yk, zkh, dz5)

Data Declaration: Integer n, m, l, i2, is, ie, ism, iem, isp, iep, js, je, iec
Real dti, xkmin, ykmin, zkhmin, small, dxu, dxv,

dxur, dyu, dyv,
dyvr, dz_t, amsk, umsk, vmsk, d1, u, v, w, xk,
yk,zkh, dz5

Chk_nan Subroutine CHK_NAN checks an array “a” for bad values (not a number-NaN’s).
The program stops execution if bad values are found.
Calling Sequence: chk_nan(nest,n,m,l,a)
Data Declaration: Integer nest,n,m,l
 Real a

Chkolap Subroutine CHKOLAP checks the Arctic overlap. This is a scalable (multi-tile)
version. There is no checking of v-points.
Calling Sequence: chkolap (name, f, n, m, l, na, ma, ipos, ivec)
Data Declaration: Integer name, n, m, l, na, ma, ipos, ivec
 Real f

Chksym4 Subroutine CHKSYM4 checks arrays for four-fold symmetry. This kind of symmetry
can be maintained when the Coriolis parameter equals a constant within the domain.
A field defined at t-points may be single or paired, and if paired may be vector or not,
whereas a field defined at staggered u, v-points must be paired, but may or may not
be vector. This routine is for single processor use only.
Calling Sequence: chksym4 (name, u, v, n, m, l, ipos, pair, ivec, iset)
Data Declaration: Integer name, n, m, l, ipos, ivec, iset
 Real u, v, pair

Chksym8 Subroutine CHKSYM8 checks arrays for eight-fold symmetry. A field defined at t-
points may be single or paired, and if paired may be vector or not. However a field
defined at staggered u, v-points must be paired, but may or may not be vector. This
routine is for single processor use only.
Calling Sequence: chksym8 (name, u, v, n, m, l, ipos, pair, ivec, iset)
Data Declaration: Integer name, n, m, l, ipost, ivec, iset
 Real u, v, pair

Conserv Subroutine CONSERV checks the conservation of volume and scalar fields. This
subroutine writes out minimum and maximum values, mean values, initial mean
values, and change in mean values. This subroutine is strictly for diagnostics and this
version is vectorized.
Calling Sequence: conserv (na, ma, n, m, l, ls, nr, i1, j1, is, ie, js, je, iter, times, da,

dz_t, amsk, e, d1, r, wsp1, wsp2)
Data Declaration: Integer na, ma, n, m, l, nr, i1, j1, is, ie, js, je, iter

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

77

Subroutine Description
 Real times, da, dz_t, amsk, e, d1, r, wsp1, wsp2

Fcmnmx Subroutine FCMNMX computes minimum and maximum values of array fc. Array
fc is calculated in subroutine COR_CURV. Large accumulations in array fc have
caused overflow problems. This has been a sufficient enough problem that this
routine was created to compute extreme values of fc and print them out along with
their processor and (local) grid-point location.
Calling Sequence: fcmnmx (j, jf, jb, fc, n, m, l)
Data Declaration: Integer j, jf, jb, n, m, l
 Real fc

Out_put Subroutine OUT_PUT writes 3D model fields to the output file for checking. It is
for single processor use only.
Calling Sequence: out_put(iter,time,nmh,n,m,l,nr,amsk,umsk,vmsk, e,u,v,t,s)
Data Declaration: Integer iter,nmh,n,m,l,nr
 Real time,amsk,vmsk,vmsk,e,u,v,t,s

Prnt0 Subroutine PRNT0 prints a 2D field.
Calling Sequence: prnt0(n,m,f,name,amult)
Data Declaration: Character name
 Integer n,m
 Real f,amult

Prnt3m Subroutine PRNT3M prints the min, max, and mean value of the input array on each
processor. It is used for debugging diagnostics.
Calling Sequence: prnt3m(message,a,n1,n2,m1,m2,n,m)
Data Declaration: Character message
 Integer n1,n2,m1,m2,n,m
 Real a

Rotcone Subroutine ROTCONE sets velocity field for solid body rotation. This is used for the
rotating cone advection test.
Calling Sequence: rotcone(ind,n,m,l,h,amsk,e,udb,vdb,ub,vb,u,v,w)
Data Declaration: Integer ind
 Real h,amsk,e,udb,vdb,ub,vb,u,v,w

Setscr Subroutine SETSCR sets scratch arrays to high values for testing. This is done to test
the integrity of the model calculations. Since these scratch arrays are reused for
different calculations and/or different nests, existing values on entry into subroutine
OMODEL should not affect the calculations in OMODEL. The last dimension of
scratch arrays wxy and wxz is hardwired in the do loops below, but is subject to
change as the ocean model program is modified and updated. Check the space
allocated for these two arrays in subroutine MEMMO2.
Calling Sequence: setscr (n, m, l, tl, rho, sos, xk, yk, zkb, wxy, wxz)
Data Declaration: Integer n, m, l
 Real tl, rho, sos, xk, yk, zkb, wxy, wxz

Ssh_0 Subroutine SSH_0 restores global mean sea surface height to zero.
Calling Sequence: ssh0(na,ma,n,m,da,amsk,e, wsp1,wsp2)
Data Declaration: Integer na,ma,n, m,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

78

Subroutine Description
 Real da,amsk,e,wsp1,wsp2

5.4.15 Vertical Mixing Subroutines (ncom1vmix_sigz)
Subroutine Description

My12tab Subroutine MY12TAB provides a lookup table for the Richardson Number.
Calling Sequence: my12tab (ri, sm, sh)
Data Declaration: Real ri, sm, sh

Profq2 Subroutine PROFQ2 calculates the source and dissipation terms, vertical mixing for
turbulence fields, and new values of vertical mixing coefficients. This version of
PROFQ (version 2) is modified from the original PROFQ (which is set up like
POM’s PROFQ) to allow specifying either the surface value of TKE (if indtkes = 1)
or the surface flux of TKE (if indtkes = 2). The surface roughness is specified in
array surruf. Both the surface and bottom roughness are treated more consistently
than in the original version of PROFQ, i.e., they are included in defining the "wall
function" in the dissipation term of the Q2L equation.
Calling Sequence: profq2 (j, qold, n, m, l, ls, nq, i1, i2, j1, j2, kb, is, ie, ke,

indtkes, shrnkwp,dti2, asf, g, rho0, zkmmin, botruf, small, sw,
sm, dsm, dswr, dsmr, zw, zm, dzm, dzwr, dzmr, amsk, e, d, d1,
u, v, q, tl, rho, sos, zkm, zkh, usflx, vsflx, surruf, wubot,
wvbot, boygr, bl, aa, bb, cc, ee, gg, gh, sm1, sh1)

Data Declaration: Integer j, n, m, l, ls, nq, i1, i2, j1, j2, kb, is, ie, ke,
indtkes

 Real dti2, asf, g, rho0, zkmmin, botruf, small, sw,
sm, dsm,dswr, dsmr, zw, zm, dzm, dzwr, dzmr,
amsk, e, d, d1, u, v,
q, tl, rho, sos, zkm, skh, usflx, vsflx, surruf,
wubot, wvbot,boygr, bl, aa, bb, cc, ee, gg, gh,
sm1, sh1

 Logical shrnkwp
Profr Subroutine PROFR calculates vertical turbulent mixing of scalar fields.

Calling Sequence: profr (j, n, m, l, ls, nr, i1, j1, j2, is, ie, ke, shrnkwp, dti2, asf,
zkhmin,small, dsm, dswr, dsmr, dzm, dzwr, dzmr, amsk, d1, r,
zkh, aa, bb, cc, ee, gg)

Data Declaration: Integer j, n, m, l, ls, nr, i1, j1, j2, is, ie, ke
 Real dti2, asf, zkhmin, small, dsm, dswr, dsmr, dzm,

dzwr,amsk, d1, r, zkh, aa, bb, cc, ee, gg
 Logical shrnkwp

Profuv Subroutine PROFUV calculates vertical turbulent mixing of momentum.
Calling Sequence: profuv (j, fu, fv, n, m, l, ls, i1, i2, i3, kbu, kbv, is, ie, ism, iem,

js, je, iec, ke, indrag, dti2, zkmmin, cbu, cbv, small, dsm5,
dswr, dsmr, dzm5, dzwr, dzmr, umsk, vmsk, du, dv, d1u, d1v,
u, v, zkm, wubot, wvbot, aa, bb, cc, ee, gg)

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

79

Subroutine Description
Data Declaration: Integer j, n, m, l, ls, i1, i2, i3, kbu, kbv, is, ie, ism, iem,

js, je, iec,ke, indrag
 Real fu, fv, dti2, zkmmin, cbu, cbv, small, dsm5,

dswr, dsmr,dzm5, dzwr, dzmr, umsk, vmsk, du,
dv, d1u, d1v, u, v, zkm, wubot, wvbot, aa, bb,
cc, ee, gg

Trid2 Subroutine TRID2 solves a tri-diagonal set of equations in z over a 2D set of
horizontal points.
Calling Sequence: trid2 (n, m, l, n1, n2, j, l1, l2, aa, bb, cc, dd, ww, gg)
Data Declaration: Integer n, m, l, n1, n2, j, l1, l2
 Real aa, bb, cc, dd, ww, gg

Zkmyl2 Subroutine ZKMYL2 calculates vertical mixing coefficients using a slightly
modified version of the MYL2 mixing parameterization. The turbulent length scale
(tl) is calculated with a parabolic shape over each turbulent region in which Ri <
critical Ri. The eddy coefficients are temporally filtered by averaging the newly
calculated values with the values calculated on the previous timestep. The mixing
coefficients can be augmented with the Ri-dependent background mixing (Large et
al., 1994, also used by Kantha and Clayson, 1994) by setting logical parameter
largmix = true. Because of temporal filtering, zkm and zkh need to be saved between
timesteps, and need to be in the restart file.
Calling Sequence: zkmyl2 (j, n, m, l, ls, nr, i1, i2, i3, j1, j2, kb, is, ie, js, je, iec,

largmix, iter,g, rho0, zkmmin, zkhmin, zkre, botruf, cet, ces,
dsw, dsm, dsm5, dzw, dzm, dzm5, dzwr, amsk, d1, u, v, w, r,
tl, zkm, zkh, usflx, vsflx, surruf, wubot, wvbot)

Data Declaration: Integer j, n, m, l, ls, nr, i1, i2, i3, j1, j2, kb, is, ie, js, je,
iec, iter

 Real g, rho0, zkmmin, skhmin, zkre, botruf, cet, ces,
dsw, dsm, dsm5, dzw, dzm, dzm5, dzwr, amsk,
d1, u, v, w, r, tl, zkm,

 zkh, usflx, vsflx, surruf, wubot, wvbot
 Logical largmix

Zkmyl2v Subroutine ZKMYL2V differs from ZKMYL2 above in that all the calculations are
set up to vectorize on computers like the Cray. On scalar computers, ZKMYL2V
may be faster since land points are skipped.
Calling Sequence: zkmyl2v (j, n, m, l, ls, nr, i1, i2, i3, j1, j2, kb, is, ie, js, je, iec,

ibo, largmix, iter, g, rho0, zkmmin, zkhmin, zkre, botruf, cet,
ces, small, dsw, dsm, dsm5, dzw, dzm, dzm5, amsk, d1, u, v,
w, r, tl, zkm, zkh, usflx, vsflx, surruf, wubot, wvbot, dzw2,
dzm2, aa, bb, dr2, du2, ri2)

Data Declaration: Integer j, n, m, l, ls, nr, i1, i2, i3, j1, j2, kb, is, ie, js, je,
iec, ibo, iter

Real g, rho0, zkmmin, zkhmin, zkre, botruf, cet, ces,
small, dsw,dsm, dsm5, dzw, dzm, dzm5, amsk,
d1, u, v, w, r, tl, zkm, zkh, usflx, vsflx, surruf,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

80

Subroutine Description
wubot, wvbot, dzw2, dzm2, aa, bb, dr2, du2, ri2

 Logical largmix

5.5 NetCDF-Specific Subroutines (libsrc/ cdf/)

Subroutine Description
Closeds Subroutine CLOSEDS closes the data set with the identifier idds.

Calling Sequence: closeds(idds,ierrout)
Data Declaration: Integer idds,ierrout

Closesds Subroutine CLOSESDS closes the closes the netCDF file with the given ID (idf).
Calling Sequence: closesds(idf,ierrout)
Data Declaration: Integer idf,ierrout

Convcase Subroutine CONVCASE converts a character string to all uppercase or all lowercase
letters.
Calling Sequence: convcase(cin,cout,len,upcase)
Data Declaration: Integer len
 Character cin,cout
 Real upcase

Cyclaxis Subroutine CYCLAXIS checks longitude axis to insure that it is monotonically
increasing. If this test is passed, then it determines whether the longitude axis is
cyclic. If it is cyclic, then it determines whether the first and last points are at the
same longitude, or whether the last point is one grid point to the left of the first grid
point. Finally it modifies axis values so that the right end of the axis is greater than
zero, but less than or equal to 360.
Calling Sequence: cyclaxis(rlon,nx,dx,longlobe,ierrout)
Data Declaration: Integer nx,ierrout,longlobe
 Real rlon,dx,rlonmin1,rlonmax1

Cyclaxis2 Subroutine CYCLAXIS2 checks longitude axis to insure that it is monotonically
increasing. If this test is passed, then it determines whether the longitude axis is
cyclic. If it is cyclic, then it determines whether the first and last points are at the
same longitude, or whether the last point is one grid point to the left of the first grid
point. Finally it modifies axis values so that the right end of the axis is greater than
zero, but less than or equal to 360.
Calling Sequence: cyclaxis2 (rlonmin,rlonmax,nx,longlobe,ierrout)
Data Declaration: Integer nx,ierrout,longlobe
 Real rlonmin,rlonmax,dx,rlonmin1,rlonmax1

Decodeidds Calling Sequence: decodeidds(encodedidds,I,O,idf,idds)
Data Declaration: Integer idf,idds,encodedidds
 Real rlonmin,rlonmax,dx,rlonmin1,rlonmax1

Encodeidds Calling Sequence: encodeidds(idf,idds,I,O,encodedidds)
Data Declaration: Integer idf,idds,encodedidds

Fixname Calling Sequence: fixname(name)
Data Declaration: Character name

Getcattr Subroutine GETCATTR searches for the character attribute, stored in the character

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

81

Subroutine Description
attribute array, associated with a given name and loads it into the character variable
cx.
Calling Sequence: getcattr(maxattr,maxname,maxannot,name,ncattr,cattr,

cattrnam,cx)
Data Declaration: Character cattrnam,name,cattr,cx,name1c,attr

Getiattr Subroutine GETIATTR searches for the integer number attribute, stored in integer
number attribute array, associated with a given name and loads it into the integer
variable ix.
Calling Sequence: getiattr(name,maxattr,maxname,niattr,iattr,iattrnam,ix)
Data Declaration: Character iattrnam,name,name1c,attr
 Integer iattr,ix

Getrattr Subroutine GETRATTR searches for the real*4 number attribute, stored in real
number attribute array, associated with a given name and loads it into the real
variable x.
Calling Sequence: getrattr(maxattr,maxname,name,nrattr,rattr,rattrnam,x)
Data Declaration: Character rattrnam,name,name1c,attr,maxattr
 Real rattr,x

Infods Given the identification number of a netCDF scientific data file and the consecutive
data set index number (which starts at zero), this routine determines the identification
code for this data set and whether this is a data grid or a coordinate variable. If it is a
data grid, then the name, number of dimensions, the size of each dimension, and the
number of attributes for this data set is determined.
Calling Sequence: infods(idf,maxname,name,encodedidds,index,indexg,indext,

ndsattr,irank,ishape,max1d)
Data Declaration: Integer idds,idf,index,isds,irank,numtype,ndsattr,

indexg, indext,ishape encodedidds
 Character name

Isacoordvar Calling Sequence: isacoordvar(idf,idds,I,O,isds)
Data Declaration: Integer idds,idf,isds,numtype,irank,ierr,ndsattr
 Character name

Opensds Subroutine OPENCDF opens a netCDF scientific data set file for access and then
obtains information on the number of scientific data sets it contains and the number
of global sds attributes for the file. When the file is opened, the file idis is retrieved
or created, and returned.
Calling Sequence: opensds(filenm,idf,iaccess,ndatasets,nfileattr,ierr)
Data Declaration: Integer idf,iaccess,ncopn,nccre,ndatasets,nfileattr,ierr,

ndims,irecdim
 Character filnm

Pack_int2 Calling Sequence: pack_int2(npts,grid,work,tmin,tmax,nbits, emax,eavg, erms,
ispval,ierr)

Data Declaration: Integer npts, nbits,ierr,work,ispval,
 Real grid, tmin,tmax,emax,eavg,erms

Pack_intl Calling Sequence: pack_int1(npts,grid,work,tmin,tmax,nbits, emax, eavg, erms,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

82

Subroutine Description
ispval,ierr)

Data Declaration: Integer npts, nbits,ierr,work,ispval
 Real grid, tmin,tmax,emax,eavg,erms,evar

Putcattr Subroutine PUTCATTR searches for the character attribute, stored in character
attribute array, associated with a given name and loads it into the character variable
cx.
Calling Sequence: putcattr(maxattr,maxname,maxannot,name,ncattr,cattr,

cattrnam, cx,ierrout)
Data Declaration: Character cattrnam,name,cattr,cx,name,attr

Putrattr Subroutine PUTRATTR searches for the real*4 number attribute, stored in real
number attribute array, associated with a given name and loads it into the real
variable x.
Calling Sequence: putrattr(maxattr,maxname,name,nrattr,rattr,rattrnam,x,ierrout)
Data Declaration: Real rattr,x
 Integer ierrout
 Character iattrnam,name

Puttiattr Subroutine PUTTIATTR searches for the integer number attribute, stored in integer
number attribute array, associated with a given name and loads it into the integer
variable ix.
Calling Sequence: putiattr(maxattr,maxname,name,niattr,iattr,iattrnam,ix,ierrout)
Data Declaration: Integer iattr,ix,ierrout
 Character iattrnam,name

Rdglattr Subroutine RDGLATTR reads the global file attributes in a netCDF scientific data
set. This routine should be called only after making a call to OPENSDS.
Calling Sequence: rdglattr(idf,maxattr,maxname,maxannot,nfileattr,niattr,nrattr,

ncattr,iattr,rattr,cattr,iattrnam,rattrnam,cattrnam,ierrout)
Data Declaration: Integer idf, ierrout,ierr,numtype,icount,niattr,nrattr,

ncattr,iattr,nfileattr
 Real rattr
 Character iattrnam,rattrnam,cattrnam,cattr, name

Rdsdsa Subroutine RDSDSA reads everything in an HDF scientific data set, including all
associated attributes, except the data grid. The data grid is read by a separate
subroutine to allow easy reading of subsets. This routine should be called only after
making calls to OPENSDS and then to INFODS, and after allocating space for the
array sizes identified from the call to INFODS.
Calling Sequence: rdsdsa(encodedidds,maxattr,maxname,maxannot,maxrank,

irank,ishape,ndsattr,max1d,spval,datamin,datamax,scale,label,
unit,fmt,dlabel,dunit,dfmt,coordsys,niattr,nrattr,ncattr,iattr,rattr
cattr,iattrnam,rattrnam,cattrnam,ierrout)

Data Declaration: Integer encodedidds,idim,iddim,idds, indx,ierrout, ierr,
max1d,irank,ishape,numtype,icount,niattr,nrattr,
iattr,idim_size,idcoordvar,icoordvarstart,
icoordvarcounts

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

83

Subroutine Description
 Real validrangera
 Character label,unit,fmt,dlabel,dunit,dfmt,name,cdata,

iattrnamm, rattrnam, cattrnam, cattr,coordsys
Rdsdsd Subroutine RDSDSD reads a slab (or the entire array) of an HDF scientific data set.

