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ABSTRACT

A method to retrieve concentrations of suspended large and small particles in seawater from satellite images is proposed.
The method uses as input images of scattering and backscattering coefficients in several satellite channels as well as an
image of concentration of chlorophyll. All these three properties are derived using an atmospheric correction algorithm
and algorithms to derive inherent optical properties from remote sensing reflectance. The proposed method is based on
several approaches developed previously by Twardowski et al., van de Hulst, and Evans and Fournier and is based on
Mie theory. The proposed method was applied to restore a number of suspended particles and their dynamics in ocean
using SeaWIFs satellite optical images.
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1. INTRODUCTION

This paper is a continuation of our previous work presented at the II International Conference "Current Problems in
Optics of Natural Waters," ONW'2003. We do present here the same particle algorithm, but illustrate it with different

' and more advanced application. Below we describe an approach to estimate concentrations of suspended scattering
particles in seawater using spectral information obtained in optical channels from a satellite. Modeling results by various
authors (Forand and Fournier 2 Twardowski and others 3) show that spectral dependence of particular scattering and
extinction (attenuation) coefficients are closely related to the shape of particle size distribution in seawater. In the first
approximation the shape of size distribution may be represented in the form of Junge distribution. The spectral shape of
scattering or particular extinction (or scattering) coefficient allows us to obtain a Junge parameter which is a key to
compute an effective refractive index of seawater with suspended scattering particles. The value of effective refractive
index allows us to estimate shares of organic and terrigenic fractions of scatterers. The total concentration of scattering
matter is estimated through the total scattering coefficient and a scattering efficiency by arbitrary size particle averaged
over restored size distribution (Evans and Fournier , van de Hulst ). The actual realization of the approach is
implemented as a C code and tested with an optical SeaWIFs satellite data of sea water reflection in the Gulf of Mexico
(Mississippi Bight area).

The inputs to the proposed algorithm are images of particle extinction ci,, scattering b and backscattering bBP

coefficients,6 and outputs are images of concentrations of organic Cr9 and terrigenic C fractions of suspended matter.
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The input images are obtained from the images of remote sensing reflectance ç8 in several bands of a satellite optical

sensor. We used algorithms of K. L. Carder ' and R. A. Arnone 8 to obtain values of extinction, scattering and
backscattering coefficients from the values of remote sensing reflectance. The spectral remote sensing reflectance was
obtained from the spectral values of radiances of the ocean-atmosphere system using an atmospheric correction
algorithm developed by Howard R. Gordon.'°

2. THE PARTICLE ALGORITHM

2.1. Derivation of effective refractive index of water with scatterers

The first step in the algorithm is to obtain the slope 'y in the spectral dependency of particular extinction coefficient

cp — using a linear interpolation method in a log-log scale. The next step is to restore main properties of size

distribution of particles suspended in seawater. While realistic particle size distributions N(r) (where r is a particle
radius) are quite unique and only in very rare cases may be described by some theoretical kind of size distribution, they
are in general, if plotted on a log-log scale: i. e. log N(r) versus log(r) , exhibit a linear behavior. It means, that in the

first approximation they can be described as a Junge (or hyperbolic) distribution, N(r) —r" , with positive value of

parameter V.

The extensive study of inherent optical properties of seawater with scatterers distributed according to Junge law was
accomplished by Twardowski et al.3 Among other results these authors obtain empirical relationship between slope of
particular extinction coefficient and Junge parameter, as well as relationship that connects effective refractive index of
seawater n with Junge parameter v and particular backscattering b1,, coefficient. According to Twardowski et al.3 the

relationship between particular extinction slope 'y and Junge parameter v is linear:

c(A) = ACA , ii = 'y + 3 , r11 = O.OO6m, r = 76gm , (1)

here r. and r are minimum and maximum radii in particles size distribution.

