
Naval Research Laboratory
Stennis Space Center, MS 39529-5004

NRL/MR/7320--07-9082

Approved for public release; distribution is unlimited.

Makef22: An ADCIRC Model Fort.22
Input File Creation Tool for Surface
Wind and Pressure Forcing
Cheryl Ann BlAin

Ocean Dynamics and Prediction Branch
Oceanography Division

December 7, 2007

roBert S. linzell

Planning Systems Incorporated
Stennis Space Center, Mississippi

Brett eStrAde

Center for Computation and Technology
Louisiana State University
Baton Rouge, Louisiana

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Makef22: An ADCIRC Model Fort.22 Input File Creation Tool
for Surface Wind and Pressure Forcing

Cheryl Ann Blain, Robert S. Linzell,* and Brett Estrade†

Naval Research Laboratory
Oceanography Division
Stennis Space Center, MS 39529-5004 NRL/MR/7320--07-9082

Approved for public release; distribution is unlimited.

Unclassified Unclassified Unclassified
UL 41

Cheryl Ann Blain

(228) 688-5450

ADCIRC model
Wind and pressure forcing

 The User’s Manual for the Makef22 software tool, makef22.pl, contains descriptions of the software, including its functionality and usage. The
Makef22 software is a Perl-based program that creates an ADvanced CIRCulation (ADCIRC) Model Surface Wind and Pressure Forcing file (fort.22)
using the NWS = 2 option. The software was developed for ADCIRC version 45.11. In addition to the creation of fort.22 files, the Makef22 utility
also can read and process an existing fort.22 file in order to 1) elongate the record either by adding zero valued records at the beginning of the fort.22
file or by repeating the first time record a specified number of times, and/or 2) ramp a specified portion of the fort.22 records from zero to full-scale
values. This utility was designed so that readers for new data sources can easily be developed and incorporated into the Makef22 utility. Surface
wind and pressure data sources on rectangular, regular girds at known times are read and interpolated onto an ADCIRC finite element mesh (FEM)
at user-specified times. The results can be stored in an ASCII text, ADCIRC model specific, fort.22 forcing file.

07-12-2007 Memorandum Report

Office of Naval Research
One Liberty Center
875 North Randolph Street
Arlington, VA 22203-1995

0602435N

73-6801-07-5

ONR

Makef22
fort.22

*Planning Systems Incorporated, MSAAP Building 9121, Stennis Space Center, MS 39529
†Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70808

 iii

TABLE OF CONTENTS

1. Description……………………………………………………..… 1
a. Overview………………………………………………….……...…… 1
b. Methodology…………………………………………………….……. 1
c. Software Components………………………………………………… 3
d. Software Prerequisites…………………………………………….….. 5
e. Software Installation………………….………………………….….…6

2. Fort.22 Creation: Using makef22.pl………………………….... 8

a. Execution………………………………………………………………8
b. Specifications…………………………………………………………. 10

3. The Data Reader………………………………………………… 11
a. Details……………………………………………………………….... 11
b. Creation of a New Reader…………………………………………….. 12
c. Explanation of the Fortran Source Code…………………………..….. 13

4. The NAVO GMT Wind Reader, navo_gmt.pm…………….….. 14

a. Details……………………………………………………………..….. 14
b. Adding New Domains to navo_gmt.pm…………………………...….. 16
c. Adding New Compilers and Architectures to navo_gmt.pm……….… 18

5. The NRL COAMPS and NOGAPS readers,
 nrl_coamps.pm and nrl_nogaps.pm………………………..… 20

a. Details……………………………………………………………….... 20
b. Adding New Domains to nrl_coamps.pm and nrl_nogaps.pm……..… 23
c. Adding New Compilers and Architectures………………………........ 26

6. Fort.22 Processing…………………………………………...….. 26

a. Overview……………………………………………………………… 26
b. Details………………………………………………………………… 26
c. Input Parameters……………………………………………………… 27

7. Reference……………………………………………………….... 28

APPENDIX I. ADCIRC fort.22 File Information………………… 29

APPENDIX II. Input Parameter File Example…………………... 33

APPENDIX III. Details of the Date Iterator……………………… 34

APPENDIX IV. Plug-in Reader Application Program Interface... 36

APPENDIX V. Domains Supported by the Data Readers……… 37

 - 1 -

1. Description

a. Overview

The makef22 utility is a Perl-based program that creates a surface wind and pressure
forcing file in a format appropriate for the ADvanced CIRCulation (ADCIRC) model
using the NWS = 2 option, e.g. the fort.22 file (see Appendix I for details on the fort.22
file description and format or the ADCIRC model online manual at
http://www.adcirc.org). The utility also can read and process an existing fort.22 file in
order to 1) elongate the record either by adding zero valued records at the beginning of
the fort.22 file or by repeating the first time record a specified number of times, and/or 2)
ramp a specified portion of the fort.22 records from zero to full-scale values. This utility
was designed so that readers for new data sources can easily be developed and
incorporated into the makef22 utility. Surface wind and pressure data sources on
rectangular, regular grids at known times are read and interpolated onto an ADCIRC
finite element mesh (FEM) at user-specified times. The results can be stored in an ASCII
text, ADCIRC model specific, fort.22 forcing file.

The makef22.pl utility is comprised of five components: the driver (makef22.pl), the date
iterator (Iterator.pm), the input parameter file reader (GetUserInput.pm), the reader (e.g.,
navo_gmt.pm), and the processing program (read_expand_ramp_f22_v3.F). The user
executes the driver, the input parameter file reader loads the user-supplied parameters
from an ASCII text file (see Appendix II for an example of this file), the date iterator is
used to facilitate iteration over a specified range of dates, and the reader facilitates the
reading and interpolation of the surface wind and pressure data. The processing program
is a standalone program that is invoked by the driver if the user chooses the processing
option.

b. Methodology

The reader, such as navo_gmt.pm, which is used for reading the Generic Mapping Tools
(GMT) network Common Data Form (netCDF) file format used by NAVOCEANO, is a
Perl script called by the driver, makef22.pl. The reader serves as a wrapper around a data
reader written in Fortran 90. While the actual reading of the data is handled by the
Fortran 90 code, the wrapper handles the rest of the processing details such as compiling
the Fortran 90 code into an executable (done once at the start if no binary executable
program is supplied - unsupported at this time), locating the requested data files, and
calling the reader executable for each date/hour that is requested. The Perl wrapper also
tracks the number of files read, and manages the proper formatting of the data for the
fort.22 file based on what record is being written. The reader assumes one time record
per file.