The array space for the data set must be allocated before calling this routine.
Calling Sequence: rdsdsd(encodedidds,maxrank,irank,islab,istart,istride,iedges,

ishape,data,ierrout)
Data Declaration: Integer encodedidds, imap, istart, istride, iedges, ishape,

ispval
 Real data

Rdsdssc Calling Sequence: rdsdssc(encodedidds,maxrank,irank,ishape,max1d,scale,ierrout)
Data Declaration: Integer encodedidds,idim,iddim, idds,ierr, max1d,irank,

ishape, idim_size, idcoordvar,icoordvarstart,
icoordvarcounts

 Real scale
 Character coordvar_name

Sizeslab Subroutine SIZESLAB determines scale indices along each dimension which span
the subset required from the data set.
Calling Sequence: sizeslab(maxrank,irankin,istride,xyztmin,xyztmax,irankout,

shape,scale,max1d,iaddborder,istart,iedges)
Data Declaration: Integer ishape,irankin, istart, istride, iedges, iaddborder
 Real scale,xztmin,xztmax

Unpack_int Calling Sequence: unpack_int(npts,nptsij,datain,dataout,nbits, irank,islab, istart,
iedges,istride,tmin,tmax,ispval,spval,ierr)

Data Declaration: Integer npts, nptsij,nbits, ierr,irank,islab,istart,istride,
iedges, ibeg, iinc, iend, jbeg,jinc,jend, kbeg,
kinc, kend,datain, ispval

 Real work,dataout,spval,timin,tmax
Wtglattr Subroutine WTGLATTR writes the global file attributes to a netCDF file.

Calling Sequence: wtglattr(idf,maxattr,maxname,maxannot,niattr,nrattr,ncattr,
iattr, rattr,cattr,iattrnam,rattrnam,cattrnam,ierrout)

Data Declaration: Integer idf,ierrout,ierr,niattr,nrattr,ncattr,iattr,lenstr
 Character iattrnam,rattrnam,cattrnam,cattr
 Real rattr

Wtsda Subroutine WTSDA writes an entire data set into a netCDF scientific data set.
Associated attributes are also written. After the data set and attributes are written to
the file, the access to this data set is terminated.
Calling Sequence: wtsdsa(idf,idds,maxattr,maxname,maxannot,maxrank, max1d,

irank, ishape, spval,scale,label,unit,fmt,dlabel,dunit,dfmt,
coordsys,niattr,nrattr,ncattr,iattr,rattr,cattr,iattrnam,rattrnam,
cattrnam,ierr)

Data Declaration: Integer lenstr,idf, idim,iddim,idds,ierrout,ierr,
max1d,irank,ishape,numtype,niattr,nrattr,ncattr,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

84

Subroutine Description
iattr,istart,istride,imap, ivdimsra,ivarsidsra
ivartypera

 Character label,unit,fmt,dlabel,dunit dfmt, iattrnam,
rattrnam,cattrnam,cattr,coordsys

 Real scale,spval,rattr,datamin,datamax,validrangera
Wtsds Subroutine WTSDS writes an entire data set into a netCDF scientific data set.

Associated attributes are also written. After the data set and attributes are written to
the file, the access to this data set is terminated.
Calling Sequence: wtsds(idf,maxattr,maxname,maxannot,maxrank,max1d,irank,

ishape,spval,scale,label,unit,fmt,dlabel,dunit,dfmtcoordsys,niat
tr,nrattr,ncattr,iattr,rattr,cattr,iattrnam,rattrnam,cattrnam,data,
ierr)

Data Declaration: Integer lenstr,idf, idim,iddim,idds,ierrout,ierr,
max1d,irank,ishape,numtype,niattr,nrattr,ncattr,
iattr,istart,istride,imap,i,icount

 Character label,unit,fmt,dlabel,dunit dfmt, iattrnam,
rattrnam,cattrnam,cattr,coordsys

 Real data, scale,spval, rattr,datamin, datamax,
validrangera

Wtsds_pack Subroutine WTSDS_PACK writes an entire data set into a netCDF scientific data set.
Associated attributes are also written. After the data set and attributes are written to
the file, the access to this data set is terminated.
Calling Sequence: wtsds_pack(idf,maxattr,maxname,maxannot,maxrank, max1d,

irank, ishape,spval,scale,label,unit,fmt,dlabel,dunit, dfmt,
coordsys,niattr,nrattr,ncattr,iattr,rattr,cattr,iattrnam,rattrnam,nb
its,single,work,cattrnam,data,ierr)

Data Declaration: Integer lenstr,idf, idim,iddim,idds,ierrout,ierr,
max1d,irank,ishape,numtype,niattr,nrattr,ncattr,
iattr,istart,istride,imap,i,icount,nbits,work

 Logical single
 Character label,unit,fmt,dlabel,dunit dfmt, iattrnam,

rattrnam,cattrnam,cattr,coordsys
 Real data, scale,spval, rattr, datamin,datamax,

validrangera
Wtsdsd Subroutine WTSDSD writes a partial data set into a netCDF scientific data set.

Calling Sequence: wtsdsd(idf,idds,maxrank,istart,iedges,istride,data,ierrout)
Data Declaration: Integer idf, idds, ierrout,ierr,iedges,numtype, istart,

istride, imap, ivartypera
 Real data

5.6 COAMPS Related Subroutines (libsrc/ coampslib/)
Subroutine Description
Coamps_datar Subroutine COAMPS_DATAR reads flat file fields for COAMPS.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

85

Subroutine Description
Calling Sequence: coamps_datar(istdo,d,lend,fldnam,inest,itime,cdtg,cfluid,

lvltyp,rlev1,rlev2,dsetux,lsetux,lwritu,istat)
Data Declaration: Integer istdo,lend,inest,itime,lsetux,istat
 Real d,rlev1,rlev2,
 Logical lwritu
 Character cdtg,cfluid,fldnam,lvltyp,dsetux

Coamps_datar_new Subroutine COAMPS_DATAR_NEW reads flat file fields for COAMPS.
Calling Sequence: coamps_datar_new(istdo,d,lend,fldnam,inest,itime,cdtg,

cfluid,
lvltyp,rlev1,rlev2,dsetux,lsetux,lwritu,istat,outtyp,m,n)

Data Declaration: Integer istdo,lend,inest,itime,lsetux,istat, m,n
 Real d,rlev1,rlev2
 Logical lwritu
 Character cdtg,cfluid,fldnam,lvltyp,dsetux,outyp

Coamps_grdcon Subroutine COAMPS_GRDCON calculates grid constants.
igrid: type of grid projection:
 =1, mercator projection
 =2, Lambert conformal projection
 =3, polar stereographic projection
 =4, Cartesian coordinates
 =5, spherical projection
Calling Sequence: coamps_grdcon(igrid,stdlt1,stdlt2,gcon)
Data Declaration: Integer igrid
 Real gcon,stdlt1,stdlt2

Coamps_grdij Calling Sequence: coamps_grdij(m,n,grdi,grdj)
Data Declaration: Integer m,n
 Real grdi,grdj

Coamps_ij2ll Subroutine COAMPS_IJ2LL computes latitude and longitude of specified i- and j-
points on a grid. All latitudes in this routine start with -90.0 at the south pole and
increase northward to +90.0 at the North Pole. The longitudes start with 0.0 at the
Greenwich meridian and increase to the east, so that 90.0 refers to 90.0E, 180.0 is
the International Dateline and 270.0 is 90.0W.
Calling Sequence: coamps_ij2ll(igrid,reflat,reflon,iref,jref,stdlt1stdlt2,stdlon,

delx,dely,grdi,grdj,npts,grdlat,grdlon)
Data Declaration: Integer igrid,iref,jref,npts
 Real delx,dely,grdi,grdj,grdlat,grdlon,reflat,reflon,

stdlon,stdlt1,stdlt2
Coamps_ll2ij Subroutine COAMPS_LL2IJ computes latitude and longitude of specified i- and j-

points on a grid. All latitudes in this routine start with -90.0 at the south pole and
increase northward to +90.0 at the North Pole. The longitudes start with 0.0 at the
Greenwich meridian and increase to the east, so that 90.0 refers to 90.0E, 180.0 is
the International Dateline and 270.0 is 90.0W.
Calling Sequence: coamps_ll2ij(igrid,reflat,reflon,iref,jref,stdlt1stdlt2,stdlon,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

86

Subroutine Description
delx,dely,grdi,grdj,npts,grdlat,grdlon)

Data Declaration: Integer igrid,iref,jref,npts
 Real delx,dely,grdi,grdj,grdlat,grdlon,reflat,reflon,

stdlon,stdlt1,stdlt2
Coamps_rdata Subroutine COAMPS_RDATA inputs data from either DBMS or a user-selected

directory.
Calling Sequence: coamps_rdata(istdo ,din,len,lvlcnt,parmnm,units,lvltyp,

lvlval,cdtg10,itime,cfluid,inest,dsetnm,geomnm,mdltyp,ldbs,
dsetux lwritu,errary,istats,isub,idbms,outtyp,m,n)

Data Declaration: Integer istdo,len,lvlcnt,itime,inest,errary,istats,
idbms,m,n

 Real din,lvlval
 Logical ldbms,lwritu
 Character paramnm,units,lvltyp,cdtg10,cfluid,

dsetnm,geomnm,mdltyp, dsetux,isub,outtyp
Coamps_rotang Subroutine COAMPS_ROTANG determines the rotation angle for wind vectors

when converting from a COAMPS Lambert conformal or polar stereographic grid-
relative projection to earth-relative (true) coordinates.
Calling Sequence: coamps_rotang(grdlat,grdlon,m,n,grdrot)
Data Declaration: Integer m,n
 Real grdlat,grdlon,grdrot

Coamps_s2hms Subroutine COAMPS_S2HMS converts from seconds to hours, minutes and
seconds.
Calling Sequence: coamps_s2hms(itime,ihour,minute,isec)
Data Declaration: Integer ihour,isec,itime,minute

Coamps_slen Subroutine COAMPS_SLEN gets the size of the character string.
Calling Sequence: coamps_slen (cstr,lenc)
Data Declaration: Integer lenc
 Character cstr

Coamps_uvg2uv Subroutine COAMPS_UVG2UV converts grid u and v to real u and v, assuming
grid u= real u and grid v = real v along the standard longitude and rot is the rotation
array.
Calling Sequence: coamps_uvg2uv (u, v, m, n, rot,utru,vtru)
Data Declaration: Integer m,n
 Real u,v,rot,utru,vtru

Coamps_wdata Calling Sequence: coamps_wdata (dout,len,lvlcnt,parmnm,units,lvltyp,lvlval,
dtg10,itime,cfluid,inest,dsetnm,geomnm,mdltyp,ldbms,dsetu
x,lwritu,errary,istats,isub,idbms,outtyp,m,n)

Data Declaration: Integer len,lvlcnt,itime,inest,errary,istats,idbms,m,n
 Character parmnm,units,lvltyp,cdtg10,cfluid, dsetnm,

geomnm, mdltyp,dsetux,outtyp
 Real dout,lvlval
 Logical ldbms,lwritu

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

87

Subroutine Description
Dataw Subroutine DATARW writes flat file fields for COAMPS.

Calling Sequence: coamps_dataw(d,lend,fldnam,inest,itime,cdtg,cfluid,lvltyp,
rlev1,rlev2, dsetux,lsetux,lwritu,istat)

Data Declaration: Integer istdo,lend,inest,itime,lsetux,istat
Real d,rlev1,rlev2

 Logical lwritu
 Character cdtg,cfluid,fldnam,lvltyp,dsetux

Dataw_new Subroutine DATARW_NEW writes flat file fields for COAMPS.
Calling Sequence: coamps_dataw_new(d,lend,fldnam,inest,itime,cdtg,cfluid,

lvltyp, rlev1,rlev2, dsetux,lsetux,lwritu,istat,outtyp,m,n))
Data Declaration: Integer istdo,lend,inest,itime,lsetux,istat,m,n

Real d,rlev1,rlev2
 Logical lwritu
 Character cdtg,cfluid,fldnam,lvltyp,dsetux,outtyp

Dfalts Subroutine DFALTS returns the default contour interval and maximum and
minimum values for color shading bar. It uses the old FNMOC standard field name
and units.
Calling Sequence: coamps_dfalts (parmnm,units,lvltyp,rlvl1,rlvl2,ci,co,dmax,

dmin, cunix,istats,cunix_new)
Data Declaration: Integer istats
 Real ci,co,dmax,dmin,rlvl1,rlvl2
 Character units,parmrm,lvltyp,cunix,cunix_new

5.7 ESMF Related Subroutines (libsrc/ esmf/)
Subroutine Description

Load_Export Calling Sequence: Load_Export(n, m, t, s, flxp)
Data Declaration: Integer n,m
 Type flxp
 Real t,s

Load_Import Subroutine LOAD_IMPORT loads ESMF atmospheric surface fluxes into
appropriate ocean model arrays. Units and directions of fluxes are assumed to be
already set appropriately by the coupler. Data pointers for import data must already
be set.
Calling Sequence: Load_Import(nest,n,m,nr, times, flxp,iat1,iat2,patm2,usflx2,

vsflx2,rsflx2,solar2,tmatm2)
Data Declaration: Integer nest,n,m,nr,iat1,iat2
 Real times,patm2usflx2,rsflx2,solar2,tmatm2
 Type flxp

NCOM_ESMF_Final Calling Sequence: NCOM_ESMF_Final(gridComp, impState, expState,
extClock, rc)

Data Declaration: Integer rc
 Type gridComp, impState,expState,extClock

NCOM_ESMF_Init Calling Sequence: NCOM_ESMF_Init(gridComp, impState, expState,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

88

Subroutine Description
extClock, rc)

Data Declaration: Integer rc
 Type gridComp,impState,expState,extClock

NCOM_ESMF_Run Calling Sequence: NCOM_ESMF_Run(gridComp, impState, expState,
extClock, rc)

Data Declaration: Integer rc
 Type gridComp, impState,expState,extClock

NCOM_SetServices Calling Sequence: NCOM_SetServices(gridComp, rc)
Data Declaration: Integer rc
 Type gridComp

Setup_ESMF Calling Sequence: Setup_ESMF(nest, nt, mt, n, m,elon, alat, ang, dx, dy,
amsk,t, s,gridComp, impState, expState, extClock, rc)

Data Declaration: Integer nest,nt,mt,n,m,rc
 Real elon,alat,ang,dx,dy,amsk,t,s
 Type gridComp, impState,expState,extClock

5.8 Primary FNMOC Subroutines (libsrc/ fnoclib/)

The following routines were written by FLENUMOCEANCEN (c) 1993 (FNMOC). Property of
the US Government. All rights reserved.

Subroutine Description
Bessel Subroutine BESSEL is a general purpose 2D bessel interpolation.

Calling Sequence: bessel(xi,xj,array,m,n,result,ierror)
Data Declaration: Integer m,n,ierror
 Real xi,xj,array,result

Cctopc Subroutine CCTOPC converts a pair of fields containing vector components from u
and v (Cartesian) form to direction (DD) and magnitude (MM) (Polar) form. This
routine is vectorizable. Direction is measured clockwise from the positive y-axis and
uses the “direction toward” convention. U is the component along the positive x-axis
and v is the component along the positive y-axis.
Calling Sequence: cctopc (fuu, fvv, n, cunits, iflag, fval, fdd, fmm)
Data Declaration: Integer n,iflag
 Real fuu,fvv,fval,fdd,fmm
 Character cunits

Ch2int Subroutine CH2INT gets the integer number value from an integer string. Leading
and trailing white space characters are insignificant (blanks,tabs, lf, cr, nul).
Calling Sequence: ch2int(str,int,ierr)
Data Declaration: Integer int,ierr
 Character str

Dfuv Subroutine DFUV converts vectors from earth-oriented direction and magnitude to u
and v component form on a conic projection. Argument fdd is in degrees clockwise

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

89

Subroutine Description
from the positive y-axis using the 'direction toward' convention. This routine is
vectorizable. A transverse projection is one where the pole may not be the
geographic pole.
Calling Sequence: dfuv (fdd, fff, fdx, fdy, n, iflag, fval, fuu, fvv)
Data Declaration: Integer n,iflag,fval
 Real fdd,fff,fdx,fdy,fuu,fvv

Differs Subroutine DIFFERS performs operations on field fldi1, depending on the mode
specified, fldi2. The output is written to fldo. An additional mode computes only
the mean and standard deviation of a single input field.
Calling Sequence: differs (fldi1, fldi2, mode, len,mdif, rmsd, fldo ,istat)
Data Declaration: Integer len,mode,istat
 Real fldi1,fldi2,fldo,mdif,rmsd

FNOC_dtgdif Given two DTGs, this subroutine returns the difference in hours (=mdtg-ndtg). It
handles DTGs in the range 1800 through 2799.
Calling Sequence: fnoc_dtgdif (ndtg,mdtg,ihrs,istat)
Data Declaration: Integer ihrs,istat
 Character mdtg,ndtg

FNOC_dtgmod Given base DTG and increment (+/- hours), FNOC_DTGMOD returns new DTG (=
indtg + idif) and the status value.
Calling Sequence: fnoc_dtgmod (indtg, idif, newdtg, istat)
Data Declaration: Integer indtg,idif
 Character indtg,newdtg

FNOC_dtgyrhr Given a year and hours of the year, FNOC_DTGYRHR returns a DTG of format
YYYYMMDDHH in newdtg.
Calling Sequence: fnoc_dtgyrhr (iyr,ihrs,newdtg,istat)
Data Declaration: Integer iyr,ihrs,istat
 Character newdtg

FNOC_dtgnum Given a DTG (YYYYMMDDHH), FNOC_DTGNUM returns integer values for
year, month, day, hour, days into the year, and hours into the year.
Calling Sequence: fnoc_dtgnum (indtg, iyr,imo,iday,ihour,iyrday,iyrhrs, istat)
Data Declaration: Integer iyr,imo,iday,ihour,iyrday,iyrhrs,istat
 Character indtg