A similar result was obtained previously by Forand and Fournier.2 These authors implied a Junge distribution of
scatterers with r = oo . They obtained the similar to Twardowski et al.3 result for the case of particular scattering

coefficient:

b(A) = AbA , V = + 3 , V. = 0, rmax 00 . (2)

We tested both regressions (1) and (2) and found that regression (1) produces more reliable results.

The effective refractive index of suspended particles is connected with backscattering probability by particulate matter

B = bBP / b (here b is a particular scattering coefficient) by the following regression obtained from results of

modeling using Mie theory:

n(B,'y) = 1 + Ba530672
[1.4676 + 2.2950'y2 + 2.3113'y4}. (3)

So, the equations (1) and (3) allow us to restore the parameter of the size distribution v and effective refractive index of
scatterers.

The input images are obtained from the images of remote sensing reflectance ç8 in several bands of a satellite optical

sensor. We used algorithms of K. L. Carder ' and R. A. Arnone 8 to obtain values of extinction, scattering and
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modeling using Mie theory:

n(B, 'y) = 1 + Ba530672
[1.4676 + 2.2950'y2 + 2.3113'y4}. (3)

So, the equations (1) and (3) allow us to restore the parameter of the size distribution v and effective refractive index of
scatterers.

Proc. of SPIE Vol. 6615  661504-2

Downloaded from SPIE Digital Library on 23 Feb 2011 to 128.160.29.14. Terms of Use:  http://spiedl.org/terms



2.2. Estimation of number and concentration of organic and terrigenic fractions of scatterers

The total concentration ofparticular matter C could be found from the following relationships:

cp = Cv i Cv = 1/,, , (4)

here C is a volume concentration of particular matter, p is a mass density of particles, is a total number of

particles per unit volume, V is an average volume of one scattering particle which can be obtained using the following

equation:

= f rf(r) dr , f 1(r) dr = 1 , (5)

here f(r) is a normalized size distribution of particles.

Taking into account that total number of scattering particles can be expressed through the particular scattering
coefficient ,

bp
, (6)

71 f x)r2f(r)dr

where Q8 is a scattering efficiency. We can rewrite Eqs. (4)-(6) as follows:

cv = bp: sv = fr3f(r)dr, S = fr2f(r)Q(r)dr . (7)

Integrals S and Sq also may be used to obtain a specific scattering coefficient of particular matter:

b 38
(8)p

The scattering efficiency Q8 ofparticles suspended in seawater depends on effective refractive index n of seawater

and size parameter, x = 2ir r/A, where A is a wavelength of light in vacuum. The value can be computed

numerically using Mie theory.4 This approach while having superior accuracy is not good for our purposes due to its
slowness. For that reason we have chosen to use an analytic expression for Q3 proposedby Evans and Fournier:

= (9)

[1+ (QR/QVT)
here
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Figure 1: Backscattering coefficient at 550 computed from SeaWIFS data of the Mississippi Gulf Coast (March 1).

Figure 2, a: Large particles. The backscattering image was partitioned into the large and small particles based on the proposed
algorithm. Small particles are assumed to be terrigeneous and large particles are assumed to be biologic.

S2006060183930.L3j-

S2006060183930L3JINAV_MSB Wed Mar 1 18:43:49 2006
Nu m Haltrin Ak Drlthm

Figure 1: Backscattering coefficient at 550 computed from SeaWIFS data of the Mississippi Gulf Coast (March 1).

Figure 2, a: Large particles. The backscattering image was partitioned into the large and small particles based on the proposed
algorithm. Small particles are assumed to be terrigeneous and large particles are assumed to be biologic.
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Figure 2, b: Small particles. The backscattering image was partitioned into the large and small particles based on the proposed
algorithm. Small particles are assumed to be terrigeneous and large particles are assumed to be biologic.