The Fortran 90 program contained in the reader, e.g. navo_gmt.pm, to be supplied as a
standalone binary executable program, reads in surface wind velocity or wind stress
components and/or surface pressure for any region supported by the reader (see Appendix
V for a list of currently supported atmospheric models and regions). The fields are then
passed back to the makef22.pl driver. Wind stress, if computed, is accomplished using
the formula of Garratt (1977). Wind stresses are in units of Pressure/Length2 or in SI,

Manuscript approved October 11, 2007.

 - 2 -

N/m2, and are divided by the reference density of water to get units of Length2/Time2 (SI
or metric units are determined by the units of g specified in the ADCIRC fort.15
parameter file). The surface pressure is represented by units of Pressure/Length2 or in SI,
N/m2.

The data are then interpolated onto the ADCIRC mesh contained in a user-supplied
fort.14 file. Typically wind and pressure data sources are defined over rectangular
regions using regularly-spaced points. The ADCIRC mesh is typically composed of
irregularly shaped triangles whose vertices or nodes are also irregularly spaced.
Interpolation of the wind and pressure data from a rectangular grid onto the FEM is
performed using simple bilinear interpolation. Because of the need to interpolate the data
onto the FEM, an existing ADCIRC fort.14 file for the region of interest is required.

It is important to note that the Fortran 90 code that forms the data reader contained in
navo_gmt.pm is a standalone program that can be copied into its own Fortran 90 source
file and compiled using any Fortran 90 compiler. The resulting executable can be used
by itself, but the user must provide the required input.

A recently added option allows the user to specify an existing, standalone, binary
executable program that the reader invokes in place of the reader-contained Fortran 90
source code. This provides a means by which the user can avoid having to modify the
Perl source code to add compiler parameters, or determine the correct compiler
parameters when invoking the makef22.pl utility. This option also avoids program
compilation every time the utility is executed, which occurs if no binary executable is
supplied. This option is presently the only supported and recommended mode of
operation for the data reader software.

Another recently added option allows the user to employ the binary executable
processing program, read_expand_ramp_f22_v3, to process an existing fort.22 file.
There may be instances where the user wishes to have the non-zero wind and pressure
forcing start at a time later than at the start of an ADCIRC model simulation. For
example, a long ramp-up period may be necessary for the application of tidal forcing but
wind and pressure forcing may not available during the entire ramping phase. In such
cases, the wind and atmospheric pressure fields could be initially set to zero or some
background value, or the first available wind and pressure record could be repeated for a
specified length of time during model spin-up period. This type of accommodation is
often necessary when applying wind and pressure forcing within the ADCIRC model
(NWS not equal to 0), since the ADCIRC model expects wind and pressure forcing to
extend from the start to the end of a simulation. In the above scenario, where non-zero
wind and pressure forcing fields are applied after the ramp duration (DRAMP) that occurs
internal to the ADCIRC code, the initial meteorological forcing values would also need to
be gradually increased to full scale (i.e., “ramped”) to avoid the generation of numerical
artifacts but must be ramped external to the ADCIRC code; this external ramping is
handled by the supplied processing program. Figure 1 is a conceptual sketch illustrating
the application of features available in the processing program,
read_expand_ramp_f22_v3.

 - 3 -

Figure 1. Sketch depicting the extension of meteorological data through the use of zero-
padding, repetition of the first data record and then ramping of the extended data records,
all accomplished via the read_expand_ramp_f22_v3 utility.

In the above figure, the green line represents an idealized time series of a meteorological
forcing data value, such as atmospheric pressure. At time T1 (time step N=1), which
would correspond to the start time of the model run, the data values are set to zero, zero-
padding (or a background value, such as 10 m for atmospheric pressure). This initial
value is maintained up to time T2 (time step N=i). From time T2 to T3 (N=j), the first
non-zero data value is copied, and a ramp function is applied. Over this time interval, the
data gradually increases to full value at the end of the ramp period, T3.

In this example, the original fort.22 data values extend from the time step following T3
(N=j+1) to the end of the time series. Thus the original data set has been extended by the
sum of the zero-padded interval (T1 to T2, i time steps) and the ramped interval (T2 to
T3, j-i time steps). During an ADCIRC model run, the ramp period for the forcing of
interest would correspond to the time interval T1 to T3 (j time steps). The time steps in
this example refer to the data interval of the original meteorological data, e.g., three
hours. The fort.22 files contain no time information but require a constant data interval
for the entire record. Hence, input to the processing program, is provided as numbers of
time steps instead of hours or some other time increment.

c. Components

The “makef22” utility that creates the fort.22 file is actually composed of eight primary
modular parts as depicted in Figure 2:

1. Iterator.pm - a date-iterating Perl module that cycles over a user-specified date range
2. GetUserInput.pm – a Perl module that reads the user-supplied input parameter file,

makef22.pl.in
3. makef22.pl - the main driver that the user executes
4. navo_gmt.pm - a makef22.pl-compatible data reader specifically designed to read

 - 4 -

NAVO GMT netCDF files. All readers are specified by the “reader” option of
makef22.pl.in

5. nrl_coamps.pm – a makef22.pl-compatible data reader specifically designed to read
NRL binary COAMPS files.

6. nrl_nogaps.pm – a makef22.pl-compatible data reader specifically designed to read
NRL binary NOGAPS files.

7. nrl_bin2xyz – a standalone data reformatting tool that converts NRL binary COAMPS
or NOGAPS output files to ASCII text format.

8. read_expand_ramp_f22_v3 – the data processing program for extending and ramping,
an existing fort.22 data file.

Figure 2. A schematic flow chart depicting the data flow and relationship between the
software components comprising the Makef22 tool.