Dtgops Subroutine DTGOPS returns the date-time group (YYYYMMDDHH), which is one
of the following:
1) Current operational DTG (NOT YET IMPLEMENTED).
2) + or - offset to current operational DTG.
3) User supplied DTG.
Calling Sequence: dtgops (cdtg, istat)
Data Declaration: Integer istat
 Character cdtg

Edge This routine performs the next-to-edge processing for a low-pass filter. This routine
is vectorizable.
Calling Sequence: edge (fld, fldwrk, m, n, iedge, jedge, nedge)

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

90

Subroutine Description
Data Declaration: Integer m,n,nedge,iedge,jedge
 Real fld,fldwrk

Fintrp Subroutine FINTRP interpolates values from an input field at a set of x/y coordinates
given by two other fields. The input field may be flagged as having missing points or
may be continuous. This routine is vectorizable.
Calling Sequence: fintrp (fx, fy, iflen, fldi, mwrk, min,nin, iflagi, fvali, fvalo,

filval, fldo)
Data Declaration: Integer iflen,min,mwrk,nin,iflagi,ll
 Real fvali,fvalo,fx,fy,filval,fldi,fldo

Gcpnts Subroutine GCPNTS computes evenly-spaced latitude/longitude points along a great
circle. This routine is scalar.
Calling Sequence: gcpnts (mo,xla,xlo,dist,istat)
Data Declaration: Integer mo,istat
 Real dist,xla,xlo

Gent Subroutine GENT gets a single entry from a HRLS table. An entry consists of two X
values, a start coordinate and a stop coordinate.
Calling Sequence: gent(tab,y,xseq,x)
Data Declaration: Integer tab,y,xseq,x

Getls Subroutine GETLS reads a HRLS table from either an ISIS or a UNIX file.
Calling Sequence: getls(type,min_res,tab,alen,pathnm,istat)
Data Declaration: Integer tab,alen,istat
 Character type,pathnm
 Real min_res

Int2ch Subroutine INT2CH converts an integer to a left justified character string.
Calling Sequence: int2ch(int,chr,ierr)
Data Declaration: Integer int,ierr
 Character chr

Ioinq Subroutine IOINQ employs the Fortran statement “Inquiry” to supply information to
a user in taking the action of the program I/O.
Calling Sequence: ioinq (unitx,locprog,nu)
Data Declaration: Integer unitx,nu
 Character loccprog

Lndavg Subroutine LNDAVG computes values for flagged points in a 2D field. This routine
is vectorizable.
Calling Sequence: lndavg(fld, mwrk, m, n, lasrch, val, lapass, jpnts, istat)
Data Declaration: Integer mwrk,m,n,lasrch,lapass,jpnts,istat
 Real fld,val

Lpf LPF performs a low-pass two-dimensional filter. This routine is vectorizable.
Calling Sequence: lpf (fld, fldwrk, m, n, mn, ifn, fvalo)
Data Declaration: Integer m,n,mn,ifn
 Real fld,fldwrk,fvalo

Niddf Given:
• a 1D array, vi(4), containing values of an independent variable at 4 points,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

91

Subroutine Description
• a corresponding array, vd(4), containing values of a dependent variable at the

same 4 points, and
• a value, val, of the independent variable such that (vd(2) < val <= vd(3)) or

(vd(3) < val <= vd(2)),
compute the value of vd, vdo, given the independent variable = val.
Calling Sequence: niddf(vi,vd,val,vdo)
Data Declaration: Real vd,val,vi,vdo

Ocord This subroutine reads “MODELNAME_dir.out” flatfiles and fields in accordance
with OCARD records.
Calling Sequence: ocord (lu,actau,ngeom,acogeom,acdset,aclvlt,aclvl,acparm,

acnfil, acfilt,nspace,spaces,istat)
Data Declaration: Integer lu,actau,ngeom,acnfil,nspace,istat
 Character acogeom,acdset,aclvlt,acparm,acfilt,spaces
 Real aclvl

Pctocc This routine converts a pair of fields containing vector components from direction
and magnitude (polar) to u and v (Cartesian) form. This routine is vectorizable. Note
that direction is measured clockwise from the positive y axis from 0 to 360 degrees
or radians using the using the 'direction toward' convention. U is the component
along the positive x axis and v is the component along the positive y axis.
Calling Sequence: pctocc (fdd, fmm, n, cunits, iflag, fval, fuu, fvv)
Data Declaration: Integer n,iflag
 Character cunits
 Real fdd,fmm,fval,fuu,fvv

Qprint This routine quick prints portions of a gridded field.
Calling Sequence: qprint (fld, lbl, mmin, nmin, kmin, mmax, nmax, kmax,minc,

ninc, kinc, m, n, k, ndig, scale, stordsc, pcknull, iunit, istat)
Data Declaration: Integer m,n,k,mmin,nmin,kmin,minc,ninc,kinc, ndig,

mmax,nmax, kmax,istat,iunit
 Character lbl,stordsc
 Real fld,scale,pcknull

Rlpnts This routine computes evenly-spaced X/Y grid coordinate points along a straight line
on the grid. This routine is scalar.
Calling Sequence: rlpnts (mo, x, y, istat)
Data Declaration: Integer mo,istat
 Real x,y

Strleft Deletes leading white space (spaces, tabs, carriage returns and line feeds) from a
character string, therefore left-justifying the string.
Calling Sequence: strleft(cstr1, cstr2)
Data Declaration: Character cstr1,cstr2

Strpars Extracts substrings from a character string, where the delimiter separating the
substrings is defined by the calling routine. Leading spaces are removed from the
substrings.
Calling Sequence: strpars(cline, cdelim, nstr, cstr, nsto, ierr)

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

92

Subroutine Description
Data Declaration: Character cline,cstr,cdelim
 Integer nstr,nsto,ierr

Unstgr This routine unstaggers a staggered gridded field. It is vectorized.
Calling Sequence: unstgr (fld, mwrk, m, n, istg, iflag, fval)
Data Declaration: Real fld,fval
 Integer mwrk,m,n,istg,iflag

Uvdf Subroutine UVDF converts from u and v vector components on a conic projection to
earth-oriented direction and speed form. Direction is measured clockwise from the
positive y axis in degrees in the range 0 < fdd < 360, using the 'direction toward'
convention. This routine is vectorizable. A transverse projection is one where the
'pole' is not the geographic pole.
Calling Sequence: uvdf (fuu, fvv, fdx, fdy, n, iflag, fval, fdd, fff)
Data Declaration: Real fuu,fvv,fdx,fdy,fdd,fff
 Integer n,iflag,fval

5.9 Miscellaneous NCOM Subroutines (libsrc/ misc/)

5.9.1 Cubic Spline Interpolation Subroutines (cubspl_irr and ocubspl_irr))
Subroutine Description

Coeff1 Subroutine COEFF1 computes the coefficients for 1D cubic spline interpolation
using one of the following boundary conditions at each end of the range:

- Second derivative given at boundary.
- First derivative given at boundary.
- Periodic boundary condition.
- First derivative determined by fitting a cubic to the four points

nearest to the boundary.
Calling Sequence: coeff1 (n, x, f, w, iop, int, wk)
Data Declaration: Integer n, iop, int
 Real x, f, w, wk

Coeff2 Subroutine COEFF2 computes the coefficients for 2D bicubic spline interpolation
with the same choice of boundary conditions as for COEFF1.
Calling Sequence: coeff2 (nx, x, ny, y, f, fxx, fyy, fxxyy, idm, ibd, wk)
Data Declaration: Integer nx, ny, idm, ibd
 Real x, y, f, fxx, fyy, fxxyy, wk

Cubspl_irr CUBSPL has been modified to accept an irregular output grid. Subroutine
CUBSPL_IRR interpolates from the array fldi to the array fld, where fld (i, j) is at
coordinates (fx (i, j); fy (i, j)) with respect to the fldi grid (1:nxi, 1:nyi). Cubic spline
interpolation is used. The input grid fldi is assumed to be globally uniform. No
assumptions are made regarding the output grid regularity. For compatibility with
subroutine BESSEL, it is assumed that fx (i, j) lies between 3 and nxi-2 and that fy (i,
j) lies between 3 and byi-2.
Calling Sequence: cubspl_irr (fld, fx, fy, ndx, nx, ny, fldi, ndxi, nxi, nyi, ibd, fxi,

fyi, wki,wk)

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

93

Subroutine Description
Data Declaration: Integer ndx, nx, ny, ndxi, nxi, nyi, ibd
 Real fld, fx, fy, fldi, fxi, fyi, wki, wk

Interp Given coefficients provided by COEFF1 and the position of the interpolation point in
the independent variable table, subroutine INTERP performs 1D interpolation for the
function value, and first and second derivative, as desired. This routine is called by
subroutines TERP1 and TERP2.
Calling Sequence: interp (n, x, f, w, y, i, int, tab, itab)
Data Declaration: Integer n, i, int, itab
 Real x, f, w, y, tab

Search Subroutine SEARCH performs a binary search in a 1D floating point table arranged
in ascending order. This routine is called by subroutines TERP1 and TERP2.
Calling Sequence: search (xbar, x, n, i)
Data Declaration: Integer n, i
 Real xbar, x

Terp1 Using the coefficients computed by COEFF1, subroutine TERP1 evaluates the
function and/or first and second derivatives at any point where interpolation is
required.
Calling Sequence: terp1 (n, x, f, w, y, int, tab, itab)
Data Declaration: Integer n, int, itab
 Real x, f, w, y, tab

Trip This is a simple, periodic, tridiagonal linear equation solver used by COEFF1 and
used to locate entries in array z.
Calling Sequence: trip (n,a,b,c,y,z,int)
Data Declaration: Integer n, int
 Real a, b, c, y, z

5.9.2 Time Conversion Subroutines (timesubs)
Subroutine Description

Da2jd Subroutine to calculate an integer Julian day, hour, minute, second and hundredth of
a second from a real Julian-type date. Precision problems may cause inaccuracies in
the finer time divisions.
Calling Sequence: da2jd (date, jday, ihour, imin, isec, ihsec)
Data Declaration: Integer jday, ihour, imin, isec, ihsec
 Real date

Da2jd1 Subroutine DA2JD1 calculates an integer Julian day from a real Julian-type date. It
has integer 1/100 second precision, or full integer precision for coarser time
applications.
Calling Sequence: da2jd1 (date, jday)
Data Declaration: Integer jday
 Real date

Dait Subroutine DAIT calculates a Julian-type date from the year, month, day, hour, and
minute. The date is defined as (Julian day - 1) with the hour and minute expressed as

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

94

Subroutine Description
a fractional part of a day. For example, 00z January 1 is 0.000 and 06z January 14 is
13.250. It has integer second precision.
Calling Sequence: dait (iyear, month, iday, ihour, imin, isec, date)
Data Declaration: Integer iyear, iday, ihour, imin, isec, month
 Real date

Daiti Subroutine DAITI converts a year and a Julian-type date to month, day, hour, minute,
and second. The arguments are defined as dait. Precision problems may cause
inaccuracies in the finer time divisions. It has integer second precision.
Calling Sequence: daiti (iyear, date, month, iday, ihour, imin, isec)
Data Declaration: Integer iyear, iday, ihour, imin, isec, month
 Real date

Daywek Subroutine DAYWEK calculates the day of the week from the year, month, and day.
It has integer 1/100 second precision or full integer precision for coarser time
applications.
Calling Sequence: daywek (iyear, mon, iday, idow)
Data Declaration: Integer iyear, iday, idow

Real mon
Ddtg Subroutine DDTG converts a time defined by the year, month, day, hour, minute, and

second to a date-time-group. It has integer second precision.
Calling Sequence: ddtg (iyear, month, iday, ihour, imin, isec, idtg)
Data Declaration: Integer iyear, iday, ihour, imin, isec, idtg, month

Df2jd Subroutine DF2JD calculates an integer Julian day, hour, minute, second and
hundredth of a second from a real Julian-type date. It was created to reduce roundoff
error. It has integer 1/100 second precision, or full integer precision for coarser time
applications.
Calling Sequence: df2jd (idaft, idayfr, iyear, jday, ihour, imin, isec, ihsec)
Data Declaration: Integer idaft, idayfr, iyear, jday, ihour, imin, isec, ihsec

Df62jd Subroutine DF62JD calculates an integer Julian day, hour, minute, second and
dummy hundredth of a second from a real Julian-type date. It was created to reduce
roundoff error. It has integer second precision.
Calling Sequence: df62jd (idaft, idayfr, iyear, jday, ihour, imin, isec, ihsec)
Data Declaration: Integer idaft, idayfr, iyear, jday, ihour, imin, isec, ihsec

Dtgadd Subroutine DTGADD adds (or subtracts) a number of hours from a date-time group.
It has integer hour precision.
Calling Sequence: dtgadd (idtg1, ihrs, idtg2)
Data Declaration: Integer idtg1, ihrs, idtg2

Dtgd Subroutine DTGD converts a date-time group to year, month, day, hour, minute and
second. It has integer second precision.
Calling Sequence: dtgd (idtg, iyear, month, iday, ihour, imin, isec)
Data Declaration: Integer idtg, iyear, iday, ihour, imin, isec, month

Dtgdif Subroutine DTGDIF calculates the time difference in hours between two date-time
groups (idtg2 - idtg1). The minutes and seconds are discarded. Integer hour
precision.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

95

Subroutine Description
Calling Sequence: dtgdif (idtg1, idtg2, ihrdif)
Data Declaration: Integer idtg1, idtg2, ihrdif

Dtghc Subroutine DTGHC converts a date-time-group to hour of the 20th century. Integer
hour precision.
Calling Sequence: dtghc (idtg, ihrcen)
Data Declaration: Integer idtg, ihrcen

Dtghcr Subroutine DTGHCR converts a date-time group and minute to hour of the 20th
century. Integer second precision.
Calling Sequence: dtghcr (idtg, hrcen)
Data Declaration: Integer idtg
 Real hrcen

Dtgjd Subroutine DTGJD converts a date-time group to year and Julian-type date. Integer
second precision.
Calling Sequence: dtgjd (idtg, iyear, date)
Data Declaration: Integer idtg, iyear
 Real date

Dtglab Subroutine DTGLAB converts date-time group to a date label, e.g., 19770824,
120000 becomes "12:00:00 GMT May 24, 1977". Integer second precision.
Calling Sequence: dtglab (idtg, label)
Data Declaration: Integer idtg
 Character label

Dtglab2 Subroutine DTGLAB2 converts date-time group to a date label, e.g., 19770824,
120000 becomes "12:00:00 GMT May 24, 1977". Integer second precision.
Calling Sequence: dtglab2 (idtg, label)
Data Declaration: Integer idtg
 Character label

Dtgr2dif Subroutine DTGR2DIF calculates the time difference in hours between two date-
time groups (idtg2 - idtg1). The minutes and seconds are discarded. It has integer
second precision.
Calling Sequence: dtgr2dif (idtg1y, idtg1h, idtg2y, idtg2h, ihrdif)
Data Declaration: Integer idtg1y, idtg1h, idtg2y, idtg2h, ihrdif

Dtgr2sdif Subroutine DTGR2SDIF calculates the time difference in integer seconds between
two date-time groups (idtg2 - idtg1). It has integer second precision.
Calling Sequence: dtgr2sdif (idtg1a, idtg1b, idtg2a, idtg2b, isecdif)
Data Declaration: Integer idtg1a, idtg1b, idtg2a, idtg2b, isecdif

Dtgr3dif Subroutine DTGR3DIF calculates the time difference in hours between two date-
time groups (idtg2 - idtg1). The minutes and seconds are discarded. It has integer
second precision.
Calling Sequence: dtgr3dif (idtg1y, idtg1h, idtg2y, idtg2h, ihrdif)
Data Declaration: Integer idtg1y, idtg1h, idtg2y, idtg2h, ihrdif

Dtgradd Subroutine DTGRADD adds (or subtracts) a number of hours from a date-time
group. It has integer second precision.
Calling Sequence: dtgradd (idtg1, hrs, idtg2)

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

96

Subroutine Description
Data Declaration: Integer idtg1, idtg2
 Real hrs

Dtgradds Subroutine DTGRADDS adds (or subtracts) a number of seconds from a date-time
group. Integer second precision.
Calling Sequence: dtgradds (idtg1, isecadd, idtg2)
Data Declaration: Integer idtg1, idtg2
 Real isecadd

Dtgrdif Subroutine DTGRDIF calculates the time difference in hours between two date-time
groups (idtg2 - idtg1). The minutes and seconds are discarded. It has integer second
precision.
Calling Sequence: dtgrdif (idtg1, idtg2, ihrdif)
Data Declaration: Integer idtg1, idtg2, ihrdif

Dtgrsdif Subroutine DTGRSDIF calculates the time difference in integer seconds between
two date-time groups (idtg2 - idtg1). It has integer second precision.
Calling Sequence: dtgrsdif (idtg1, idtg2, isecdif)
Data Declaration: Integer idtg1, idtg2, isecdif

Dtgrstdif Subroutine DTGRSTDIF calculates the time difference in integer seconds between
two date-time groups (idtg2 - idtg1). If the absolute difference is greater than itol,
then isecdif is returned as zero and itol as -1. Itol must be non-negative. It has integer
second precision.
Calling Sequence: dtgrstdif (idtg1, idtg2, isecdif, itol)
Data Declaration: Integer idtg1, idtg2, isecdif, itol

Hcdtg Subroutine HCDTG converts the hour of the 20th century to a date-time group. The
minutes and seconds are set to zero. It has integer hour precision.
Calling Sequence: hcdtg (ihrcen, idtg)
Data Declaration: Integer ihrcen, idtg

Hcrdtg Subroutine HCRDTG converts the hour of the 20th century to date-time group. It has
integer second precision.
Calling Sequence: hcrdtg (hrcen, idtg)
Data Declaration: Integer idtg
 Real hrcen

Hrcen Subroutine HRCEN calculates the hour of the 20th century from the year, month, day,
and hour. It has integer hour precision.
Calling Sequence: hrcen (iyear, month, iday, ihour, ihrcen)
Data Declaration: Integer iyear, iday, ihour, ihrcen, month

Hrceni Subroutine HRCENI calculates the year, month, day, and hour from the hour of the
20th century. It has integer hour precision.
Calling Sequence: hrceni (ihrcen, iyear, month, iday, ihour)
Data Declaration: Integer ihrcen, iyear, iday, ihour, month

Hrcenr Subroutine HRCENR calculates the hour of the 20th century from the year, month,
day, hour, minute, and second. It has integer second precision.
Calling Sequence: hrcenr (iyear, month, iday, ihour, imin, isec, hrcen)
Data Declaration: Integer iyear, iday, ihour, imin, isec, month

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

97

Subroutine Description
 Real hrcen

Hrcnri Subroutine HRCNRI calculates the year, month, day, hour and minute from the hour
of the 20th century. There is integer hour precision.