Figure 3. The particle trajectory field for the SeaWIFS on March 1 was used to determine the 24-hour forecast. The two size
distributions of particles were used to initialize the seed field for the NCOM advection model. The small and the large
particle field were propagated hourly for forecast.
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Figure 2, b: Small particles. The backscattering image was partitioned into the large and small particles based on the proposed
algorithm. Small particles are assumed to be terrigeneous and large particles are assumed to be biologic.

Figure 3. The particle trajectory field for the SeaWIFS on March 1 was used to determine the 24-hour forecast. The two size
distributions of particles were used to initialize the seed field for the NCOM advection model. The small and the large
particle field were propagated hourly for forecast.
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3. INTEGRATING THE SATELLITE PARTICLE SIZE DISTRIBUTIONS
INTO OCEAN MODELS

We used the number of particles obtained from the SeaWIFS image with numerical models forecast of the currents to
advect the particles forward in time on an hourly bases to determine the 24- and 48-hour particle concentration
forecast.'5 The distribution of the particles size was integrated into the Intra America Seas Nowcast Forecast system that
runs the Navy Coastal Ocean Model (NCOM) for the northern Gulf of Mexico.16' 17NCOM output products of the 3rd
current fields were initialized with a 'surface' seed of the number of particles from the SeaWIFS imagery. The initial
seed field of particle number was further portioned into large and small particles and advected as a particle tracking
using hourly updates from the model. The path and resulting distribution of the particle field were then used as a forecast
of the particle concentration image, which was compared with the next day SeaWIFS backscattering image. The particle
trajectory field represents a conservative tracer of how particles are controlled solely by physical processes. This simple
particle tracking procedure does not account for the particle growth and decay from biological processes, resuspension,
flocculation et al. Additionally, the procedure assumes that particles are initialized only at the "surface" and will not
account for particles introduced from upwelling processed or downwelling processes.

From the SeaWIFS imagery for March 1 , 2006, we computed the number of large (>1 .3 tim) particles which are assumed
organic and the number of small particles (<1 .3 tm) which are assumed terrigeneous (Figure 2 a, b). Based on the size
and density of large and small size distributions, we estimated a settling velocity of the 20 and 100 cm per day
respectively and were used in differential settling with the NCOM advection on hourly time scale.

The advection methods used to track the particles fields used the "xvison" software to adjust parameters such as
dispersion, and settling velocities. Hourly modeled currents of x, v, w components were used to generate the 24- and 48-
hour forecast. The particles field for 24-hour period as large particles (organic) and small particles (terrigeneous) and
their dispersion after 24 hours are shown in Figure 3 . This figure represents a total number of particles integrated over
depth for large and small particle distributions. After 24 hours, we observe a separation of the smaller particles and the
larger particles (which could be observed in a color plot better). The surface velocities advect the smaller, lower settling
velocities faster than the larger higher settling velocity particles. We next accumulated the total number of small and
large particles within a 1 km grid, which is similar to SeaWIFS grid (Figure 4a), and converted the particles back into the
backscattering coefficient. This advection particle field represents the SeaWIFS forecast backscattering coefficient and
can be compared with the March 2, 2006 SeaWIFS image (Figure 4b).

Note the distribution of the Mississippi plume and the distribution of large and small particles that occurs on March 1
and 2 how they have propagated within 24 hours.

4. CONCLUSION

We proposed here a new method to retrieve concentrations of suspended organic and inorganic particles in seawater
from satellite images. The method uses as input values of extinction, scattering and backscattering coefficients in several
satellite channels. The outputs to this method are concentrations of organic and terrigenic fractions of suspended matter
in seawater.

This algorithm was applied to SeaWIFS satellite image and provides a method to characterize spatial distributions of
particle size distributions. The particle size distribution was used with numerical models to provide an initial seed for
particles trajectory. The different size particles were used for differential settling velocities which were used to advect
and settle particles. By combining the particles and numerical circulation models, we demonstrated the capability to
forecast the backscattering coefficients based on particle tracking and settling. The disperion of the Mississippi River
Plume was used as a test example of how particles disperse with in a 24-hour period. The forecast backscatter image was
compared with the SeaWIFS next day image and showed excellent agreement.