If the creation of a new fort.22 file from user-supplied meteorological data is desired, the
option to process an existing fort.22 file is disabled (see Table 1). Using the date iterator
(Iterator.pm), the main driver (makef22.pl) iterates over a date range specified by user-
defined starting and ending dates or a user-defined date range and hourly time increment.
The date format is YYYYMMDDHH where YYYY indicates the year, MM the two-digit
month, DD the two-digit day, and HH the two-digit hour using a 00-24 hour range.
These input parameters are supplied in the ASCII text file, makef22.pl.in (see Table 1 and
Appendix II), which are read at the program startup by the input file reader,
GetUserInput.pm. Implementation of the date iterator is hidden from the user except for
the initial specification of a date range and increment as indicated above. For each

 - 5 -

date/hour in the range, the reader is called via a standard interface (see Appendix IV).
The reader is responsible for returning the data for the requested date/hour in the proper
fort.22 format (see Appendix I).

If the processing mode is specified, data processing is enabled (see Table 1) and an
existing fort.22 file required (see §6). The main driver acquires the user inputs from the
makef22.pl.in input parameter file via the input file reader. The data processing program
(read_expand_ramp_f22_v3) is invoked to perform the extension and/or ramping of the
original data found in the supplied fort.22 file. A new file, named fort.221, is created
during processing and is the final result of the fort.22 processing. This file should be
renamed to fort.22, after moving or renaming the original fort.22 file, prior to execution
by the ADCIRC model code.

The user can create more than one processed output file corresponding to different
combinations of zero-padded or record repetition extension and ramping, bearing in mind
that the output file (fort.221) should be moved or renamed after each execution of the
makef22.pl driver. If several processing runs are planned, separate copies of the input
parameter file (makef22.pl.in) should be created containing the various processing
parameters. Then, for each execution of the driver, the parameter file of interest could be
symbolically linked to makef22.pl.in to speed up or automate processing with a shell
script. An example below demonstrates this approach:

ls *.in [A listing of three input files to be used for 3 different
 executions of makef22.]

 test1.in test2.in test3.in

ln –fs test1.in makef22.pl.in [Create symbolic link from test1.in
 to makef22.pl.in.]

makef22.pl [First execution of makef22.pl using test1.in input.]

ln –fs test2.in makef22.pl.in [Create symbolic link from test2.in
 to makef22.pl.in.]

makef22.pl [Second execution of makef22.pl using test2.in input.]

ln –fs test3.in makef22.pl.in [Create symbolic link from test3.in
 to makef22.pl.in.]

makef22.pl [Third execution of makef22.pl using test3.in input.]

d. Software Prerequisites

Perl must be installed on the platform on which the Makef22 software will be installed.
On Windows-based systems, the latest version of Perl from ActiveState Software Inc.
(www.activestate.com) is recommended. The Generic Mapping Tools (GMT) freeware
package (gmt.soest.hawaii.edu) and the network Common Data Form (netCDF) software
(www.unidata.ucar.edu/packages/netcdf) must be installed for the Fortran programs to
correctly operate. An existing ADCIRC Grid and Boundary Information File (fort.14)
must also be present in the current working directory.

 - 6 -

An external, standalone, pre-compiled Fortran data reader, such as gmt2f22_navo_gmt,
must be present and applicable to data reformatting and interpolation of the desired
meteorological data source. Additionally, the NRL Navy Operational Global
Atmospheric Prediction System (NOGAPS) and Coupled Ocean/Atmosphere Mesoscale
Prediction System (COAMPS®) pre-compiled binary file reformatting program,
nrl_bin2xyz, must be present to process those data types. Although the software is
platform-independent, the standalone Fortran programs must be compiled for each
platform on which they are installed.

e. Software Installation

The makef22.pl utility is located in the ADCIRC_Utilities repository in the Makef22
directory. The directory has the following contents:

• CONTENTS
• (directory) Documentation/

• CONTENTS
• ADCIRC_MANUAL_MakeF22_FINAL_09-25-07.doc
• README
• README_Ramping

• GetUserInput.pm
• Iterator.pm
• Makefile
• Makefile.MSRC.romulus
• (directory) Sample_Input_Files/

• CONTENTS
• MASTER_makef22.pl.in
• makef22.pl.in
• makef22_generate.pl.in
• makef22_ramping.pl.in

• fort22_reformat.awk
• makef22.pl
• read_expand_ramp_f22_v3.F
• (directory) readers/

• CONTENTS
• Makefile
• Makefile.nrl_bin2xyz
• cmplrflags.mk
• config.guess
• gmt2f22_navo_gmt.F
• gmt2f22_nrl_coamps.F
• gmt2f22_nrl_nogaps.F
• grid2gmt.csh
• hms2itm.f, idateadd.f, idayyr.f, idcen2idt.f, idt2idcen.f, idt2ymd.f,

itm2hms.f, and ymd2idt.f (external source code files for nrl_bin2xyz.f)
• navo_gmt.pm
• nrl_coamps.pm

 - 7 -

• nrl_nogaps.pm
• gmt2f22_navo_gmt.F
• gmt2f22_nrl_coamps.F
• gmt2f22_nrl_nogaps.F
• nrl_bin2xyz.f
• run_cmd.pl

Step 1: Pre-Compilation of Fortran Programs

a) The Data Reader

The currently supported option is to pre-compile the supplied Fortran reader code
(gmt2f22_navo_gmt.F) on the platform on which the software has been installed, a
“makefile” has been supplied. The makefile, named Makefile, uses the GNU make
program to compile the software on a variety of platforms. The accompanying shell
script, config.guess, and the ASCII text compiler flag file, cmplrflags.mk, also are used
by make to properly compile the software on any of several tested platforms (e.g., Linux
32-bit, Linux 64-bit, or IBM AIX). The cmplrflags.mk file also contains paths to the
NetCDF library and include directories. The user should inspect this file prior to
compilation to verify whether the compiler flags and netCDF paths are correct. The file
can be edited with a text editor should any of the parameters require modification. To
build the standalone binary executable program for the data reader, the following
command is used:

make gmt2f22_navo_gmt

On the IBM under AIX, the gmake program may be required, instead of make. This
procedure should be performed only once after the software has been installed. The
binary executable program, gmt2f22_navo_gmt, will then be used when the makef22.pl
utility is invoked, so that the Fortran source code will not be compiled each time.

b) The NRL Data Reformatting Tool

In a similar manner, the standalone NRL binary data reformatting tool, nrl_bin2xyz.F,
should be compiled using the supplied makefile using the following syntax:

make -f Makefile.nrl_bin2xyz

Note that this tool is required for processing NRL meteorological binary data files, but
has been tested only under Linux as of this writing. Users needing to use data types other
than the NRL binary or NAVOCEANO GMT netCDF formats can contact the authors for
further information.

c) The Fort.22 Processing Program

The fort.22 processing program, read_expand_ramp_f22_v3.F should be compiled using
the supplied Makefile with the system make utility. An alternative makefile,
Makefile.MSRC.romulus, also is supplied for use on IBM AIX-based systems.