• 400*365+4*24+1= 146097 days in each 400 year-period.
• 100*365+24+1= 36525 days in each 100 year-period if first 00 year is evenly

divisible by 400, 36524 days otherwise.
• 20*365+4= 7304 days in each 20-year period if it contains a 00 year not

evenly divisible by 400, 7305 otherwise.
Calling Sequence: hrcnri (hrcen, iyear, month, iday, ihour, imin, isec)
Data Declaration: Integer iyear, iday, ihour, imin, isec, month
 Real hrcen

Id2jd Subroutine ID2JD calculates an integer Julian day from an integer year, month, and
day. It has integer 1/100 second precision or full integer precision for coarser time
applications.
Calling Sequence: id2jd (jday, iyear, month, iday)
Data Declaration: Integer jday, iyear, iday, month

Jd2da Subroutine JD2DA calculates a real Julian-type date from integer Julian day, ihour,
minute, second, hundredth of a second. Precision problems may cause inaccuracies in
the finer time divisions. Integer 1/100 second precision or full integer precision for
coarser time applications.
Calling Sequence: jd2da (date, jday, ihour, imin, isec, ihsec)
Data Declaration: Integer jday, ihour, imin, isec, ihsec
 Real date

Jd2da1 Subroutine JD2DA1 calculates a real Julian-type date from an integer Julian day. It
has integer 1/100 second precision or full integer precision for coarser time
applications.
Calling Sequence: da2jd (date, jday)
Data Declaration: Integer jday
 Real date

Jd2df Subroutine JD2DF calculates a real Julian-type date from integer Julian day, ihour,
minute, second, and hundredth of a second. It has integer 1/100 second precision or
full integer precision for coarser time applications.
Calling Sequence: jd2df (idaft, idayfr, jday, ihour, imin, isec, ihsec)
Data Declaration: Integer idaft, idayfr, jday, ihour, imin, isec, ihsec

Jd2id Subroutine JD2ID calculates an integer month and day from an integer Julian day
and year. There is integer 1/100 second precision or full integer precision for coarser
time applications.
Calling Sequence: jd2id (jday, iyear, month, iday)
Data Declaration: Integer jday, iyear, iday, month

Jddtg Subroutine JDDTG converts year and Julian-type date to date-time group and
minute. This conversion is not exact, because the seconds are dropped, not rounded
to nearest minute. There is integer second precision.
Calling Sequence: jddtg (iyear, date, idtg, imin, isec)

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

98

Subroutine Description
Data Declaration: Integer iyear, idtg, imin, isec
 Real date

Loctime Subroutine LOCTIME calculates local time of day, given longitude and time at
Greenwich (GMT) in days. Integer 1/100 second precision or full integer precision
for coarser time applications.
Calling Sequence: loctime (elong, timegmt, timeloc)
Data Declaration: Real elong, timegmt, timeloc

Oddtg Subroutine ODDTG converts a time defined by the year, month, day, hour, minute,
and second to a date-time group.
Calling Sequence: oddtg (iyear, month, iday, ihour, imin, isec, idtg)
Data Declaration: Integer iyear, iday, ihour, imin, isec, idtg, month

Odtgd Subroutine ODTGD converts a date-time group to year, month, day, hour, minute
and second.
Calling Sequence: odtgd (idtg, iyear, month, iday, ihour, imin, isec)
Data Declaration: Integer idtg, iyear, iday, ihour, imin, isec, month

Odtghc Subroutine ODTGHC converts a date-time group to the hour of the 20th century.
Calling Sequence: odtghc (idtg, ihrcen)
Data Declaration: Integer idtg, ihrcen

5.9.3 File Conversion Subroutines (w_ncomnc/ w_ncomnc2)
Subroutine Description

W_ncomnc/2 Subroutine W_NCOMNC writes NCOM data into a netCDF file.
Calling Sequence: w_ncomnc (inde, indv, indt, inds, indl, indz, indh, inda, nest,

nmax, mmax, lmax, n, m, ll, e, u, v, t, s, wk, timed, run, elon,
alat, elonu, alatu, elonv, alatv, dx, dy, h, ang, depth, zm3, idtg,
ldefattr, icoordsys, ivcoordsys, outfilnam, axlab, axunit, axfmt,
ntypes, dlab, dunit, dfmt, max1d, maxattr, maxname,
maxannot, scalee, scalet, scaleu, scalev, rattr, iattr, iattrnam,
rattrnam, cattrnam, cattr)

Data Declaration: Integer inde, indv, indt, inds, indl, indz, indh, inda,
nest,nmax, mmax, lmax, n, m, ll, idtg, ldefattr,
icoordsys, ivcoordsys, ntypes, max1d, maxattr,
maxname, maxannot, iattr, iattrnam

 Real e, u, v, t, s, wk, timed, elon, alat, elonu, alatu,
elonv,alatv, dx, dy, h, ang, depth, zm3,
outfilnam, axlab, axunit, axfmt, dlab, dunit,
dfmt, scalee, scalet, scaleu, scalev, rattr,
rattrnam, cattrnam, cattr

 Character run

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

99

5.9.4 Unit Conversion Subroutines (gc_ellipsoid)
Subroutine Description

Gc_ellipsoid Subroutine GC_ELLIPSOID returns distances in m and the azimuth angle in degrees.
Calling Sequence: subroutine gc_ellipsoid(latd1,latm1,lats1,lond1,lonm1,lons1,

latd2,latm2,lats2,lond2,lonm2,lons2,dist,azimuth)
Data Declaration: Real latd1,latm1,lats1,lond1,lonm1,lons1,

latd2,latm2,lats2,lond2,lonm2,lons2,
dist,azimuth

Inver1 INVER1 is a solution of the geodetic inverse problem after T. Vincenty modified
Rainsford's method with Helmert's elliptical terms effective in any azimuth and at
any distance short of antipodal (Vincenty, 1975). Standpoint/forepoint must not be
the geographic pole. Variable a is the semi-major axis of the reference ellipsoid. The
variable f is the flattening (not reciprocal) of the reference ellipsoid. Latitudes and
longitudes in radians positive north and east forward azimuths at both points are
returned in radians from north.
Calling Sequence: inver1(glat1,glon1,glat2,glon2,faz,baz,s,a,f,pi,rad)
Data Declaration: Real glat1, glon1, glat2, glon2, fax, baz, s, a, f, pi,rad

Getrad Subroutine GETRAD converts deg, min, and sec to radians.
Calling Sequence: getrad(d,m,s,isign,val,pi,rad)
Data Declaration: Integer isign
 Real d, m, s, val, pi, rad

Todmsp Subroutine TODMSP converts position radians to deg,min,and sec.
Calling Sequence: todmsp(val,id,im,s,isign,pi,rad)
Data Declaration: Integer isign, id, im
 Real s, val, pi, rad

5.9.5 Array Allocation Subroutines (allocate)
Subroutine Description

Allocate Subroutine ALLOCATE allocates the number of array elements needed, via pointer
variables on the SUNs. This is a hardware dependent routine.
Calling Sequence: allocate (ipoint,isize)
Data Declaration: Integer ipoint, isize
Routines called: malloc

5.9.6 Array Conversion Subroutines (w_rgb)
Subroutine Description

W_rgb Subroutine W_RGB converts a real valued array f to an output rgb file in SGI format.
Array values f are scaled to the range icolormin to icolormax as fs = am*(f+ad).
Values of fs lower than icolormin or higher than icolormax are truncated to these
limits. Masked values are returned as 0 (land). It is recommended that 1 is reserved
for text/symbols (default black). It is recommended that icolormax+1 is reserved for
special text/symbols (default white). When computing a sequence of images, e.g., for
an animation, do not change the grid, i.e., the dimensions or the mask, since setup
calculations for images will not be changed when num > 1. Equivalent to w_rgb with

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

100

Subroutine Description
minimum value 1 (zero reserved for land).
Calling Sequence: w_rgb(ni,n,m,f,amsk,neg,am,ad,sx,sy,num,filnam, iflip,

icolormin,icolormax,ncpal,irpal,igpal,ibpal)
Data Declaration: Integer ni, n, m, neg, num, iflip, ncpal, irpal, igpal,

ibpal, icolormin, icolormax
 Real am, amsk, ad, sx, sy
 Logical filnam
Common Blocks: Common/rgbheader/

5.9.7 Table Lookup Subroutines (tablk2s)
Subroutine Description
Tablk2s Subroutine TABLK2S interpolates a value from a 2D array f using linear

interpolation (i.e. table lookup). F varies with both x and y and the spacing of the
values of f along the x and y axes is assumed to be constant.
Calling Sequence: tablk2s(ni,n,m,xa,xb,ya,yb,f,x2,y2,f2,indext,spval)
Data Declaration: Integer n, ni, m, indext
 Real spval, xa, xb, ya, yb, f, x2, y2, f2

5.9.8 Horizontal Grid Embedding Subroutine (padarr)
Subroutine Description

Padarr This is a subroutine to embed the model horizontal grid into the computational
horizontal grid. The model grid is positioned at the 1,1 entry of the comp_array.
Calling Sequence: padarr(n,m,nibo,mibo,mod_array,comp_array,padval)
Data Declaration: Integer n, m, nibo, mibo
 Real mod_array, comp_array, padval

5.10 Dummy Computer-Specific Subroutines (libsrc/ none/)
Subroutine Description

Nonsuch Subroutine NONSUCH is a single dummy subroutine that is never invoked. It is used
to simplify Makefile logic.

5.11 Dummy NCOM Plotting Subroutines (libsrc/ pdum/)

5.11.1 Plotting Subroutines (ncom1pdum)
File ncom1pdum contains dummy plotting routines for NCOM when interactive NCAR
graphics are not available.

Subroutine Description
Paxscal Subroutine PAXSCAL finds axis limits for plotting values of a function f.

Calling Sequence: paxscal (n, f, df, fmin, fmax, intf)

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

101

Subroutine Description
Data Declaration: Integer n, intf
 Real f, df, fmin, fmax

Pendpg Calling Sequence: pendpg(ind)
Data Declaration: Integer ind

Pltcon Subroutine PLTCON creates contour plots using the NCAR routine CONREC.
Calling Sequence: pltcon (ni, n, m, f, cmin, cmax, cint, xmin, xmax, ymin, ymax,

intx, inty,title, lintit, xtit, ytit)
Data Declaration: Integer ni, n, m, intx, inty, lintit
 Real f, cmin, cmax, cint, xmin, xmax, ymin, ymax
 Character title, xtit, ytit

Pltvec Subroutine PLTVEC creates vector arrow plots.
Calling Sequence: pltvec (ni, n, m, x, y, vscale, vecmin, vecmax, vecleg, legend,

xmin, xmax,ymin, ymax, intx, inty, title, lintit, xtit, ytit)
Data Declaration: Integer ni, n, m, intx, inty, lintit
 Real x, y, vscale, vecmin, vecmax, vecleg, smin,

smax, ymin,ymax
 Character title, xtit, ytit, legend

Pltxy Subroutine PLTXY creates x-y plots.
Calling Sequence: pltxy (ni, n, m, x, y, xmin, xmax, ymin, ymax, intx, inty, title,

lintit, xtit,ytit)
Data Declaration: Integer ni, n, m, intx, inty, lintit
 Real x, y, xmin, xmax, ymin, ymax
 Character title, xtit, ytit

Pseloc Calling Sequence: psetloc (xa, xb, ya, yb)
Data Declaration: Real xa, xb, ya, yb

Psetax Calling Sequence: psetax (nxtic, nytic, intax, nxdec, nydec, xofset)
Data Declaration: Integer nxtic, nytic, intax, nxdec, nydec
 Real xofset

Psetid Calling Sequence: psetid (plotid)
Data Declaration: Character plotid

Psetlab Calling Sequence: psetlab (siztid, sizled, siznud)
Data Declaration: Real siztid, sizled, siznud

Psetspv Calling Sequence: psetspv (indspv, spvalu)
Data Declaration: Integer indspv

Real spvalu
Psetvfr Calling Sequence: psetvfr (ifreq, jfreq)

Data Declaration: Integer ifreq, jfreq
Psymbl Calling Sequence: psymbl(x,y,isym,size)

Data Declaration: Integer isym
 Real x,y,ism,size

Xprnte Calling Sequence: xprnte (fld, n, n1, n2, m1, m2, ncolum, length, ndec, title,
amult, ad, iflip)

Data Declaration: Integer n, n1, n2, m1, m2, ncolum, length, ndec, iflip

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

102

Subroutine Description
 Real fld, amult, ad
 Character title

5.12 Communication Subroutines (libsrc/util/)
The folder /util/ contains files with Alan Wallcraft’s message passing routines for shared
memory (SM) and multi-processor (MP) computing.

5.12.1 Program xmc
Program XMC selects between programs XMC_MP and XMC_SM.

5.12.2 Communication Subroutines for Shared Memory Computer (xmc_sm)
File xmc_sm contains communication routines for a shared memory computer.

Subroutine Description
IEEE_retrospec
tive

Subroutine IEEE_RETROSPECTIVE is a dummy routine to turn off IEEE warning
messages on a Sun system.

Xcaget Subroutine XCAGET converts an entire 2D array from tiled to non-tiled layout.
Variable mnflg selects which nodes must return the array:

= 0 All nodes.
= n Node number n (mnproc = n).

Calling Sequence: xcaget (aa, na, ma, a, n, m, mnflg)
Data Declaration: Integer na, ma, n, m, mnflg
 Real aa, a

Xcaput Subroutine XCAPUT converts an entire 2D array from non-tiled to tiled layout.
Calling Sequence: xcaput (aa, na, ma, a, n, m, mnflg)
Data Declaration: Integer na, ma, n, m, mnflg
 Real aa, a

Xceget Subroutine XCEGET finds the value of a(ia, ja) on the non-tiled 2D grid.
Calling Sequence: xceget (aelem, a, n, m, ia, ja)
Data Declaration: Integer n, m, ia, ja
 Real aelem, a

Xceput Subroutine XCEPUT fills a single element in the non-tiled 2D grid.
Calling Sequence: xceput (aelem, a, n, m, ia, ja)
Data Declaration: Integer n, m, ia, ja
 Real aelem, a

Xchalt Subroutine XCHALT stops all processes. Only one process needs to call this routine
because it is for emergency stops. Use subroutine XCSTOP for ordinary stops called
by all processes.
Calling Sequence: xchalt (cerror)
Data Declaration: Character cerror

Xciget Subroutine XCIGET converts (ia, ja) on the non-tiled 2D grid to a local (i, j).

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

103

Subroutine Description
Calling Sequence: xciget (i, j, n, m, ia, ja)
Data Declaration: Integer i, j, n, m, ia, ja

Xcigtg Subroutine XCIGTG converts local (i,j) to global (ia,ja) on the non-tiled 2D grid.
Calling Sequence: xcigtg(i,j, n,m, ia,ja)
Data Declaration: Integer i, j, n, m, ia, ja

Xclg3d Subroutine XCLG3D extracts a vertical slice of elements from the non-tiled 3D grid.
Calling Sequence: xclg3d(aline,nl, a,n,m,l, i1,j1,ii,ji, mnflg)
Data Declaration: Integer nl, n, m, l, i1, j1, ii, ji, mnflg
 Real aline, a

Xclget Subroutine XCLGET extracts a line of elements from the non-tiled 2D grid.
Variable aline(i) = a(i1 + i1*(i-1), j1+j1*(i-1)), for i = 1...nl.
Variables ii and ji can each be -1, 0, or +1.
Variable mnflg selects which nodes must return the line.

= -1 Only nodes owning part of the line.
= 0 All nodes.
= n Node number n (mnproc = n).

Calling Sequence: xclget (aline, nl, a, n, m, i1, j1, ii, ji, mnflg)
Data Declaration: Integer nl, n, m, i1, j1, ii, ji, mnflg
 Real aline, a

Xclput Subroutine XCLPUT fills a line of elements in the non-tiled 2D grid.
Variable aline(i) = a(i1+i1*(i-1), j1+j1*(i-1)), for i = 1...nl. One of ii and ji must be
zero, and the other must be one.
Calling Sequence: xclput (aline, nl, a, n, m, i1, j1, ii, ji)
Data Declaration: Integer nl, n, m, i1, j1, ii, ji
 Real aline, a

Xcmaxr Subroutine XCMAXR replaces array ‘a’ with its element-wise maximum over all
tiles.
Calling Sequence: xcmaxr (a, n)
Data Declaration: Integer n

Real a
Xcprod Subroutine XCPROD sums the product of two 2D arrays. Array n, m specifies the

local dimensions of the array. The sum is bit for bit reproducible for the same iprsum
and jprsum.
Calling Sequence: xcprod (absum, a, b, n, m)
Data Declaration: Integer n, m
 Real absum, a, b
Common Blocks: PRSUMI

Xcrang Subroutine XCRANG finds the minimum and/or maximum of part of a 3D array.
Variables n and m specify the local 2D dimensions of the array, but n1, n2 and m1,
m2 specify which part of the entire array to use. The third dimension is always
completely used. Variables a and amask can be the same array. This is legal Fortran
77/Fortran 90 because both a and amask are unchanged on exit.
Calling Sequence: xcrang (amin, amax, a, n, m, l, n1, n2, m1, m2, amask, itype,

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

104

Subroutine Description
spval)

Data Declaration: Integer n, m, l, n1, n2, m1, m1, itype
 Real amin, amax, a, amask, spval

Xcspmd Subroutine XCSPMD initializes /cproci/ by identifying the local processor. If jqr is
less than ipr*jpr, then sea-less nodes are skipped. A map of which nodes to skip is
input. Some node indices in idproc are null, and jdproc replaces the nulls with
repeated indices from the same row. Variables jdproc(1,*) and jdproc(ipr,*) contain
the identification of the first and last active processor in each row. This simplifies
array I/O and some hand coded broadcasts.
Common Blocks: PRSUMI

Xcspmn Subroutine XCSPMN identifies local array sizes, no by mo, from total, noa by moa.
Boundary flags iec(1:4) are for boundaries W, E, S and N, respectively:

= 0 Interior edge.
= 1 Exterior edge.

The exterior edges may be reset to 0 later if they represent periodic boundaries.
Boundary flags iec(5:8) are always defined later.
Calling Sequence: xcspmn (no, mo, iec, noa, moa)
Data Declaration: Integer no, mo, iec, noa, moa

Xcstop Subroutine XCSTOP stops all processes. All processes must call this routine. Use
subroutine XCHALT for emergency stops.
Calling Sequence: xcstop (cerror)
Data Declaration: Character cerror

Xcsum2 Subroutine XCSUM2 sums part of a 2D array. Array n, m specifies the local
dimensions of the array, but n1, n2 and m1, m2 specify the part of the entire array to
sum. The sum is bit for bit reproducible for the same iprsum.
Calling Sequence: xcsum2 (asum, a, n, m, n1, n2, m1, m2)
Data Declaration: Integer n, m, n1, n2, m1, m2
 Real asum, a
Common Blocks: PRSUMI

Xcsync Barrier, no processor exits until all arrive. This is a wrapper for the 'BARRIER'
macro.