3. INTEGRATING THE SATELLITE PARTICLE SIZE DISTRIBUTIONS
INTO OCEAN MODELS

We used the number of particles obtained from the SeaWIFS image with numerical models forecast of the currents to
advect the particles forward in time on an hourly bases to determine the 24- and 48-hour particle concentration
forecast.'5 The distribution of the particles size was integrated into the Intra America Seas Nowcast Forecast system that
runs the Navy Coastal Ocean Model (NCOM) for the northern Gulf of Mexico.16' 17NCOM output products of the 3rd
current fields were initialized with a 'surface' seed of the number of particles from the SeaWIFS imagery. The initial
seed field of particle number was further portioned into large and small particles and advected as a particle tracking
using hourly updates from the model. The path and resulting distribution of the particle field were then used as a forecast
of the particle concentration image, which was compared with the next day SeaWIFS backscattering image. The particle
trajectory field represents a conservative tracer of how particles are controlled solely by physical processes. This simple
particle tracking procedure does not account for the particle growth and decay from biological processes, resuspension,
flocculation et al. Additionally, the procedure assumes that particles are initialized only at the "surface" and will not
account for particles introduced from upwelling processed or downwelling processes.

From the SeaWIFS imagery for March 1 , 2006, we computed the number oflarge (>1.3 tim) particles which are assumed
organic and the number of small particles (<1 .3 tm) which are assumed terrigeneous (Figure 2 a, b). Based on the size
and density of large and small size distributions, we estimated a settling velocity of the 20 and 100 cm per day
respectively and were used in differential settling with the NCOM advection on hourly time scale.

The advection methods used to track the particles fields used the "xvison" software to adjust parameters such as
dispersion, and settling velocities. Hourly modeled currents of x, v, w components were used to generate the 24- and 48-
hour forecast. The particles field for 24-hour period as large particles (organic) and small particles (terrigeneous) and
their dispersion after 24 hours are shown in Figure 3 . This figure represents a total number of particles integrated over
depth for large and small particle distributions. After 24 hours, we observe a separation of the smaller particles and the
larger particles (which could be observed in a color plot better). The surface velocities advect the smaller, lower settling
velocities faster than the larger higher settling velocity particles. We next accumulated the total number of small and
large particles within a 1 km grid, which is similar to SeaWIFS grid (Figure 4a), and converted the particles back into the
backscattering coefficient. This advection particle field represents the SeaWIFS forecast backscattering coefficient and
can be compared with the March 2, 2006 SeaWIFS image (Figure 4b).

Note the distribution of the Mississippi plume and the distribution of large and small particles that occurs on March 1
and 2 how they have propagated within 24 hours.

4. CONCLUSION

We proposed here a new method to retrieve concentrations of suspended organic and inorganic particles in seawater
from satellite images. The method uses as input values of extinction, scattering and backscattering coefficients in several
satellite channels. The outputs to this method are concentrations of organic and terrigenic fractions of suspended matter
in seawater.

This algorithm was applied to SeaWIFS satellite image and provides a method to characterize spatial distributions of
particle size distributions. The particle size distribution was used with numerical models to provide an initial seed for
particles trajectory. The different size particles were used for differential settling velocities which were used to advect
and settle particles. By combining the particles and numerical circulation models, we demonstrated the capability to
forecast the backscattering coefficients based on particle tracking and settling. The disperion of the Mississippi River
Plume was used as a test example of how particles disperse with in a 24-hour period. The forecast backscatter image was
compared with the SeaWIFS next day image and showed excellent agreement.
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Figure 4. The forecast particles fields were accumulated to the same grid as the next March 2, SeaWIFS image.
The forecast and the SeaWIFS image show similar dispersion ofthe Mississippi River Plume.
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