 - 8 -

Step 2: Configuration of NRL Binary Data Readers

If you wish to use the supplied readers for NRL binary COAMPS or NOGAPS data
(nrl_coamps.pm or nrl_nogaps.pm, respectively), the readers must be modified to use the
correct path to the GMT binary executable program, xyz2grd. These two programs are
written in Perl, so they can be modified using any text editor. The lines containing the
following code must be modified:

$self->{_XYZ2GRD} = '/common/utilities/GMT3.4.2/bin/xyz2grd';

so that “/common/utilities/GMT3.4.2/bin” is changed to the correct path for the system
on which the software is installed. In nrl_coamps.pm, this code is at line 161, and in
nrl_nogaps.pm, line 158.

(OPTIONAL) Step 3: An Environmental Variable for Alternative Data Readers

You may set an environmental variable, F22_READER_DIR, that specifies a reader
directory other than the default location in the ADCIRC_Utilities/Makef22/readers
directory. This directory is where all readers could be organized if multiple custom
readers are available. Alternatively, one could specify a path for the variable,
“readerdir”, on line 5 of the makef22.pl.in file (see Appendix II). Examples for setting the
environmental variable, F22_READER_DIR, in c-shell (csh) and Bourne shell (sh) are
as follows:
 csh: setenv F22_READER_DIR “/path/to/readerdir/”
 sh: set F22_READER_DIR=“/path/to/readerdir”;export F22_READER_DIR

(OPTIONAL) Step 4: An Environmental Variable for the Date Management Program

If you wish to place Iterator.pm in a separate directory, move it there, and specify the
new location by including it in the environmental variable called “PERL5LIB”. For
more information regarding “PERL5LIB”, please consult “perlfaq8” which should be
accessible on any Unix-like platform with Perl 5 installed. This topic is addressed under
the “perlfaq8” heading “How do I keep my own module/library directory?”

2. Fort.22 Creation: Using makef22.pl

a. Usage

To execute the Makef22 utility, the Perl script makef22.pl is invoked from the command
line as:

makef22.pl > fort.22

where output from the makef22.pl code is directed to the file, fort.22, a meteorological
forcing file for the ADCIRC code. In the above example, makef22.pl is invoked from the
command line using the input parameters specified in the makef22.pl.in file. The result is
the creation of an ASCII text fort.22 file containing either NRL or NAVOCEANO
meteorological data sources, which are stored in IEEE binary or GMT netCDF format,

 - 9 -

respectively. Within the makef22.pl.in file (included in Appendix II), the start date/hour
of the desired wind and pressure data (e.g., 2004011200) is first specified followed by
information about either the termination date of the data (e.g., 2004011400) or the length
of the data record to be read. The data to be read in this example will extend for 2 days
(e.g., 2d) at 6-hour increments (e.g., 6h). The 6-hour increment corresponds to a wind
time increment (WTIMINC) of 21600 seconds. The ADCIRC model will read new
meteorological data every WTIMINC seconds. The file name for the ADCIRC grid to be
used for interpolation is specified next (e.g., fort.14). Then the directory location for
the data readers is given (e.g., ~/makef22pl/readers), and the specific data reader is
identified. For NAVOCEANO, the appropriate data reader is referred to as “navo_gmt”
(e.g., navo_gmt). On the next line, one should provide the name of the pre-compiled
binary file containing the data reader (e.g., gmt2f22_navo_gmt) . Next, the parameter
specifications for the meteorological data are passed to the reader through the specified
reader options, “readeropts”. The reader options include data type, (e.g. “-O PW” to
indicate pressure and wind velocities, the alias for the spatial domain that corresponds to
a domain definition in the reader (e.g., -domain CENT_AM_New), and the directory
location of the meteorological data (e.g., -datadir /u/lev1/common/ADCIRC-
TRAINING-I/NAVO_GMT_DATA). If no precompiled binary reader program is specified, the
computer architecture is detected automatically (unsupported at this time), and the
appropriate compiler options are extracted from inside the reader source code file
(unsupported at this time). However, if a custom setting is added to the compiler
database, one can name the architecture using the use the optional “arch” line
specification (e.g., i686) to override the architecture detected by the program. The
remaining parameters specified in the makef22.pl.in pertain to the ramping and/or
expansion of a fort.22 file. For details on the meaning and use of these parameters, see
Table 1 or §6.

Note that the number of records required for a simulation is determined by the simulation
length (RNDAY) and the wind time interval (WTIMINC), both of which are defined in the
fort.15 settings file. For wind and/or pressure-forced ADCIRC simulations, forcing data
is required for the entire length of the simulation. To determine the number of records
needed, convert RNDAY to seconds (since those are the units of WTIMINC), and use the
following formula:

num_records = RNDAYsec/WTIMINCsec + 1

If the number is not a whole number, round up to guarantee that the simulation runs to
completion. When specifying the date range and increment length, care must be
exercised to ensure that enough records are created to span the entire simulation period.
A general rule is to convert WTIMINC to hours, then set “end” to
“{RNDAYday}d{WTIMINChr}h” and “inc” to “{WTIMINChr}h". Using this approach and
rounding up to obtain the required num_records will ensure that a sufficient number of
wind/pressure data records are processed to extend for the entire length of the run.

 - 10 -

b. Specifications

The file actually executed by the user is the driver, makef22.pl. The input parameters for
this program, contained in the input file makef22.pl.in (see Appendix II), are defined in
Table 1. All details regarding the meteorological data, such as the location and naming
convention of the data files, are handled by the reader software. By design, the reader is
relied upon to return a properly formatted fort.22 record (see Appendix I) for the
specified date/hour. No validation is done by the driver to ensure a correct data read.
The driver simply sends the data returned from the reader directly to standard output. As
such, the desired output must be redirected to a file using the operators “>” or “>>” (e.g.,
“> fort.22” as shown in the makef22.pl usage example above, §3a). The data can also
be redirected into another program using the Unix pipe operator, “|”.