Xctmr0 Subroutine XCTMR0 starts timer n.
Calling Sequence: xctmr0 (n)
Data Declaration: Integer n
Common Blocks: ZCTMRC
 ZCTMRI
 ZCTMR8

Xctmr1 Subroutine XCTMR1 adds the time since call to XCTIM0 to timer n.
Calling Sequence: xctmr1 (n)
Data Declaration: Integer n
Common Blocks: ZCTMRC
 ZCTMRI
 ZCTMR8

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

105

Subroutine Description
Xctmri Subroutine XCTMRI initializes timers. It is called by subroutine XCSPMD.

• Timers 1:32 are for message passing routines.
• Timers 33:80 are for general NCOM routines.
• Timers 81:96 are for user selected routines.
• Timer 97 is the total time.

Call XCTMR0(n) to start timer n. Call XCTMR1(n) to stop timer n and add event to
timer sum. Call XCTNRN(n, cname) to register a name for timer n. Call XCTMRP to
printout timer statistics (called by XCSTOP).
Common Blocks: ZCTMRC
 ZCTMRI
 ZCTMR8

Xctmrn Subroutine XCTMRN registers the name of timer n.
Calling Sequence: xctmrn (n, cname)
Data Declaration: Integer n
 Character cname
Common Blocks: ZCTMRC
 ZCTMRI
 ZCTMR8

Xctmrp Subroutine XCTMRP prints all active timers. Upon exit all timers are reset to zero.
Common Blocks: ZCTMRC
 ZCTMRI
 ZCTMR8

5.12.3 Communication Subroutines for Multiple Processors (xmc_mp)
File xmc_mp contains communication routines for multiple processors. Many of the subroutines
are already documented in Section 5.12.2. The following subroutines are either unique to
xmc_mp or contain common blocks not found in the subroutines of xmc_sm.

Subroutine Description
Shmem32_get Calling Sequence: shmem32_get(target, source, len, pe)

Data Declaration: Integer len,pe
 Real target, source

Shmem32_get4 Calling Sequence: shmem32_get4(target, source, len, pe)
Data Declaration: Integer len,pe
 Real target, source

Xcaget Subroutine XCAGET converts an entire 2D array from tiled to non-tiled layout.
Variable mnflg selects which nodes must return the array:

= 0 All nodes.
= n Node number n (mnproc = n).

Calling Sequence: xcaget (aa, na, ma, a, n, m, mnflg)
Data Declaration: Integer na, ma, n, m, mnflg
 Real aa, a

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

106

Subroutine Description
Common Blocks: CPROCN

Xcaput Subroutine XCAPUT converts an entire 2D array from non-tiled to tiled layout.
Calling Sequence: xcaput (aa, na, ma, a, n, m, mnflg)
Data Declaration: Integer na, ma, n, m, mnflg
 Real aa, a
Common Blocks: CPROC1D
 CPROCN

Xceget Subroutine XCEGET finds the value of a(ia, ja) on the non-tiled 2D grid.
Calling Sequence: xceget (aelem, a, n, m, ia, ja)
Data Declaration: Integer n, m, ia, ja
 Real aelem, a
Common Blocks: CTILEZ
 CPROCN

Xceput Subroutine XCEPUT fills a single element in the non-tiled 2D grid.
Calling Sequence: xceput (aelem, a, n, m, ia, ja)
Data Declaration: Integer n, m, ia, ja
 Real aelem, a
Common Blocks: CTILEZ
 CPROCN

Xcgthri This is an integer all gather subroutine.
Calling Sequence: xcgthri(a,aa)
Data Declaration: Real aa, a

Xchalt Subroutine XCHALT stops all processes. Only one process needs to call this routine
because it is for emergency stops. Use subroutine XCSTOP for ordinary stops called
by all processes.
Calling Sequence: xchalt (cerror)
Data Declaration: Character cerror
Common Blocks: CPROCN

Xciget Subroutine XCIGET converts (ia,ja) on the non-tiled 2D grid to a local (i,j).
Calling Sequence: xciget(i,j, n,m, ia,ja)
Data Declaration: Integer i,j,n,m,ia,ja
Common Blocks: CPROCN

Xcigtg This subroutine converts local (i,j) to global (ia,ja) on the non-tiled 2D grid.
Calling Sequence: xcigtg(i,j, n,m, ia,ja)
Data Declaration: Integer i,j,n,m,ia,ja
Common Blocks: CPROCN

Xclg3d Subroutine XCLG3D extracts a vertical slice of elements from the non-tiled 3D grid.
Calling Sequence: xclg3d(aline,nl, a,n,m,l, i1,j1,ii,ji, mnflg)
Data Declaration: Integer nl, n, m,l, i1, j1, ii, ji, mnflg
 Real aline, a
Common Blocks: CPROC1D
 CTILEZ
 CPROCN

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

107

Subroutine Description
Xclg3d1 Subroutine XCLG3D1 extracts a vertical slice of elements from the non-tiled 3D

grid.
Calling Sequence: xclg3d1(aline,nl, a,n,m,l, i1,j1,ii,ji, mnflg)
Data Declaration: Integer nl, n, m,l, i1, j1, ii, ji, mnflg
 Real aline, a
Common Blocks: CPROC1D
 CPROCN
 CTILEZ

Xclget Subroutine XCLGET extracts a line of elements from the non-tiled 2D grid.
Variable aline(i) = a(i1 + i1*(i-1), j1+j1*(i-1)), for i = 1...nl.
Variables ii and ji can each be -1, 0, or +1.
Variable mnflg selects which nodes must return the line.

= -1 Only nodes owning part of the line.
= 0 All nodes.
= n Node number n (mnproc = n).

Calling Sequence: xclget (aline, nl, a, n, m, i1, j1, ii, ji, mnflg)
Data Declaration: Integer nl, n, m, i1, j1, ii, ji, mnflg
 Real aline, a
Common Blocks: CPROC1D
 CTILEZ
 CPROCD

Xclget1 Subroutine XCLGET1 extracts a line of elements from the non-tiled 2D grid.
Calling Sequence: xclget1(aline,nl, a,n,m, i1,j1,ii,ji, mnflg)
Data Declaration: Integer nl, n, m, i1, j1, ii, ji, mnflg
 Real aline, a
Common Blocks: CPROC1D
 CTILEZ
 CPROCN

Xclput Subroutine XCLPUT fills a line of elements in the non-tiled 2D grid.
Variable aline(i) = a(i1+i1*(i-1), j1+j1*(i-1)), for i = 1...nl. One of ii and ji must be
zero, and the other must be one.
Calling Sequence: xclput (aline, nl, a, n, m, i1, j1, ii, ji)
Data Declaration: Integer nl, n, m, i1, j1, ii, ji
 Real aline, a
Common Blocks: CPROCN

Xcmaxr Subroutine XCMAXR replaces array ‘a’ with its element-wise maximum over all
tiles.
Calling Sequence: xcmaxr (a, n)
Data Declaration: Integer n
 Real a
Common Blocks: CPROC1D
 CPROCN

Xcprod Subroutine XCPROD sums the product of two 2D arrays. Array n,m specifies the

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

108

Subroutine Description
local dimensions of the array. The sum is bit for bit reproducible for the same iprsum
and jprsum.
Calling Sequence: xcprod (absum, a, b, n, m)
Data Declaration: Integer n, m
 Real absum, a, b
Common Blocks: CPROC1D

CPROCN
PRSUMI

Xcrang Subroutine XCRANG finds the minimum and/or maximum of part of a 3D array.
Array n, m specifies the local 2D dimensions of the array, but n1, n2 and m1, m2
specify the part of the entire array to use. The third dimension is always completely
used. Variables a and amask can be the same array. This is legal Fortran 77/Fortran
90 because both a and amask are unchanged on exit.
Calling Sequence: xcrang (amin, amax, a, n, m, l, n1, n2, m1, m2, amask, itype,

spval)
Data Declaration: Integer n, m, l, n1, n2, m1, m1, itype
 Real amin, amax, a, amask, spval
Common Blocks: CPROC1D
 CPROCN

Xcspmd Subroutine XCSPMD initializes /cproci/, by identifying the local processor. If jqr is
less than ipr*jpr, then sea-less nodes are skipped. A map of which nodes to skip is
input. Some node indices in idproc are null, and jdproc replaces the nulls with
repeated indices from the same row. Variables jdproc(1,*) and jdproc(ipr,*) contain
the identification of the first and last active processor in each row. This simplifies
array I/O and some hand coded broadcasts.
Common Blocks: CPROC1D

CTILEZ
CPROCN
PRSUMI

Xcspmn Subroutine XCSPMN identifies local array sizes, no by mo, from total, noa by moa.
Boundary flags iec(1:4) are for boundaries W, E, S and N, respectively:

= 0 Interior edge.
= 1 Exterior edge.

The exterior edges may be reset later to 0 if they represent periodic boundaries.
Boundary flags iec(5:8) are always defined later.
Calling Sequence: xcspmn (no, mo, iec, noa, moa)
Data Declaration: Integer no, mo, iec, noa, moa
Common Blocks: CPROCN
 PRSUMI

Xcstop Subroutine XCSTOP stops all processes. All processes must call this routine. Use
subroutine XCHALT for emergency stops.
Calling Sequence: xcstop (cerror)
Data Declaration: Character cerror

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

109

Subroutine Description
Common Blocks: CPROCN

Xcsum2 Subroutine XCSUM2 sums part of a 2D array. Array n, m specifies the local
dimensions of the array, but n1, n2 and m1, m2 specify the part of the entire array to
sum. The sum is bit for bit reproducible for the same iprsum.
Calling Sequence: xcsum2 (asum, a, n, m, n1, n2, m1, m2)
Data Declaration: Integer n, m, n1, n2, m1, m2
 Real asum, a
Common Blocks: PRSUMI
 CPROC1D
 CPROCN

Xctbar Subroutine XCTBAR is a global collective operation, and the calls on ipe1 and ipe2
must list the processor as one of the two targets. This is used in place of a global
barrier in halo operations, but it only provides synchronization of two processors
with the local processor. Variables ipe1 and/or ipe2 can be -1, to indicate no
processor.
Calling Sequence: xctbar (ipe1, ipe2)
Data Declaration: Integer ipe1, ipe2
Common Blocks: HALOBP

5.12.4 Program za
Program za selects between programs za_mp and za_sm.

5.12.5 I/O Subroutines for Shared Memory Computer (za_sm)
File za_sm contains I/O routines for shared memory computer.

Subroutine Description
Getenv Subroutine GETENV provides GETENV functionality on the T3E, using

PXFGETENV.
Calling Sequence: getenv (cname, cvalue)
Data Declaration: Character cname, cvalue

Zaiocl Subroutine ZAIOCL is a machine specific routine for array I/O file closing. The user
must call ZAIOPN for this array unit before calling ZAIOCL. This version is for the
Sun under Sun Fortran. Array I/O is Fortran direct access I/O to unit iaunit + 1000.
Calling Sequence: zaiocl (iaunit)
Data Declaration: Integer iaunit
Common Block: CZIOXX

Zaiofl Subroutine ZAIOFL is a machine specific routine for array I/O buffer flushing. The
user must call ZAIOPN for this array unit before calling ZAIOCL. This version is for
the Sun under Sun Fortran. Array I/O is Fortran direct access I/O to unit iaunit+1000.
Calling Sequence: zaiofl (iaunit)
Data Declaration: Integer iaunit
Common Block: CZIOXX

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

110

Subroutine Description
Zaiopd This is a machine specific routine for opening a file for array I/O. The user must call

ZAIOST before the first call to ZAIOPD. See subroutines ZAIOPN, ZAIOPE and
ZAIOPF. This version is for the Sun under Sun Fortran. The filename is taken from
environment variable 'cenv'. The filename is then modified to reflect the data, date
and time. It can be 'scratch', 'old', or 'new'. All I/O to iaunit must be performed by
ZAIORD and ZAIOWR. Arrays passed to these routines must conform to 'h'. The file
should be closed using ZAIOCL.
Calling Sequence: zaiopd (cenv, cstat, h, n, m, iaunit, idate, itime)
Data Declaration: Integer n, m, iaunit, idate, itime
 Real h
 Character cenv, cstat
Common Block: CZIOXX

Zaiope Subroutine ZAIOPE is a machine specific routine for opening a file for array I/O.
ZAIOST must be called before the first call to ZAIOPE. See subroutines ZAIOPN
and ZAIOPF. This version is for the Sun under Sun Fortran.
Calling Sequence: zaiope (cenv, cstat, h, n, m, iaunit)
Data Declaration: Integer n, m, iaunit
 Real h
 Character cenv, cstat
Common Block: CZIOXX

Zaiopf Subroutine ZAIOPF is a machine specific routine for opening a file for array I/O.
The user must call ZAIOST before the first call to ZAIOPF. See subroutines
ZAIOPN and ZAIOPE. This version is for the Sun under Sun Fortran.
Calling Sequence: zaiopf (cfile, cstat, h, n, m, iaunit)
Data Declaration: Integer n, m, iaunit
 Real h
 Character cfile, cstat
Common Block: CZIOXX

Zaiopn Subroutine ZAIOPN is a machine specific routine for opening a file for array I/O.
The user must call ZAIOST before first call to ZAIOPN. See subroutines ZAIOPE
and ZAIOPF. This version is for the Sun under Sun Fortran. The filename is taken
from the environment variable FORxxxA, where xxx = iunit, with default fort.xxxa.
Array I/O is Fortran direct access I/O to unit iaunit + 1000. Variable iunit is the
nominal Fortran I/O unit (it is not used for array I/O). Variable iaunit + 1000 is the
I/O unit used for arrays. Array I/O might not use Fortran I/O units but, for
compatibility, assume that iaunit + 1000 refers to a Fortran I/O unit anyway. Variable
cstat indicates the file type. It can be 'scratch', 'old' or 'new'. All I/O to iaunit must be
performed by ZAIORD and ZAIOWR. Arrays passed to these routines must conform
to 'h'. The file should be closed using ZAIOCL.
Calling Sequence: zaiopn (iunit, cstat, h, n, m, iaunit)
Data Declaration: Integer iunit, n, m, iaunit
 Real h
 Character cstat

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

111

Subroutine Description
Common Block: CZIOXX

Zaiord Subroutine ZAIORD is a machine specific routine for array reading. The user must
call ZAIOPN for this array unit before calling ZAIORD. This version is for the Sun
under Sun Fortran. Array I/O is Fortran direct access I/O to unit iaunit + 1000.
Variable iaunit + 1000 is the I/O unit used for arrays. Array I/O might not use
Fortran I/O units but, for compatibility, assume that iaunit + 1000 refers to a Fortran
I/O unit anyway. The array 'h' must conform to that passed in the associated call to
ZAIOPN.
Calling Sequence: zaiord (h, n, m, l, iaunit)
Data Declaration: Integer n, m, l, iaunit

Real h
Common Blocks: CZIOXX

Zaiorw Subroutine ZAIORW is a machine specific routine for array I/O file rewinding. The
user must call ZAIOPN for this array unit before calling ZAIOCL. This version is for
the Sun under Sun Fortran. Array I/O is Fortran direct access I/O to unit iaunit +
1000.
Calling Sequence: zaiorw (iaunit)
Data Declaration: Integer iaunit
Common Block: CZIOXX

Zaiosk Subroutine ZAIOSK is a machine specific routine for skipping an array read. The
user must call ZAIOPN for this array unit before calling ZAIOSK. This version is for
the Sun under Sun Fortran. Array I/O is Fortran direct access I/O to unit iaunit +
1000. Variable iaunit + 1000 is the I/O unit used for arrays. Array I/O might not use
Fortran I/O units but, for compatibility, assume that iaunit + 1000 refers to a Fortran
I/O unit anyway. The array 'h' must conform to that passed in the associated call to
ZAIOPN.
Calling Sequence: zaiosk (h, n, m, l, iaunit)
Data Declaration: Integer n, m, l, iaunit
 Real h
Common Block: CZIOXX

Zaiost Subroutine ZAIOST is a machine specific routine for initializing array I/O. See
subroutines ZAIOPN, ZAIORD, ZAIOWR and ZAIOCL.
Calling Sequence: zaiost (iaoffi)
Data Declaration: Integer iaoffi
Common Block: CZIOXX

Zaiowr Subroutine ZAIOWR is a machine specific routine for array writing. The user must
call ZAIOPN for this array unit before calling ZAIORD. This version is for the Sun
under Sun Fortran. Array I/O is Fortran direct access I/O to unit iaunit + 1000.
Variable iaunit + 1000 is the I/O unit used for arrays. Array I/O might not use
Fortran I/O units but, for compatibility, assume that iaunit + 1000 refers to a Fortran
I/O unit anyway. The array 'h' must conform to that passed in the associated call to
ZAIOPN.
Calling Sequence: zaiowr (h, n, m, l, iaunit)

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

112

Subroutine Description
Data Declaration: Integer n, m, l, iaunit
 Real h
Common Blocks: CZIOXX

Zaiowr4 Subroutine ZAIOWR4 is a machine specific routine for array writing. It also
converts argument array to real*4, so use ZAIOWR for an unchanged array.
Calling Sequence: zaiowr4 (h, n, m, l, iaunit)
Data Declaration: Integer n, m, l, iaunit
 Real h
Common Blocks: CZIOXX

Zhclos Subroutine ZHCLOS is a machine specific routine that closes logical unit 'iunit'. This
version is for Sun workstations.
Calling Sequence: zhclos (iunit)
Data Declaration: Integer iunit

Zhflsh Subroutine ZHFLSH is a machine specific routine that flushes the output buffers of
logical unit 'iunit'. Use ZAIOFL to flush array I/O. This version is for the Sun
workstations. It uses the 'flush' Fortran system routine.
Calling Sequence: zhflsh (iunit)
Data Declaration: Integer iunit

Zhgeti Subroutine ZHGETI reads integers from standard input. I/O is called by all nodes but
performed by the master node only.
Calling Sequence: zhgeti (cquery, cformt, iinput)
Data Declaration: Integer iinput
 Character cquery, cformt

Zhgetl Subroutine ZHGETL reads logicals from standard input. I/O is called by all nodes,
but performed by the master node only.
Calling Sequence: zhgetl (cquery, linput)
Data Declaration: Integer linput
 Character cquery

Zhgetr Subroutine ZHGETR reads real*4 from standard input. I/O is called by all nodes, but
performed by the master node only.
Calling Sequence: zhgetr (cquery, cformt, rinput)
Data Declaration: Real rinput
 Character cquery, cformt

Zhgets Subroutine ZHGETS reads a string from standard input. I/O is called by all nodes,
but performed by the master node only.
Calling Sequence: zhgets (cquery, cformt, sinput)
Data Declaration: Character cquery, cformt, sinput

Zhiodr Subroutine ZHIODR is direct access and reads a single record. Subroutine ZHIODR
is expressed as a subroutine because I/O with implied do loops can be slow on some
machines.
Calling Sequence: zhiodr (a, n, iunit, irec, ios)
Data Declaration: Integer n, iunit, irec, ios
 Real a

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

113

Subroutine Description
Zhiodw Subroutine ZHIODW is direct access and writes a single record. Subroutine

ZHIODW is expressed as a subroutine because I/O with implied do loops can be
slow on some machines.
Calling Sequence: zhiodw (a, n, iunit, irec, ios)
Data Declaration: Integer n, iunit, irec, ios
 Real a

Zhopen Subroutine ZHOPEN is a machine specific routine for simple open statements. See
subroutine ZHOPNE. This version is for the Sun under Sun Fortran. The filename is
taken from the environment variable FORxxx, where xxx = iunit, with default
fort.xxx. Variable cstat can be scratch, old, new or unknown. Variable cform can be
formatted or 'unformatted'. Variable irlen can be zero (for sequential access) or non-
zero (for direct access indicating record length in terms of real variables). If irlen is
negative, the output will be in IEEE binary if that capability exists using standard
Fortran I/O. This capability is primarily targeted to Crays; on other machines -len
and len are likely to do the same thing. On the Sun, len and -len both give IEEE files.
Status = 'old' must be invoked on all images, but all other calls must be on image one
only. For Fortran 90 compilers, delim = 'quote' is included in the open statement
where appropriate. The following call (zhopen(6,'formatted','unknown',0)) is legal
and would have the effect of setting delim = 'quote' for stdout. Iunit = 6 is typically
treated as a special case.
Calling Sequence: zhopen (iunit, cform, cstat, irlen)
Data Declaration: Integer iunit, irlen
 Character cform, cstat

Zhopnd Subroutine ZHOPND is a machine specific routine for simple open statements. See
subroutines ZHOPNE, and ZHOPEN. This version is for the Sun under Sun Fortran.
The filename is taken from environment variable cenv. The filename is then modified
to reflect the data date and time. Variable irlen can be zero (for sequential access), or
non-zero (for direct access indicating record length in terms of real variables). If irlen
is negative, the output will be in IEEE binary if that capability exists using standard
Fortran I/O. This capability is primarily targeted to Crays; on other machines -len
and len are likely to do the same thing. On the Sun, len and -len both give IEEE files.
Status = 'old' must be invoked on all images but all other calls must be on image one
only. For Fortran 90 compilers, delim = 'quote' is included in the open statement
where appropriate.
Additionally, for Fortran 90 compilers:

status = 'new' implies action = 'write'
status = 'old' implies action = 'read'
status = 'scratch' implies action = 'readwrite'

Calling Status: zhopnd (iunit, cenv, cform, cstat, irlen, idate, itime)
Data Declaration: Integer iunit, irlen, idate, itime
 Character cenv, cform, cstat

Zhopne Subroutine ZHOPNE is a machine specific routine for simple open statements. See
subroutine ZHOPEN. This version is for the Sun under Sun Fortran. The filename is
taken from environment variable 'cenv'. Variable irlen can be zero (for sequential

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

114

Subroutine Description
access) or non-zero (for direct access indicating record length in terms of real
variables). If irlen is negative, the output will be in IEEE binary, if that capability
exists using standard Fortran I/O. This capability is primarily targeted to Crays; on
other machines -len and len are likely to do the same thing. On the Sun, len and -len
both give IEEE files. Status = 'old' must be invoked on all images, but all other calls
must be on image one only. For Fortran 90 compilers, delim = 'quote' is included in
the open statement where appropriate.
Additionally, for Fortran 90 compilers:

status = 'new' implies action = 'write'
status = 'old' implies action = 'read'
status = 'scratch' implies action = 'readwrite'

Calling Sequence: zhopne (iunit, cenv, cform, cstat, irlen)
Data Declaration: Integer iunit, irlen
 Character cenv, cform, cstat

Zhopnf Subroutine ZHOPNF is a machine specific routine for simple open statements. See
subroutine ZHOPEN. This version is for the Sun for Sun Fortran. The filename is
taken from 'cfile'. Variable irlen can be zero (for sequential access) or non-zero (for
direct access indicating record length in terms of real variables). If irlen is negative,
the output will be in IEEE binary, if that capability exists using standard Fortran I/O.
This capability is primarily targeted to Crays; on other machines -len and len are
likely to do the same thing. On the Sun, len and -len both give IEEE files. Status =
'old' must be invoked on all images, but all other calls must be on image one only.
Calling Sequence: zhopnf (iunit, cfile, cform, cstat, irlen)
Data Declaration: Integer iunit, irlen
 Character cfile, cform, cstat

Zhrwnd Subroutine ZHRWND is a machine specific routine that rewinds logical unit 'iunit'.
This version is for Sun workstations.
Calling Sequence: zhrwnd (iunit)
Data Declaration: Integer iunit

Zhsec Subroutine ZHSEC is a machine specific routine for wall time up to this point. This
version for the Sun (message passing).
Calling Sequence: zhsec (sec)
Data Declaration: Real sec
Common Blocks: ZHSEC8
 ZHSECI

5.12.6 I/O Subroutines for Multiple Processors (za_mp)
File za_mp contains I/O routines for multiple processors. See Section 5.12.5 for documentation
on the majority of za_mp subroutines. File za_mp has additional subroutines ZABSTR,
ZHCLOS, and ZHRWND (Co-Array Fortran and Array Fortran). The following subroutines are
either unique to za_mp or contain common blocks not found in subroutines of za_sm.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

115

Subroutine Description
Zabstr Subroutine ZABSTR broadcasts a string from processor one to all processors.

Calling Sequence: zabstr (string)
Data Declaration: Character string
Common Blocks: CPROC1D
 CPROCN

Zaiocl Subroutine ZAIOCL is a machine specific routine for array I/O file closing. ZAIOPN
must be called for this array unit before calling ZAIOCL. This version is for the Sun
under Sun Fortran. Array I/O is Fortran direct access I/O to unit iaunit + 1000.
Calling Sequence: zaiocl (iaunit)
Data Declaration: Integer iaunit
Common Blocks: CZIOXX
 CPROCN

Zaiofl Subroutine ZAIOFL is a machine specific routine for array I/O buffer flushing. The
user must call ZAIOPN for this array unit before calling ZAIOCL. This version is for
the Sun under Sun Fortran. Array I/O is Fortran direct access I/O to unit iaunit +
1000.
Calling Sequence: zaiofl (iaunit)
Data Declaration: Integer iaunit
Common Block: CZIOXX
 CPROCN

Zaiopd This is a machine specific routine for opening a file for array I/O. It must call
ZAIOST before the first call to ZAIOPD. See subroutines ZAIOPN, ZAIOPE and
ZAIOPF. This version is for the Sun under Sun Fortran. The filename is taken from
environment variable cenv. The filename is then modified to reflect the data date and
time. Array I/O is Fortran direct access I/O to unit iaunit + 1000. Variable iaunit +
1000 is the I/O unit used for arrays. Array I/O might not use Fortran I/O units, but for
compatibility, assume that iaunit + 1000 refers to a Fortran I/O unit anyway. Variable
cstat indicates the file type. It can be scratch, old, or new. All I/O to iaunit must be
performed by ZAIORD and ZAIOWR. Arrays passed to these routines must conform
to 'h'. The file should be closed using ZAIOCL.
Calling Sequence: zaiopd (cenv, cstat, h, n, m, iaunit, idate, itime)
Data Declaration: Integer n, m, iaunit, idate, itime
 Real h
 Character cenv, cstat
Common Block: CZIOXX
 CPROCN

Zaiope Subroutine ZAIOPE is a machine specific routine for opening a file for array I/O. It
must call ZAIOST before the first call to ZAIOPE. See subroutines ZAIOPN and
ZAIOPF. This version is for the Sun under Sun Fortran. The filename is taken from
environment variable cenv. Array I/O is Fortran direct access I/O to unit iaunit +
1000. Variable iaunit + 1000 is the I/O unit used for arrays. Array I/O might not use
Fortran I/O units, but for compatibility, assume that iaunit + 1000 refers to a Fortran
I/O unit anyway. Variable cstat indicates the file type. It can be scratch, old, or new.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

116

Subroutine Description
All I/O to iaunit must be performed by ZAIORD and ZAIOWR. Arrays passed to
these routines must conform to 'h'. The file should be closed using ZAIOCL.
Calling Sequence: zaiope (cenv, cstat, h, n, m, iaunit)
Data Declaration: Integer n, m, iaunit
 Real h
 Character cenv, cstat
Common Block: CZIOXX
 CPROCN

Zaiopf Subroutine ZAIOPF is a machine specific routine for opening a file for array I/O.
The user must call ZAIOST before the first call to ZAIOPF. See subroutines
ZAIOPN and ZAIOPE. This version is for the Sun under Sun Fortran. The filename
is taken from 'cfile'. Array I/O is Fortran direct access I/O to unit iaunit + 1000.
Variable iaunit + 1000 is the I/O unit used for arrays. Array I/O might not use
Fortran I/O units, but for compatibility, assume that iaunit + 1000 refers to a Fortran
I/O unit anyway. Variable cstat indicates the file type; it can be scratch, old, or new.
All I/O to iaunit must be performed by ZAIORD and ZAIOWR. Arrays passed to
these routines must conform to 'h'. The file should be closed using ZAIOCL.
Calling Sequence: zaiopf (cfile, cstat, h, n, m, iaunit)
Data Declaration: Integer n, m, iaunit
 Real h
 Character cfile, cstat
Common Block: CZIOXX
 CPROCN

Zaiopn Subroutine ZAIOPN is a machine specific routine for opening a file for array I/O.
Calling Sequence: zaiopn (iunit, cstat, h, n, m, iaunit)
Data Declaration: Integer iunit, n, m, iaunit
 Real h
 Character cstat
Common Block: CZIOXX
 CPROCN

Zaiord Subroutine ZAIORD is a machine specific routine for array reading. The user must
call ZAIOPN for this array unit before calling ZAIORD. This version is for the Sun
under Sun Fortran. Array I/O is Fortran direct access I/O to unit iaunit + 1000.
Variable iaunit + 1000 is the I/O unit used for arrays. Array I/O might not use
Fortran I/O units, but for compatibility, assume that iaunit + 1000 refers to a Fortran
I/O unit anyway. The array 'h' must conform to that passed in the associated call to
ZAIOPN.
Calling Sequence: zaiord (h, n, m, l, iaunit)
Data Declaration: Integer n, m, l, iaunit
 Real h
Common Blocks: CZIOXX

CPROCN
Zaiorw Subroutine ZAIORW is a machine specific routine for array I/O file rewinding. The

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

117

Subroutine Description
user must call ZAIOPN for this array unit before calling ZAIOCL. This version is for
the Sun under Sun Fortran. Array I/O is Fortran direct access I/O to unit iaunit +
1000.
Calling Sequence: zaiorw (iaunit)
Data Declaration: Integer iaunit
Common Block: CZIOXX
 CPROCN

Zaiosk Subroutine ZAIOSK is a machine specific routine for skipping an array read. The
user must call ZAIOPN for this array unit before calling ZAIOSK. This version is for
the Sun under Sun Fortran. Array I/O is Fortran direct access I/O to unit iaunit +
1000. Variable iaunit + 1000 is the I/O unit used for arrays. Array I/O might not use
Fortran I/O units. but for compatibility, assume that iaunit + 1000 refers to a Fortran
I/O unit anyway. The array 'h' must conform to that passed in the associated call to
ZAIOPN.
Calling Sequence: zaiosk (h, n, m, l, iaunit)
Data Declaration: Integer n, m, l, iaunit
 Real h
Common Block: CZIOXX
 CPROCN

Zaiost Subroutine ZAIOST is a machine specific routine for initializing array I/O. See
subroutines ZAIOPN, ZAIORD, ZAIOWR and ZAIOCL.
Calling Sequence: zaiost(iaoffi)
Data Declaration: Integer iaoffi
Common Block: CZIOXX
 CPROCN

Zaiowr Subroutine ZAIOWR is a machine specific routine for array writing. The user must
call ZAIOPN for this array unit before calling ZAIORD. This version is for the Sun
under Sun Fortran. Array I/O is Fortran direct access I/O to unit iaunit + 1000.
Variable iaunit + 1000 is the I/O unit used for arrays. Array I/O might not use
Fortran I/O units, but for compatibility, assume that iaunit + 1000 refers to a Fortran
I/O unit anyway. The array 'h' must conform to that passed in the associated call to
ZAIOPN.
Calling Sequence: zaiowr (h, n, m, l, iaunit)
Data Declaration: Integer n, m, l, iaunit
 Real h
Common Blocks: CZIOXX
 CPROCN

Zaiowr4 Subroutine ZAIOWR4 is a machine specific routine for array writing. It also
converts argument arrays to real*4. Use ZAIOWR for an unchanged array.
Calling Sequence: zaiowr4 (h, n, m, l, iaunit)
Data Declaration: Integer n, m, l, iaunit
 Real h
Common Blocks: CZIOXX

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

118

Subroutine Description
 CPROCN

Zhclos Subroutine ZHCLOS is a machine specific routine that closes logical unit 'iunit'. This
version is for the Sun (message passing) platform.
Calling Sequence: zhclos (iunit)
Data Declaration: Integer iunit

Zhgeti Subroutine ZHGETI reads integers from standard input. I/O is called by all nodes,
but performed by the master node only.
Calling Sequence: zhgeti (cquery, cformt, iinput)
Data Declaration: Integer iinput
 Character cquery, cformt
Common Blocks: CPROC1D
 ZHGETII

Zhgetl Subroutine ZHGETL reads logicals from standard input. I/O is called by all nodes,
but performed by the master node only.
Calling Sequence: zhgetl (cquery, linput)
Data Declaration: Integer linput
 Character cquery
Common Blocks: CPROC1D
 ZHGETLL

Zhgetr Subroutine ZHGETR reads real*4 from standard input. I/O is called by all nodes, but
performed by the master node only.
Calling Sequence: zhgetr (cquery, cformt, rinput)
Data Declaration: Real rinput
 Character cquery, cformt
Common Blocks: CPROC1D
 ZHGETRR

Zhgets Subroutine ZHGETS reads string from standard input. I/O is called by all nodes, but
performed by the master node only.
Calling Sequence: zhgets (cquery, cformt, sinput)
Data Declaration: Character cquery, cformt, sinput
Common Blocks: CPROC1D
 ZHGETSI

5.13 ESMF Driver Program (src/esmf)

5.13.1 Program ncom
Program NCOM.F is an ESMF driver for the stand-alone NCOM ocean model.

NRL/MR/7320--08-9149 NCOM Version 4.0 SDD

119

5.14 NCOM Driver Programs (src/ncom)

5.14.1 Program ncom
This is the non-ESMF driver for the stand-alone NCOM ocean model.

5.15 Test_xca Subroutines (src/test_xca)

5.15.1 Program test_xca
Subroutine Description

Test Calling Sequence: test (aorig, na, ma, l, atile, n, m)
Data Declaration: Integer na, ma, l, n, m
 Real aorig, atile
Common Block: CTILEZ

Xcspmd Calling Sequence: xcspmd(mpi_comm_in)
Data Declaration: Integer mpi_comm_in

Yyprnt Subroutine YYPRINT prints arctic boundary values.
Calling Sequence: yyprnt (aorig, na, ma, l, atile, n, m)
Data Declaration: Integer na, ma, l, n, m
 Real aorig, atile

5.16 Test_xca Subroutines (src/test_xcl)

5.16.1 Program test_xcl
Subroutine Description

Test Calling Sequence: test (aorig, na, ma, l, atile, n, m)
Data Declaration: Integer na, ma, l, n, m
 Real aorig, atile
Common Block: CTILEZ

Xcspmd Calling Sequence: xcspmd(mpi_comm_in)
Data Declaration: Integer mpi_comm_in

Xxlget Calling Sequence: xxlget(aline,nl, a,na,ma, i1,j1,ii,ji)
Data Declaration: Integer nl,na,ma,i1,j1,ii,ji
 Real aline,a

Xxlg3d Calling Sequence: xxlg3d(aline,nl, a,na,ma,l, i1,j1,ii,ji)
Data Declaration: Integer nl,na,ma,l,i1,j1,ii,ji
 Real aline,a

Yycomp Calling Sequence: yycomp(a,b,n)
Data Declaration: Integer n
 Real a,b

Yycom3 Calling Sequence: yycom3(a,b,n,l)
Data Declaration: Integer n,l
 Real a,b

PSI Technical Report SSC-003-01 NCOM SDD

120

6.0 NOTES

6.1 Acronyms and Abbreviations

Acronym Description
ASCII American Standard Code for Information Interchange
BC Boundary conditions
CFL Courant Fredrich Levy scheme
CM Coarse Mesh, refers to the parent grid of a nested grid.
COAMPS Coupled Ocean Atmosphere Mesoscale Prediction System
CPU Central Processing Unit
DBMS Database Management System
DTG Date Time Group
ECMWF European Center for Medium-range Weather Forecast
ECOM-si Estuarine, Coastal and Ocean Model (semi-implicit)
ESMF Earth System Modeling Framework
FCT Flux-corrected transport
FM Fine Mesh, refers to a nested (child) grid.
FNMOC Fleet Naval Meteorology and Oceanography Center
GMT Greenwich Mean Time
GOFS Global Ocean Forecast System
GVC General Vertical Coordinate
HRLS Hierarchical Least Squares algorithm
IC Initial conditions
IEEE Institute of Electrical and Electronic Engineers
I/O Input/Output
lm1 l-1 this is the total number of vertical layers or levels.
m Meter
mb milibars
MLD Mixed layer depth.
MODAS Modular Ocean Data Assimilation System
MPI Message Passing Interface
MP Multi-Processor
MYL2 Mellor-Yamada Level 2
NCAR National Center for Atmospheric Research
NCODA Navy Coupled Ocean Data Assimilation
NCOM Navy Coastal Ocean Model
netCDF Network Common Data Form
NOGAPS Navy Operational Global Atmospheric Prediction
NRL Naval Research Laboratory
OBC Open Boundary Conditions
POM Princeton Ocean Model

PSI Technical Report SSC-003-01 NCOM SDD

121

PSI Planning Systems Incorporated
RMS Root-mean-square
S Salinity
SDD Software Design Description
SGI Silicon Graphics Incorporated
SHMEM Shared Memory
SM Shared Memory Computer
SPMD Single Processor Multiple Data
SSC Stennis Space Center
SSH Sea Surface Height
SSS Sea Surface Salinity
SST Sea Surface Temperature
SVN Subversion
SZM Sigma Z-Level Model
T Temperature
TKE Turbulent Kinetic Energy
t-point Temperature grid point
UNESCO United Nations Educational, Scientific, and Cultural Organization
u-point U-velocity grid point - located at center of west face of a grid cell.
v-point V-velocity grid point - located at center of south face of grid cell.