Table 1. Input Parameters for makef22.pl (makef22.pl.in)

Parameter Req Description Valid values

start Y Start date YYYYMMDDHH (required format)

end Y End date; an actual date can be
specified or a relative period of
time after the start date. The
values described in the “Valid
Values” column can be combined.
For example, “2m3d4h” will end
2 months, 3 days, and 4 hours
after the start date.

YYYYMMDDHH, or
#h – hours past start,
#d – days after start,
#m – months after start,
#y – years after start

inc Y Time increment; the values
described in the “Valid Values”
column can be combined.
For example, “2m3d4h” will
increment 2 months 3 days and 4
hours for each iteration.

#h – hours,
#d – days,
#m – months,
#y – years,

reader Y Data reader name. Data reader name is the name of the reader
file without the extension (.pl or .pm)

readeropts Y Data reader options; options must
be enclosed in quotes.

Depends on reader. For navo_gmt.pm
details, please see §4a; for nrl_coamps.pm
and nrl_nogaps.pm, refer to §5a.

readerdir N Reader directory specification;
Over-rides the
“F22_READER_DIR”
environmental variable. If the
environmental variable is not set,
and this option is not used, the
default directory searched is
“./readers”.

Any valid Unix directory path

readerbin [N] OPTIONAL: Name of binary
executable data reader program.

gmt2f22_navo_gmt (see §1e), or any valid
Unix file name (program must already
exist).

 - 11 -

Parameter Req Description Valid values

arch [N] OPTIONAL: Computer
architecture specification and
associated Fortran compiler
information; passed to reader as
an option flag of the same name.
If set, the specified value will
override the auto-detected one.

Architecture types as defined internally
inside the reader. See §4c for specific
details. This option is presently
unsupported.

f14 Y ADCIRC mesh onto which data is
interpolated

Any valid Unix file path to a valid
ADCIRC mesh file (fort.14)

ramp Y Processing Flag; indicates
whether data generation or
processing is to be done.
Processing is described in §6.

Zero (0) if no processing will be done (i.e.,
a new fort.22 file will be generated), or one
(1) if processing will be done.

norig [N] OPTIONAL: The number of time
steps from the original fort.22 file
to use.

Required only if ramp=1; must be 1 or
greater. Enter a large number (e.g., 999) if
the number is unknown.

nback [N] OPTIONAL: The number of
background/zero-valued time
steps that are pre-pended to the
output file.

Required only if ramp=1; 0 for no zero-
valued records, or greater than 0 to create
zero-valued records.

ncopy [N] OPTIONAL: The number of
copies of the first original data
record (time step).

Required only if ramp=1; 0 or greater. If
set to 0 and nramp > 0, ramping will be
applied to zero-valued records &/or
original data, depending on values of nstart
& nramp.

nramp [N] OPTIONAL: The number of time
steps over which to apply the
ramping function.

Required only if ramp=1; set to 0 for no
ramping (i.e., zero-valued records &/or
extending only), or greater than 0 to apply
ramping.

nstart [N] OPTIONAL: The time step at
which to start applying the
ramping function.

Required only if ramp=1; 1 or greater;
ignored if nramp=0.

One example of the makef22.pl.in file is presented in Appendix II and found in the
directory “Sample_Input_Files” (e.g., ./Sample_Input_Files).

3. The Data Reader

a. Details

The data reader for the driver makef22.pl is designed so that the data source is accessed

 - 12 -

and converted to the proper fort.22 format without the driver's intervention. The driver
merely makes a standard function call and in return receives some data that is assumed to
be in the proper format.

The reader is passed a date string by the driver that specifies a particular date/hour and
returns data for that date formatted appropriately for an ADCIRC fort.22 file. The
makef22.pl takes this data and sends it to standard output. Again, the output must then be
directed into a file or piped to another application, otherwise, the resulting data will be
written to the terminal screen instead of an output file.

For flexibility in accommodating a variety of as of yet unknown data formats, makef22.pl
does nothing to verify that the correct data record is being returned or that it is in the
correct format. The driver simply facilitates the calling of a generic reader over a
specified range of dates. The reader alone is responsible for:

1. Reading the data in its native format for a specified date/hour; the date format passed

to the reader can be changed by re-setting a line in makef22.pl, i.e.,
 “$CMDLINEOPTS{FORMAT} = '%Y%m%d%k';”
Please see Appendix III for other date formatting options.

2. Reading the appropriate data (pressure and/or wind stress, or wind velocity) and
processing if required (i.e., convert wind velocity components to wind stress)

3. Interpolating the data values to the specified ADCIRC grid
4. Formatting the data as required for an ADCIRC fort.22 file (see Appendix I)
5. Returning the formatted data for the specified date/time to the driver via standard

output

b. Creation of a New Reader

An application programming interface (API) was created to facilitate the creation of new
data readers. There are three requirements that must be followed in order for a data
reader to work:

1. The plug-in must be written or contained within a valid Perl file. Note that Fortran or

C code can easily be incorporated into a Perl file to facilitate the actual reading of the
data files as illustrated in the reader, navo_gmt.pm. Additionally, standalone, binary
executable programs can be invoked in any of several ways by Perl.

2. The Perl file must implement the following functions (detailed descriptions are
contained in Appendix IV):

3. new(string readeropts) – initializes the reader
4. print_info(void) – prints reader information
5. get_record(datestring “YYYYMMDDHH”) – retrieves data record based on the

date/hour timestamp
6. finalize(void) – performs any final tasks before finishing
7. The reader must return the final data to the driver via standard out

Since the navo_gmt.pm reader is already a working reader, it is recommended that the file
navo_gmt.pm be used as a basis for creating new reader modules unless the data read
procedures are dramatically different. The navo_gmt.pm reader demonstrates how a

 - 13 -

reader module is to:

1. Handle initialization
2. Compile source code if needed
3. Look for data files
4. Interact with the source code executable if compiled
5. Return data to the driver

c. Explanation of the Fortran Source Code

The driver, makef22.pl, and the reader, e.g., navo_gmt.pm, are simply wrappers around a
Fortran program that creates one fort.22 record each time it is called. Because of this, the
Fortran code, which contains all of the data reads and data processing required for the
fort.22 file, can be compiled and used external to makef22.pl for other applications if so
desired. Should one wish to execute the Fortran program outside of the makef22.pl
framework, the user must manually handle details that makef22.pl and the reader handle
automatically. These details include:

1. If used, the data file for the desired date/hour containing the U-component of the
wind velocity (or stress if used), must be copied to the current working directory
(CWD) as a fort.31 file.

2. If used, the data file for the desired date/hour containing the V-component of the
wind velocity (or stress if used), must be copied to the CWD as a fort.32 file.

3. If used, the data file for the desired date/hour containing the pressure data must be
copied to the CWD as a fort.33 file.

4. An ADCIRC grid file (fort.14) containing the FE mesh that the data is to be
interpolated to must be copied into the CWD.

Additionally, when the Fortran program is executed, it requires nine values via standard
input. The user will need to manually enter in the values at the start of the program, or
enter them in an ASCII text file and use input redirection to provide the values to the
program. An example of input redirection is as follows:

gmt2f22_navo_gmt < infile

The input values are contained in the file named infile, each on a separate line in the
order of input. These values, in order with the type of data expected, are as follows:

1. IMAX

 Number of time records per file; NAVO GMT netCDF files contain a single time
record per file, so navo_gmt.pm assumes “1”

2. Use Stress Data Instead of Wind Velocity?
 “1” (yes), use pre-calculated wind stress data; “0” (no) will calculate wind stress
from the wind velocity data

3. What record number?
 Enter an integer for which record is being written; the first two records of the fort.22
file are written in a different format, and this value tells the reader which format to
use.

 - 14 -

4. DATE in YYYYMMDD Format
 Date for which this data file is valid

5. HOUR in HH Format
 Hour of DATE for which this data file is valid.

6. Use Pressure?
 “1” (yes), a pressure data file is read; “0” (no) pressure values are set to 0.0.

7. Pressure File Exists?
 “1” (yes), this flag tells the reader the pressure file exists; “0” (no), pressure is set to
0.0 at all points.

8. U-Component (wind or stress) File Exists?
 “1” (yes), this flag tells the reader the u-component wind file exists; “0” (no), the u-
component wind file is set to 0.0 at all points.

9. V-Component (wind or stress) File Exists?
 “1” (yes), this flag tells the reader the v-component wind file exists; “0” (no), the
v-component wind file is set to 0.0 at all points.

Because makef22.pl and the data reader pass values via standard output, the question
prompts written to the screen are suppressed (i.e. commented out) in the Fortran program.
It may be more helpful for the user to uncomment the question prompts requesting
standard input when the program is run in standalone mode.

A Makefile and two accompanying files also are provided to enable the user to create a
standalone, binary executable program. Details for creating a standalone, binary
executable program are provided in §1e.

4. The NAVO GMT Wind Reader, navo_gmt.pm

a. Details

The makef22 reader plug-in for the GMT netCDF data file format used by
NAVOCEANO is called navo_gmt.pm, and is a Perl file that serves as a wrapper around
a data reader written in Fortran 90. The Fortran 90 code for this reader is located at the
end of the file, navo_gmt.pm, after the “_DATA_” section. While the actual reading of
the data is handled by the Fortran 90 code, the wrapper handles the rest of the processing
details such as compiling of the Fortran 90 code (done once at the start of each execution)
if a binary executable is not specified, locating the requested data files, and calling the
Fortran 90 data reader executable (or user-specified binary executable) to read each
date/hour of data that is requested. The Perl wrapper also tracks the number of files
returned, and manages the proper formatting of the data for the fort.22. Please note that
since the NAVO GMT netCDF file contains a single time step of data per file,
navo_gmt.pm tracks the number of files read. It assumes that there will be a single time
step of data per file, and it uses this method to determine the formatting. (See Appendix I
for the format of the fort.22 file)

The Fortran 90 executable is designed to read specified data files for pressure or wind,
compute wind stress if wind velocity fields are used, and interpolate the resulting values
to the ADCIRC mesh contained in the fort.14 file. The processed data is then printed to

 - 15 -

standard output. The Perl wrapper captures this output, and redirects it to the driver,
makef22.pl. In turn, the makef22.pl driver directs the data to its standard output where
the user redirects the data to be written to an ADCIRC fort.22 file. It is important to note
that the Fortran 90 code contained in navo_gmt.pm serves as a standalone Fortran source
file, compiled using any Fortran 90 compiler, and the resulting executable can be used
alone to read and process the data. The wrapper merely takes care of the tedious task of
running the Fortran 90 executable for each time increment needed to complete specified
the time series of data.

The driver, makef22.pl, is designed to pass user-supplied options to the reader. These
options are read from the makef22.pl.in file (see Table 1, §2b). Since these options can
potentially change significantly from reader to reader, makef22.pl treats them as a string
passed through the “readeropts” parameter. This string is then passed to the reader
(e.g., navo_gmt.pm) when it is initialized.

The reader used for NAVO's GMT wind data requires certain flags as detailed in Table 2.
Note that the reader is built for the makef22 utility, thus it is not designed to be used
outside of this context.

Table 2. Flag Specifications for the Data Reader, navo_gmt.pm

Flag Req Description Valid values

-O [N] OPTIONAL: Data specification
for creation of the fort.22 file

P – pressure data only
PS – pressure and pre-calculated wind
stress (from a file)
W – wind velocity data only (wind stress
will be computed using Garratt, 1977)
S – pre-calculated wind stress only (from a
file)
PW – (default) pressure and wind velocity
data (wind stress will be computed using
Garratt, 1977)

-datadir [N] OPTIONAL: Allows directory
containing NAVO GMT data to
be specified at run time.

Any valid Unix file path.

-domain Y Geographical domain name
associated with data

Domain values are defined within the
reader. See §4b for more details. A listing
of currently supported domains can be seen
in Appendix V.