PSI Technical Report SSC-003-01 NCOM SDD

122

7.0 Appendix A FORTRAN Common Blocks

7.1 COMMON Blocks for General Setup Subroutines
COMMON/
BICUBCN

Type Description

c(4, 4, 4, 4, 9) Real
c1(256) Real
c2(256) Real
c3(256) Real
c4(256) Real
c5(256) Real
c6(250) Real
c7(256) Real
c8(256) Real
c9(256) Real

7.2 COMMON Blocks for File ncom1 Subroutines
COMMON/
OBLK

Type
Integer

Description
Contains pointer variables for ocean model

COMMON/
PADR4I

Type Description

ipad(maxpads,
mxgrdso)

Integer

npad(mxgrdso) Integer
COMMON/
PADR4C

Type Description

cpad(maxpads,
mxgrdso)

Character

7.3 COMMON Blocks for Printing/Plotting Subroutines
COMMON/
PRNTEI4

Type Description

indspv Integer
COMMON/
PRNTER4

Type Description

spvalu Real
COMMON/
PRNTFI4

Type Description

PSI Technical Report SSC-003-01 NCOM SDD

123

indspv Integer
COMMON/
PRNTFR4

Type Description

spvalu Real
COMMON/
CONRE4

Type Description

sizel Real Defines the size of contour line labels.
sizem Real Defines the size of high/low labels.
sizep Real Defines the size of data point values.
nrep Integer Number of repetitions of dash pattern between line

labels.
ncrt Integer Number of pau's per element in dash pattern.
ilab Integer Flag to enable contour line labeling:

= 0 No;
= 1 Yes.

isizel Integer Size of the line labels.
isizem Integer Size of the labels for minimums and maximums.
isizep Integer Size of labels for data point values.
nulbll Integer Number of unlabeled lines between labeled lines.
ioffd Integer Flag to control normalization of label numbers:

= 0 Include decimal point when possible;
= Non-zero Normalize all label numbers and output a
scale factor in the message below the graph.

ext Real Lengths of the sides of the plot are proportional to M
and N.

ioffm Integer Flag to control the message below the plot:
= 0 If the message is to be plotted;
= Non-zero If the message is to be omitted.

isolid Integer Dash pattern for non-negative contour lines.
nla Integer Approximate number of contour levels when

internally generated.
nlm Integer Maximum number of contour levels.
xlt Real Left hand edge of the plot.
ybt Real Bottom edge of the plot.
side Real Length of longer edge of the plot.

7.4 COMMON Blocks for Tidal Calculation Subroutines
COMMON/
VUFC5

Type Description

konco(320) Character
kontab(170) Character Array containing all the constituent names as they are

read in from the data file. It should have the minimum

PSI Technical Report SSC-003-01 NCOM SDD

124

dimension mtot.
COMMON/
VUFI4

Type Description

ii(50), jj(50),
kk(50), ll(50),
mm(50), nn(50)

Integer The six Doodson numbers.

ldel(205),
mdel(205),
ndel(205)

Integer The changes in the last three Doodson numbers from
those of the main constituent.

ir(205) Integer = 1 If the amplitude ratio has to be multiplied by the
latitude correction factor for diurnal constituents;

= 2 If the amplitude ratio has to be multiplied by the
latitude correction factor for semi-diurnal
constituents;

Otherwise if no correction is required to the amplitude
ratio.

nj(170) Integer The number of satellites for this constituent.
ntidal Integer Number of main constituents.
Ntotal Integer The number of constituents for the given time kh.
COMMON/
VUFR4

Type Description

freq(170) Real Array of frequencies (cycles/hr) corresponding to the
constituents contained in kontab.

ee(205) Real The amplitude ratio of the satellite tidal potential to
that of the main constituent.

ph(205) Real Phase correction.
semi(50) Real Phase correction.
coef(320) Real
f(170) Real
vu(170) Real

7.5 COMMON Blocks for Communications Subroutines for SM Computers
COMMON/
PRSUMI

Type Description

iprsum Integer
jprsum Integer
COMMON/
ZCTMRC

Type Description

cc(97) Character
COMMON/
ZCTMRI

Type Description

nc(97) Integer

PSI Technical Report SSC-003-01 NCOM SDD

125

COMMON/
ZCTMR8

Type Description

tc(97) Real
t0(97) Real
COMMON/
CPROCN

Type Description

nstn Integer
nstna Integer
nstm Integer
nstma Integer

7.6 COMMON Blocks for Communication Subroutines for Multiple Processors
COMMON/
CPROC1D

Type Description

idproc1 Integer
jdproc1 Integer
COMMON/
CPROCD

Type Description

idprc Integer
jdprc Integer
COMMON/
PRSUMI

Type Description

iprsum Integer
jprsum Integer
COMMON/
XCLGET4

Type Description

al Real
COMMON/
XCLGETI

Type Description

nli1j1 Integer
COMMON/
CTILEZ

Type Description

ztile Real
COMMON/
XCEGET4

Type Description

elem Real
COMMON/
CPROCN

Type Description

nstn Integer
nstna Integer
nstm Integer
nstma Integer

PSI Technical Report SSC-003-01 NCOM SDD

126

COMMON/
XCMAXR4

Type Description

b Real
c Real
COMMON/
XCMASS8

Type Description

sum8x Real
sum8y Real
sum8j Real
sum8p Real
sum8s Real
sum8r Real
COMMON/
XCRANG4

Type Description

b Real
c Real
COMMON/
HALOBP

Type Description

ibp Integer
COMMON/
XCTILI4

Type Description

iai Integer
iaj Integer
iak Integer
COMMON/
XCTILR4

Type Description

ai Real
aj Real
ak Real
COMMON/
XCTILXC

Type Description

cpadtest Character
COMMON/
XCTIL14

Type Description

ai Real
aj Real
ak Real
COMMON/
ZCTMRC

Type Description

cc Character
COMMON/
ZCTMRI

Type Description

nc Integer

PSI Technical Report SSC-003-01 NCOM SDD

127

COMMON/
ZCTMR8

Type Description

tc Real

7.7 COMMON Blocks for I/O Shared Memory Subroutines
COMMON/
CZIOXX

Type Description

iaoff Integer
iarec Integer
iiunt Integer
COMMON/
CZIOXW

Type Description

w(nmx*nmx) Real Array I/O buffer
COMMON/
ZHSEC8

Type Description

offsec Real
offset Real
persec Real
COMMON/
ZHSECI

Type Description

icount Integer
iover Integer
lcount Integer
ncount Integer

7.8 COMMON Blocks for I/O Multiple Processor Subroutines
COMMON/
CZIOXX

Type Description

iaoff Integer
iarec Integer
iiunt Integer
team Integer
COMMON/
CPROCN

Type Description

nstn Integer
nstna Integer
nstm Integer
nstma Integer
COMMON/
CZIOXW

Type Description

w Real

PSI Technical Report SSC-003-01 NCOM SDD

128

COMMON/
CPROCD

Type Description

idprc Integer
jdprc Integer
COMMON/
CPROC1D

Type Description

idproc1 Integer
jdproc1 Integer
COMMON/
ZABSTRI

Type Description

ibuffer(256)CAF_D Integer
COMMON/
ZHGETII

Type Description

ibuffer CAF_D Integer
COMMON/
ZHGETLL

Type Description

ibuffer Integer
COMMON/
ZHGETRR

Type Description

rbufferCAF_D Real
COMMON/
ZHGETSI

Type Description

ibuffer(256)CAF_D Integer
COMMON/
ZHSEC8

Type Description

offsec Real
offset Real
persec Real
COMMON/
ZHSECI

Type Description

icount Integer
iover Integer
lcount Integer
ncount Integer

7.9 COMMON Blocks for Program test_xca and test_xcl
COMMON/
TESTR4

Type Description

aorig Real
atile Real

COMMON/
CTILEZ Type Description

PSI Technical Report SSC-003-01 NCOM SDD

129

ztile Real

7.10 COMMON Blocks for Miscellaneous NCOM Source Code
COMMON/
RGBHEADER

Type Description

magic Integer
storage Integer
bpc Integer
dimensions Integer
xsize Integer
ysize Integer
zsize Integer
pixmin Integer
pixmax Integer
dummy Integer
imagename Character
colormapid Integer
pad Character
COMMON/
CAFALL

Type Description

all Integer

7.11 COMMON Blocks for Subroutine OMODEL (NCOMPAR.h)
These common blocks must be updated for the appropriate ocean grid when the grid being
calculated is changed. The variables here are set for the current grid that is being calculated
within subroutine OMODEL. Outside of OMODEL (e.g., within subroutine "COAMM") they
will not be defined and the corresponding values within the par*o common blocks (in include
file "COMMON.h") must be used.
COMMON/
PAR5O

Type Description
Nest-independent constants

pi Real
raddeg Real
degrad Real
small Real
COMMON/
PAR6O

Type Description
Nest-dependent variables

idate Integer
itime Integer
idatec Integer

PSI Technical Report SSC-003-01 NCOM SDD

130

itimec Integer
inde2 Integer
indvb2 Integer
indv2 Integer
indt2 Integer
inds2 Integer
inda2 Integer
inde3 Integer
indvb3 Integer
indv3 Integer
indw3 Integer
indt3 Integer
inds3 Integer
inda3 Integer
indfcst Integer
idatnow Integer
itimnow Integer
irs_out Integer
irs_date Integer
irs_mean Integer
irs_fmt Integer
irs_rset Integer
ioutdate Integer
ioutnow Integer
irlx2now Integer
irlx3now Integer
mode Integer
indcor Integer
indden Integer
indadv Integer
indadvr Integer
indxk Integer
indzk Integer
indtkes Integer
indext Integer
indtype Integer
indbio Integer
indice Integer
itermom Integer
indbaro Integer
indsolv Integer
indrag Integer
ifdadrh Integer

PSI Technical Report SSC-003-01 NCOM SDD

131

ifdadrv Integer
ifdaduh Integer
ifdaduv Integer
ifdpgrd Integer
ifdcor Integer
indsbc Integer
indatp Integer
indtau Integer
indsft Integer
indsfs Integer
indsol Integer
indcld Integer
indsst Integer
indsss Integer
indsruf Integer
indcyc Integer
indtide Integer
indobc Integer
indobe Integer
indobvb Integer
indobu Integer
indobv Integer
indobr Integer
indriv Integer
indrivr Integer
indiag Integer
COMMON/
PAR7O

Type Description
Logical variables.

bclinic Logical
curved Logical
noslip Logical
sigdif Logical
largmix Logical
wetdry Logical
tidpot Logical
botrun Logical
forward Logical
vector Logical
shrnkwp Logical
locate Logical
COMMON/
PAR8O

Type Description
Real variables.

tothrs Real

PSI Technical Report SSC-003-01 NCOM SDD

132

rho0 Real
g Real
cp Real
ramphrs Real
skmin Real
ykmin Real
xkre Real
smag Real
prnxi Real
zkmmin Real
zkhmin Real
zkre Real
cbmin Real
botruf1 Real
rlax_ts Real
rlax_ds Real
b1_myl2 Real
dti Real
dte Real
asf Real
eg1 Real
eg2 Real
eg3 Real
vg1 Real
vg2 Real
vg3 Real
cb_filt Real
cb_dep Real
rlaxsst Real
rlaxsss Real
charnok Real
rlxobvb Real
rlxobv Real
rlxobr Real

7.12 COMMON Blocks for NCOM (COMMON.h)
COMMON/
CPROCI

Type Description
Indicates which processor the local ocean model grid
is on.

mproc Integer
nproc Integer
ipr Integer

PSI Technical Report SSC-003-01 NCOM SDD

133

jpr Integer
jqr Integer
COMMON/
PAR1O

Type Description
Character variables for ocean model parameters.

modelo Character
expto Character
domaino Character
COMMON/
PAR2O

Type Description
Integer variables.

iruno Integer
iouto Integer
infso Integer
iphyo Integer
numo Integer
isbco Integer
iobco Integer
irivo Integer
idiago Integer
io_unit_offset Integer
istdo_unit Integer
COMMON/
PAR3O

Type Description
Logical variables.

lruno Logical
louto Logical
lphyo Logical
lnumo Logical
lsbco Logical
lobco Logical
lrivo Logical
ldiago Logical
COMMON/
PAR4O

Type Description
Real variables.

runo Real
outo Real
phyo Real
rnumo Real
sbco Real
obco Real
rivo Real
diago Real
COMMON/
NEST1O

Type Description
For ocean model nest information.

nesto Integer

PSI Technical Report SSC-003-01 NCOM SDD

134

nnesto Integer
nsto Integer

7.13 COMMON Blocks for COAMPS (COAMPS.h)
The following common blocks store information about ocean and atmospheric model grids for
running in the COAMPS environment.
COMMON/
COAMPS1

Type Description

inidtg Character Initial DTG for simulation.
coamdir Real Directory where COAMPS data files are located.
COMMON/
COAMPS2 Type Description

dtcosfx Real Frequency of COAMPS atm flux fields (s).
dtcosst Frequency of COAMPS SST fields (s).
dtcocyc Length of COAMPS forecast cycle (s).
dtcomin Minimum forecast time for using COAMPS fields (s).
idbms2 Flag to denote use of sequential or direct flat files.
ifcast2 Flag to denote use of long or short COAMPS forecast

tau's.
inesta2
dataa Data record for atmospheric grid.
datao Data record for ocean grid.
COMMON/
COAMPS3 Type Description

outff Logical
out_dir Character
idbms_o Integer
offpa Real
offtx Real
offqr Real
offq0 Real
offep Real
offse Real
offsv Real
offst Real
offss Real
offmv Real
offmt Real
offms Real
offzv Real
offzt Real
offzs Real

PSI Technical Report SSC-003-01 NCOM SDD

135

8.0 APPENDIX B Argument Variables

Primary NCOM Variables
These variables are for the sigma-z vertical coordinate grid version of NCOM. No GVC
variables are included in this table. Units used within the model are mks (meters, kilograms,
seconds).

General prefix naming rules/conventions (mostly followed, but not 100%):

• -r appended to name to indicate reciprocal.
• - (if no designation) indicates centered in grid cell at t-pt.
• -m depth variable centered at grid cell mid-pt.
• -u indicates centered at u-pt.
• -v indicates centered at v-pt.
• -w indicates centered at w-pt.
• -x indicates x-direction.
• -y indicates y-direction.
• -z indicates z-direction.

Variable Description

Main Input
Dimensions

Note that these may have an "o" suffixed to them in some of the initial routines to
distinguish them from the atmospheric model variables in COAMPS when the
models are coupled.

n,m Horizontal grid dimensions in x and y. These generally refer to the dimensions of
the entire model grid. However, if the model is running in a multi-processor
environment, n and m revert to being the grid dimensions on the local processor.
Currently, the overall horizontal grid dimensions need to be evenly divisible by
the number of processors used in each of the grid directions (the parallel
processing is done by decomposing the domain into equal sized subdomains with
each subdomain running on a single processor). In general, it is useful for
multiprocessing if the overall grid dimensions are divisible by some moderately
high power of 2; e.g., 16, 32, 64, etc., so that a range of sizes of processor arrays
can be accommodated.

l Total vertical layers (or levels) + 1.
ls Total number of sigma layers + 1.
nr Number of scalar model prognostic variables.
nq Number of prognostic turbulence variables.
ntyp Number of solar extinction profile types (not much used at this point, but

available to facilitate implementation of spatially variable solar extinction).
ntc Number of tidal constituents being forced at open bndy.
nobmax Maximum number of open boundary points.
nrvmax Maximum number of rivers.

PSI Technical Report SSC-003-01 NCOM SDD

136

Variable Description
Halo width and
maximum
dimensions

These are defined in include files (PARAM.h).

nmh Halo width.
nmxa Maximum horizontal dimension for total grid (n or m).
nmx Maximum horizontal dimension for single processor (n or m).
lmx Maximum number of vertical levels (l).
nrmx Maximum number of scalar variables (nr).
nqmx Maximum number of turbulence fields (nq).
nobmxt Maximum number of open boundary points for total grid.
nobmx Maximum number of open boundary points on a single processor.
ntcmx Maximum number of tidal constituents.
nrivmx Maximum number of river inflow points.
mxgrdso Maximum number of grids (including nested grids).
nsavmx Maximum number of individual model grid points at which output data can be

saved (=40).
Time variables
iter Temporal iteration number. On a restart, the model starts where it left off.
iterx Iteration number for barotropic mode (not currently used).
times Elapsed time in seconds since the start of the run.
timed Elapsed time in days since the start of the run.
Grid indexing
variables

kb(n,m) Index of bottom layer at t-pt.
kbu(n,m) Index of bottom layer at u-pt.
kbv(n,m) Index of bottom layer at v-pt.
is(m),ie(m) I-loop start and stop indices for shrinkwrapping.
ism(m),iem(m) I-loop start and stop indices at v points (minimum).
isp(m), iep(m) I-loop start and stop indices at v points (maximum).
js,je J-loop start and stop indices.
ke(m) Max value of kb in an i-row.
iec(8) First four values denote whether the W,E,S,N sides are exterior (=1) or interior

(=0) tile edges (needed when running MP). Values 5 to 8 are set to one minus the
values for 1 to 4.

i,j,k Indices used when do-looping in x, y, and z.
ir Index used when do-looping through different scalar fields.
iq Index used when do-looping through different turbulence fields.
Time indexing
variables

i1,i2,i3 Temporal indices for 3 saved baroclinic time levels.
ib1,ib2,ib3 Temporal indices for 3 saved barotropic time levels (not used).

PSI Technical Report SSC-003-01 NCOM SDD

137

Variable Description
j1,j2 Temporal indices for 2 saved baroclinic time levels.

ifx1,ifx2 Temporal indices for surface fluxes from input file.
iat1,iat2 Temporal indices for surface fluxes from coupled atmospheric model.
iss1,iss2 Temporal indices for specified SST and SSS.
iob1,iob2 Temporal indices for open boundary data.
irv1,irv2 Temporal indices for river inflow data.
ilx1,ilx2 Temporal indices for T and S relaxation fields.
Grid related variables
d(n,m,3) Total depth at e-pt (e - h, >=0).
du(n,m,3) Total depth at u-pt.
dv(n,m,3) Total depth at v-pt.
d1(n,m,3) Total depth to bottom of sigma layers at e-pt (e - h1, >=0).
d1u(n,m,3) Total depth to bottom of sigma layers at u-pt.
d1v(n,m,3) Total depth to bottom of sigma layers at v-pt.
Input values for
vertical grid

zw(l) Static depth at w-pts on the z-level grid (defined positive upward, i.e., values
below z=0 are negative). These are used to calculate fractional depths on the
sigma coordinate grid.

Input values for
horizontal grid

h(n,m) Static bottom depth at grid-cell center, i.e., water depth when surface elevation is
zero. H is positive upward, i.e., bottom depths below z=0 are negative and values
above z=0 are positive. Z=0 is ~ the position of the equilibrium sea surface.

elon(n,m) Longitude at t-pt (deg E).
alat(n,m) Latitude at t-pt (deg N).
ang(n,m) Angle between local latitude line and x-axis at t-pt. For counterclockwise rotation

of grid with respect to lat-long, ang > 0.
dx(n,m) Grid spacing in x at t-pt (+).
dy(n,m) Grid spacing in y at t-pt (+).
ibo(4) Offset of boundary of model domain from edge of grid (in grid points). The four

values correspond to the W, E, S, and N sides of the domain. A value of zero
indicates no offset. The purpose of the offset is to allow the model domain to be
smaller than the overall grid size to get around the constraint that the grid
dimension must be evenly divisible by the number of processors in that direction.

Main prognostic
variables

e(n,m,3) Surface elevation.
udb(n,m,3) Barotropic transport (ub*d) at u-pt.
vdb(n,m,3) Barotropic transport (vb*d) at v-pt.

PSI Technical Report SSC-003-01 NCOM SDD

138

Variable Description
u(n,m,lm1,3) Velocity in x at u-pt.
v(n,m,lm1,3) Velocity in y at v-pt.
r(n,m,lm1,2,nr) Scalar variables (t, s, ...) at t-pt.
q(n,m,l,2,3) TKE and TKE*(turbulent length scale) at w-pt.
e2(n,m,3) Depth-averaged e at u-pt for explicit barotropic calc.
ub2(n,m,3) Depth-averaged u at u-pt for explicit barotropic calc.
vb2(n,m,3) Depth-averaged v at v-pt for explicit barotropic calc (e2, ub2, and vb2 are not

currently used).
Variables used for
relaxation of T and S
to specified values

rlx(n,m,l-1,2,2) Externally provided time-varying 3D fields of T and S to which the internal T
and S fields can be relaxed. Two sets of fields are held in memory at any one
time.

wlx(n,m,l-1) Externally provided 3D field containing temporal relaxation timescale defined at
each model grid pt used to relax internal T and S fields to values in rlx.

tmlx(2) Time (since start of model run) associated with the two sets of rlx values that are
stored in memory.

ilx1,ilx2 Temporal indices used to denote time of relaxation field.
Surface forcing
variables

patm(n,m) Surface atmospheric pressure (m).
usflx(n,m) Surface wind stress in x at e-pt (m2/s2).
vsflx(n,m) Surface wind stress in y at e-pt (m2/s2).
rsflx(n,m) Surface fluxes for scalar variables at e-pt (units-m/s).
solar(n,m) Solar flux penetrating surface at e-pt (°C-m/s).
surruf(n,m) Surface roughness (e.g., from waves) (m).
patm2(n,m,2) Surface atmospheric pressure (m) stored at 2 times.
usflx2(n,m,2) Surface wind stress in x at e-pt stored at 2 times.
vsflx2(n,m,2) Surface wind stress in y at e-pt stored at 2 times.
rsflx2(n,m,2) Surface fluxes for scalar variables at e-pt at 2 times.
solar2(n,m,2) Solar or cloud data e-pt at 2 times.
Open boundary
variables

nob Total number of open boundary points.
neob(2,4) Index limits for elevation points along each (W E S N) bndy.
nuob(2,4) Index limits for normal velocity points along each bndy.
nvob(2,4) Index limits for tangent velocity points along each bndy.
iob(nob) X index of center of bndy pt.
job(nob) Y index of center of bndy pt.
iobi(nob) X index of center of interior pt adjoining bndy pt.

PSI Technical Report SSC-003-01 NCOM SDD

139

Variable Description
jobi(nob) Y index of center of interior pt adjoining bndy pt.
ivob(nob) X index of bndy pt at tangent velocity pt.
jvob(nob) Y index of bndy pt at tangent velocity pt.
kob(nob) Z index of midpoint of bottom grid cell at a bndy pt.
eob(nob,2) Surface elevation at boundary (at two times).
ubob(nob,2) Normal transport at boundary (depth-ave velocity * depth).
vbob(nob,2) Tangent transport at boundary (depth-ave velocity * depth).
uob(l-1,nob,2) Baroclinic normal velocity at bndy.
vob(l-1,nob,2) Baroclinic tangent velocity at bndy.
rob(l-1,nr,nob,2) Scalar values (including T and S) at bndy.
cgwb(nob,2) External and internal (1st mode) gravity wave speed at bndy.
tmob(2) Time of data (values) at open boundary points.
etab(ntc,nob) Tidal elevation amplitude at boundary (for each constituent).
etpb(ntc,nob) Tidal phase at boundary (in radians).
utab(ntc,nob) Amplitude of tidal normal transport (depth-averaged velocity * depth) at

boundary.
utpb(ntc,nob) Phase of tidal normal velocity at boundary (radians).
vtab(ntc,nob) Amplitude of tidal tangential transport (depth-averaged velocity * depth) at

boundary.
vtpb(ntc,nob) Phase of tidal tangent velocity at boundary (radians).
tidecn(ntc) Name of tidal constituent.
tidefq(ntc) Frequency of tidal constituent.
River inflow variables
nriv Number of river inflow points on local processor.
nrriv Number of scalar fields specified for river inflows.
lriv Number of depths at which river inflow scalar values are specified.
irv1,irv2 Temporal indices for river data.
iriv(nrvmax) X gridpoint location of river inflow.
jriv(nrvmax) Y gridpoint location of river inflow.
isriv(m) Starting index for river pt locations in a y row.
ieriv(m) Ending index for river pt locations in a y row.
wtriv(nrvmax,l-1) Fraction of total river inflow at each vertical pt.
qriv(nrvmax,2) River inflow rate for each river inflow pt.
rriv(nrvmax,l-1,nr,2) Values of scalar fields for river inflows.
tmriv(2) Time of river inflow data.
w1riv Temporal weighting of river data at most recent time.
Other variables
nt, mt Total (global) horizontal grid dimensions.
na, ma Total horizontal grid dimensions (same as nt and mt).
ni4s Counter for memory needed for integer variables.

PSI Technical Report SSC-003-01 NCOM SDD

140

Variable Description
nl4s Counter for memory needed for logical variables.
nr4s Counter for memory needed for real variables.
dti2 Timestep for leapfrog time differencing (usually 2*dti, but may be dti on 1st

iteration).
ramp Current value of ramp for gradual spinup of ocean forcing (i.e., baroclinic

pressure gradients, atmospheric forcing, boundary conditions, etc.).
ub(n,m) Depth-averaged (barotropic) velocity in x at u-pt.
vb(n,m) Depth-averaged (barotropic) velocity in y at v-pt.
w(n,m,l) Velocity in z at w-pt (+ upwards).
rho(n,m,lm1) In situ density minus reference density rho0.
sos(n,m,lm1) Speed of sound. Used to calculate stability with Mellor’s equation of state if

density includes effect of pressure.
sor(n,m,lm1) Source volume flux at each grid pt (m3/s).
sorb(n,m) Vertical integral of sor.
rmean(n,m,ls-1,nr+1) Climate or mean values of scalar fields and horizontal mean values of density

(density is stored at ir=nr+1).
fu(n,m) Vertically integrated forcing for barotropic u velocity.
fv(n,m) Vertically integrated forcing for barotropic v velocity.
aax(n,m) Coefficient used for implicit free surface solver.
aay(n,m) Coefficient used for implicit free surface solver.
xk(n,m,lm1) (Horizontal viscosity or diffusivity in x at u-pt)*dyx*dzm.
yk(n,m,lm1) (Horizontal viscosity or diffusivity in y at v-pt)*dxy*dzm.
zkm(n,m,l) Vertical turbulent viscosity at w-pt.
zkh(n,m,l) Vertical turbulent diffusivity at w-pt.
ext(n,m,l) Solar extinction profiles at each horizontal pt, defined at w-pts.
istype(ntyp) Index corresponding to solar extinction type iptype.
iptype(n,m) Solar extinction type for each horizontal grid pt.
qrf(l,ntyp) Solar extinction profiles defined for different water types.
tl(n,m,l) Turbulence length scale, defined at w-pt.
wubot(n,m) Bottom stress at u-pt.
wvbot(n,m) Bottom stress at v-pt.
botruf(n,m) Bottom roughness at each horizontal grid pt.
o Large array containing all real variables allocated in subroutine MEMMO.
Temporary variables
jf Index denoting values for row j.
jb Index denoting values for row j+1.
iterm Current number of iterations of momentum equations. The total number of

iterations of the momentum equations is set by itermom.
ua(n,lm1) Advective transport in x at u-pt divided by 2 (u*dyu*dz/2).
va(n,lm1) Advective transport in y at v-pt divided by 2 (v*dxv*dz/2).
wa(n,l) Advective transport in z at w-pt divided by 2 (w*dx*dy/2).

PSI Technical Report SSC-003-01 NCOM SDD

141

Variable Description
xk(n,m,lm1) (Mixing coefficient in x direction)*dyu*dz.
yk(n,m,lm1) (Mixing coefficient in y direction)*dxv*dz.
flx Flux in x-direction.
fly Flux in y-direction.
flz Flux in z-direction.
rho_a(n,4,l-1) Density anomaly.
pgx(n,l-1) Horizontal baroclinic pressure gradient in x.
pgy(n,l-1) Horizontal baroclinic pressure gradient in y.
fc(n,4,l-1) Intermediate calculation of Coriolis term for u equation.
fcu(n,4,l-1) Intermediate calculation of Coriolis term for v equation.
ax(n,m),aax(n,m) X coefficients for implicit free surface solver.
ay(n,m),aay(n,m) Y coefficients for implicit free surface solver.
bb(n,m) Diagonal coefficients for implicit free surface solver.
ff(n,m) Forcing terms for implicit free surface solver.
alatave Mean latitude of model domain.
zlay(n,m,l) Depth to top of each grid cell.
hneg(n,m) Bottom depth + downwards.
zkb(n,m,l) Scratch array.
dtdazr Scratch array.
uacr Scratch array used for diagnostics.
vacr Scratch array used for diagnostics.
ucr Scratch array used for diagnostics.
vcr Scratch array used for diagnostics.
ucr1 Scratch array used for diagnostics.
vcr1 Scratch array used for diagnostics.
ucr2 Scratch array used for diagnostics.
vcr2 Scratch array used for diagnostics.
wpf(n,m) Scratch array.
wxy(n,m,*) Scratch array.
wxz(n,l,*) Scratch array.

Constants

Defined and Calculated Constants
Constant Description

Defined
Constants

pi 3.1415926535
raddeg Pi/180
degrad 180./pi

PSI Technical Report SSC-003-01 NCOM SDD

142

Constant Description
small A small number = 1.0e-8.
ae(7) Constants for Friedrich-Levitus equation of state.
be(7) Constants for Friedrich-Levitus equation of state.
ce(7) Constants for Friedrich-Levitus equation of state.
Calculated
Constants

amsk(n,m,l) Land-sea mask at t-pts.
umsk(n,m,l) Land-sea mask at u-pts.
vmsk(n,m,l) Land-sea mask at v-pts.
cbu(n,m) Coefficient of bottom friction at u pt.
cbv(n,m) Coefficient of bottom friction at v pt.
de(7) Constants for Friedrich-Levitus equation of state.
cet(5) Constants for Friedrich-Levitus thermal expansion coefficient.
ces(3) Constants for Friedrich-Levitus salinity expansion coefficient.
Calculated Grid
Related
Constants

dxu(n,m) Grid spacing in x at u-pt.
dyu(n,m) Grid spacing in y at u-pt.
dxv(n,m) Grid spacing in x at v-pt.
dyv(n,m) Grid spacing in y at v-pt.
dxr(n,m) 1/dx.
dyr(n,m) 1/dy.
dxur(n,m) 1/dxu.
dyur(n,m) 1/dyu.
dxvr(n,m) 1/dxv.
dyvr(n,m) 1/dyv.
da(n,m) Horizontal area of grid cell at t-pt (dx*dy).
dau(n,m) Horizontal area of grid cell at u-pt.
dav(n,m) Horizontal area of grid cell at v-pt.
dar(n,m) 1/da(n,m).
daur(n,m) 1/dau(n,m).
davr(n,m) 1/dav(n,m).
hu(n,m) Static depth at u-pt (depths below z=0 are neg).
hv(n,m) Static depth at v-pt (depths below z=0 are neg).
h1(n,m) Static depth to bottom of sigma levels at t-pt (depths below z=0 are neg).
h1u(n,m) Static depth to bottom of sigma levels at u-pt.
h1v(n,m) Static depth to bottom of sigma levels at v-pt.
sw(l) Fractional sigma depth at w-pt (-).
sm(l) Fractional sigma depth at t-pt (-).

PSI Technical Report SSC-003-01 NCOM SDD

143

Constant Description
dsw(l) Fractional sigma grid spacing at w-pt (+).
dsm(l) Fractional sigma grid spacing at t-pt (+).
dswr(l) 1/dsw.
dsmr(l) 1/dsm.
dsm5(l) Dsm/2.
dzm5(l) Dzm/2.
zw(l) Static depth at w-pt for z-levels (values below z=0 are neg).
zm(lm1) Static depth at t-pt for z-levels (values below z=0 are neg).
dzw(l) Vertical grid spacing at w-pt (+).
dzm(lm1) Vertical grid spacing at t-pt (+).
dzwr(l) 1/dzw.
dzmr(l) 1/dzm.
ddx(n,m) Difference in x grid spacing in y direction, dx(i,j+1) -dx(i,j-1).
ddy(n,m) Difference in y grid spacing in x direction, dy(i+1,j) -dy(i-1,j).
fda(n,m) "Modified" Coriolis parameter, defined at t-pts (= f*da*0.25).

	TABLE OF FIGURES
	1.0 SCOPE
	1.1 Identification
	1.2 Document Overview

	2.0 REFERENCED DOCUMENTS
	2.1 NCOM Software Documentation
	2.2 General Technical References
	2.3 Recommended Reading

	3.0 MODEL DESIGN DECISION
	4.0 MODEL ARCHITECTURAL DESIGN
	4.1 Model Components
	4.2 NCOM Build Information
	4.2.1 Required Build Variables

	4.3 Code Modifications
	4.3.1 Changes from NCOM 2.6 to NCOM 4.0 (up to 12-26-2007)
	4.3.2 NCOM Sub-Version Repository

	4.4 Concept of Execution
	4.5 Interface Design
	4.5.1 Interface Identification and Diagrams

	5.0 NCOM DETAILED DESIGN
	5.1 Constraints and Limitations
	5.2 Logic and Basic Equations
	5.3 NCOM Setup Routines
	5.3.1 General Setup Subroutines (ncom_setup_plib_sigz)
	5.3.2 Spline Interpolation Subroutines (ncom_setup_spln)

	5.4 Main NCOM Subroutines (libsrc/ ncom/)
	 5.4.1 File ncom1
	5.4.2 Free-Surface Calculation Subroutines (ncom1baro)
	5.4.3 COAMPS Specific Subroutines (ncom1coam)
	5.4.4 Flux Corrected Transport Subroutines (ncom1fct_sigz)
	5.4.5 Initialization Subroutines (ncom1init_sigz)
	5.4.6 Nested Grid Boundary Condition Interpolation Subroutines (ncom1nest2)
	5.4.7 Open Boundary Condition Subroutines (ncom1obc_sigz)
	5.4.8 Output Subroutines (ncom1out_sigz)
	5.4.9 Generic and Plotting Subroutines (ncom1plib)
	5.4.10 Read/Write Subroutines (ncom1rwio)
	5.4.11 Surface Forcing Subroutines (ncom1sbc)
	5.4.12 Tidal Calculation Subroutines (ncom1tide)
	5.4.13 Update Subroutines for U, V, T, S (ncom1updt_sigz)
	5.4.14 Utility Subroutines (ncom1util)
	5.4.15 Vertical Mixing Subroutines (ncom1vmix_sigz)

	5.5 NetCDF-Specific Subroutines (libsrc/ cdf/)
	5.6 COAMPS Related Subroutines (libsrc/ coampslib/)
	5.7 ESMF Related Subroutines (libsrc/ esmf/)
	5.8 Primary FNMOC Subroutines (libsrc/ fnoclib/)
	5.9 Miscellaneous NCOM Subroutines (libsrc/ misc/)
	5.9.1 Cubic Spline Interpolation Subroutines (cubspl_irr and ocubspl_irr))
	5.9.2 Time Conversion Subroutines (timesubs)
	5.9.3 File Conversion Subroutines (w_ncomnc/ w_ncomnc2)
	5.9.4 Unit Conversion Subroutines (gc_ellipsoid)
	5.9.5 Array Allocation Subroutines (allocate)
	5.9.6 Array Conversion Subroutines (w_rgb)
	5.9.7 Table Lookup Subroutines (tablk2s)
	5.9.8 Horizontal Grid Embedding Subroutine (padarr)

	5.10 Dummy Computer-Specific Subroutines (libsrc/ none/)
	5.11 Dummy NCOM Plotting Subroutines (libsrc/ pdum/)
	5.11.1 Plotting Subroutines (ncom1pdum)

	5.12 Communication Subroutines (libsrc/util/)
	5.12.1 Program xmc
	5.12.2 Communication Subroutines for Shared Memory Computer (xmc_sm)
	5.12.3 Communication Subroutines for Multiple Processors (xmc_mp)
	5.12.4 Program za
	5.12.5 I/O Subroutines for Shared Memory Computer (za_sm)
	5.12.6 I/O Subroutines for Multiple Processors (za_mp)

	5.13 ESMF Driver Program (src/esmf)
	5.13.1 Program ncom

	5.14 NCOM Driver Programs (src/ncom)
	5.14.1 Program ncom

	5.15 Test_xca Subroutines (src/test_xca)
	5.15.1 Program test_xca

	5.16 Test_xca Subroutines (src/test_xcl)
	5.16.1 Program test_xcl

	6.0 NOTES
	6.1 Acronyms and Abbreviations

	7.0 Appendix A FORTRAN Common Blocks
	7.1 COMMON Blocks for General Setup Subroutines
	7.2 COMMON Blocks for File ncom1 Subroutines
	7.3 COMMON Blocks for Printing/Plotting Subroutines
	7.4 COMMON Blocks for Tidal Calculation Subroutines
	7.5 COMMON Blocks for Communications Subroutines for SM Computers
	7.6 COMMON Blocks for Communication Subroutines for Multiple Processors
	7.7 COMMON Blocks for I/O Shared Memory Subroutines
	7.8 COMMON Blocks for I/O Multiple Processor Subroutines
	7.9 COMMON Blocks for Program test_xca and test_xcl
	7.10 COMMON Blocks for Miscellaneous NCOM Source Code
	7.11 COMMON Blocks for Subroutine OMODEL (NCOMPAR.h)
	7.12 COMMON Blocks for NCOM (COMMON.h)
	7.13 COMMON Blocks for COAMPS (COAMPS.h)

	8.0 APPENDIX B Argument Variables
	Primary NCOM Variables
	Main Input Dimensions
	Time variables
	Grid indexing variables
	Time indexing variables
	Grid related variables
	Input values for vertical grid
	Input values for horizontal grid
	Main prognostic variables
	Variables used for relaxation of T and S to specified values
	Surface forcing variables
	Open boundary variables
	River inflow variables
	Other variables
	Temporary variables

	Constants
	Defined and Calculated Constants
	Defined Constants
	Calculated Constants
	Calculated Grid Related Constants