-arch [N] OPTIONAL: Computer
architecture specification and
associated Fortran compiler
information; passed onto reader as
an option flag of the same name.
If set, the specified value will
override the auto-detected one.
Passed in by makef22.pl

Architecture types as defined internally
inside the reader. See §4c for specific
details. This option is currently
unsupported. Passed by makef22.pl

 - 16 -

Flag Req Description Valid values

-f14 Y ADCIRC mesh onto which data is
interpolated. Passed in by
makef22.pl

Any valid Unix file path to a valid
ADCIRC mesh file (fort.14). Passed by
makef22.pl

-help/-? [N] OPTIONAL: Returns help
information, then exits

N/A

b. Adding a New Domain to navo_gmt.pm
Domain information is stored locally in the reader, navo_gmt.pm, using a record structure
that facilitates the addition of new records. There are several fields required to describe
the data: an identifying reference name, the physical location, file naming convention,
and dimensional parameters specific to the data domain. Many of these parameters are
used to create the input file name based on the date, time, domain, and parameter of
interest.

Information for each of the supported domains is stored in the subroutine
“get_domain_info”, found in navo_gmt.pm. The record structure has the following
form in sub get_domain_info:

my %DOMAINS = (
 # Record 1
 DOMAIN1 => {
 ABBREV => "CENT_AM",
 COMMENT => "Gridded Central America kept at NAVO - production
settings",
 NUMTIMEREC_DEFAULT => '1',
 WLATMIN => '0.0', # south
 WLATMAX => '32.0', # north
 WLONMIN => '-120.0' ,# west
 WLONMAX => '-60.0', # east
 DATA_ROOTS => "",
 SUFFIX => "COAMPS_CENT_AM-fcst_ops-cent_am_nest2_appl-",
 PRESSURE => "pres-msl-0.000000-",
 U_WIND => "wnd_ucmp-ht_sfc-10.000000-",
 U_STRESS => "wnd_strs_ucmp-surface-0.000000-",
 V_WIND => "wnd_vcmp-ht_sfc-10.000000-",
 V_STRESS => "wnd_strs_vcmp-surface-0.000000-",
 TYPE => "RAW",
 }, # end Record 1
 # Record 2
 DOMAIN2 => {
 ...
 },# end Record 2
 # Record 3
 DOMAIN3 => {
 ...
 },
);

Table 3 outlines the fields defined within the domain record listed above. The NAVO
GMT data files are self describing by virtue of their netCDF format thus many of the
fields specified in the domain record are unnecessary and not used. Also, some domains

 - 17 -

present in the Perl source code may not have all of the fields shown above. The domain
record attributes are shown as an example of how to include information for data sources
that do not contain self-descriptive data like the GMT netCDF files. Please note that the
Fortran 90 reader is specifically designed for the GMT netCDF files, and the use of
differently formatted data will require modification to the Fortran 90 reader within
navo_gmt.pm or the Fortran program, gmt2f22_navo_gmt.F.

The most important fields within the domain record for the navo_gmt.pm reader are ones
that define the name and location of the data files. Note that all records defining a
particular data domain must be contained within the “%DOMAINS(...)” record
structure.

Table 3. Description of the Domain Records Within navo_gmt.pm

Key Req Description Valid Value

ABBREV Y Data domain name identical to
that specified by the “-domain”
flag in navo_gmt.pm

Any alphanumeric string without
spaces

COMMENT [N] OPTIONAL: Description of the
data, not used

Any string of characters

NPTAU [N] OPTIONAL: Number of time
intervals found in pressure data
files, not used

Integer

NWTAU [N] OPTIONAL: Number of time
intervals found in wind
velocity/stress data files, not used

Integer

LAT [N] OPTIONAL: E-W dimension of
data grid points in latitude, not
used

Integer

LONG [N] OPTIONAL: N-S dimension of
data grid points in longitude, not
used

Integer

WLATMIN [N] OPTIONAL: Minimum latitude of
data domain, not used

Float (deg)

WLATMAX [N] OPTIONAL: Maximum latitude
of data domain, not used

Float (deg)

WLONMIN [N] OPTIONAL: Minimum longitude
of data domain, not used

Float (deg)

WLONMAX [N] OPTIONAL: Maximum longitude
of data domain, not used

Float (deg)

WLATINC [N] OPTIONAL: Latitudinal
resolution, not used

Float (deg)

 - 18 -

Key Req Description Valid Value

WLONINC [N] OPTIONAL: Longitudinal
resolution, not used

Float (deg)

WTIMINC [N] Time record increment, not used Integer (seconds)

DATA_ROOTS Y Search directories for data files;
searched in order of entry; first
match will be the data source
used.

Valid file path (may be empty)

SUFFIX Y File naming convention; assumed
common to all data file names in
the domain

Alphanumeric string, no spaces

PRESSURE Y String used to identify pressure
data files

Alphanumeric string, no spaces

U_WIND Y String used to identify U-
component of wind velocity data

Alphanumeric string, no spaces

U_STRESS Y String used to identify U-
component of wind stress data

Alphanumeric string, no spaces

V_WIND Y String used to identify V-
component of wind velocity data

Alphanumeric string, no spaces

V_STRESS Y String used to identify V-
component of wind stress data

Alphanumeric string, no spaces

TYPE [N] OPTIONAL: Identifies data
format type, not used

Any alphanumeric string, no
spaces

c. Adding New Compilers and Architectures to navo_gmt.pm
Some modifications to the data reader may be required to add compatibility for new
computer architectures and their Fortran compilers. Additionally, the makefile (Makefile)
and the compiler flag file, cmplrflags.mk, for the standalone binary executable program
also may require modification to add compatibility with new architectures or compilers.
The data reader obtains computer architecture and compiler information from a function
called “set_compiler_info”. The purpose of this function is to obtain information on
the computer architecture and Fortran compiler associated with the computer platform
specification invoked by the data reader using the reader's “arch” parameter. The
information for each entry is stored in a data structure that is easily extended. Both the
standalone reader and the embedded reader have been ported successfully to two
computer platforms, the IBM SP4 (romulus), and an I686-Linux machine. These
architectures use the Fortran 90 compilers “xlf90_r” and “pgf90,” respectively, to
compile the Fortran 90 code used to read the netCDF GMT files. The record structure in
“set_compiler_info” has the following format:

 - 19 -

 @COMPILER_LIST = (
 # Record 1
 [{
 ARCH => "",
 COMPILER => "",
 FLAGS => "",
 ENVARS => {ENVAR1=>'value',ENVAR2=>'value2'},
 FORMAT => '%c %f %s -o %x',
 }
],
 # Record 2
 [{
 ARCH => "",
 COMPILER => "",
 FLAGS => "",
 ENVARS => {ENVAR1=>'value',ENVAR2=>'value2'},
 FORMAT => '%c %f %s -o %x',
 }
],
)

All records must be contained within the “@COMPILER_LIST(...)” array whose keys
are described in Table 4.

NOTE: Multiple architecture names may be specified under the “ARCH” key in a
comma delimited list. This is to allow for the same settings to be reused, and is
especially helpful for the automatic architecture detection since some platforms use the
same settings, but the name derived from the detection routines may differ slightly.

Table 4. Description of the Compiler_List Flags in navo_gmt.pm

Key Req Description Valid Values

ARCH Y Specifies the identifier used to
name this architectural
configuration. Passed to the
reader using the “-arch” flag.

Alphanumeric string without
spaces. Multiple names may be
listed here, but must be separated
by a comma. Example:
“archtype1, archtype2, etc…”

COMPILER Y Specifies the compiler used to
create an executable binary. Any
Fortran compiler can be used as
long as it has a command line
interface.

The full path of the compiler
being used to compile the Fortran
code located at the end of
navo_gmt.pm under “_DATA_”.

FLAGS Y Specifies any compile time flags ,
libraries, linked files, etc.

Standard flags specifying library
paths (-L), include directories (-I),
libraries (-l), object files/source
files to link to, etc. These flags
are compiler specific.

 - 20 -

Key Req Description Valid Values

ENVARS Y For dynamic specification of
environmental variables that are
required at run time. For
example, some compilers require
an environmental flag to be set at
compilation to indicate if data
read/writes are big endian or little
endian.

An anonymous hash must be
specified here. Example:
{
 ENVAR1=>'value',
 ENVAR2=>'value2'
},

Creates environmental variables
accessible to the compilation
process named “ENVAR1” and
“ENVAR2” with their respective
values.

FORMAT Y Specify format for the compile
command. This allows most any
compiler with a command line
interface to be used.

The most common compilers can
be specified using the format:

“%c %f %s -o %x”

%c = compiler
%s = source file
%f = flags
%x = executable

The best strategy to use when adding new compiler information is to determine how to
compile the Fortran code as a standalone file, then use the insight gained on the
specification of compiler options to fill in the record for the new compiler/architecture. If
the standalone binary executable program is to be used, then modifications to the Perl
source code described here would be optional. The modifications would then be applied
to cmplrflags.mk and Makefile. For further assistance modifying these files, contact the
authors.

5. The NRL COAMPS and NOGAPS Readers, nrl_coamps.pm and

nrl_nogaps.pm

a. Details

 The makef22 reader plug-ins for the IEEE binary data file format used by NRL are called
nrl_coamps.pm, for data from the Coupled Ocean/Atmosphere Mesoscale Prediction
System (COAMPS®), and nrl_nogaps.pm, for data from the Navy Operational Global
Atmospheric Prediction System (NOGAPS). These are Perl files that serve as wrappers
around a Fortran 90 data reformatting tool, nrl_bin2xyz, the GMT ASCII text-to-netCDF
reformatting tool, xyz2grd, and the previously described data reader written in Fortran 90
(see §4). The Fortran 90 code for this reader is located at the end of either Perl file, after
the “_DATA_” section. While the actual reading of the data is handled by the Fortran 90
code, each wrapper handles the rest of the processing details such as compiling of the
Fortran 90 code (done once at the start of each execution if a binary executable is not
specified), locating the requested data files, and calling the Fortran 90 data re-formatter
executable to reformat each data file that is requested. Each Perl wrapper also invokes

 - 21 -

xyz2grd to reformat the data at each time step into netCDF format for the reader program,
tracks the number of records returned, and manages the proper formatting of the data for
the fort.22.

Note that since the NRL model output files contain multiple time steps of data per file,
the readers track the date/time groups (DTGs) of the files that have been reformatted to
ASCII text. The re-formatter creates a separate output file for each time step and
parameter (i.e., atmospheric pressure and U- and V-components of wind speed or stress).
The DTG corresponding to each model time step contains, respectively, the year, month,
day, and hour. Each ASCII text output file name has the DTG embedded in it, so that the
data for the requested date and time are correctly identified using the file name. The data
for the current date and time are then converted into GMT netCDF format using the GMT
reformatter (xyz2grd), and then the self-contained and automatically compiled reader or
the user-supplied binary reader executable (gmt2f22_navo_gmt or equivalent) reads the
netCDF files and returns the formatted output. The readers assume that there will be a
single time step of data per converted file, and it uses this method to determine the
formatting. (See Appendix I for the format of the fort.22 file.)

If the user chooses a time increment that differs from the atmospheric data time
increment, data at user time steps for which no atmospheric data exists are created using
simple linear interpolation between the atmospheric data time steps which bracket the
requested user time steps. If, for example, the user chooses to obtain forcing fields every
hour but the model has output every three hours, then the readers interpolate to each hour
that falls between the atmospheric data times.

The NRL COAMPS and NOGAPS atmospheric model repositories contain files archived
from the 00Z and 12Z model runs. For each of these files, the analysis time (a “tau,” or
model time step, of 0 hr) corresponds to the model run time, and the forecasts (tau > 0)
correspond to that number of hours past the model run time. If the user chooses a start
time other than 00 or 12 hr, the readers determine the most recent model run time and
start the data extraction from the corresponding output files. If, for example, the user
chooses a starting DTG of 2006090103 (corresponding to September 1, 2006, at 03 hr),
the most recent model run time would be 2006090100 (same date at 00 hr), and the
model output files with that time stamp in the file names would be used to extract the
data into separate ASCII text files for each time step. The user-supplied start time is used
once the correct model output files are determined and the data are extracted and
reformatted.

The Fortran 90 reader executable is designed to read specified data files for pressure or
wind, compute wind stress if wind velocity fields are used, and interpolate the resulting
values to the ADCIRC mesh contained in the fort.14 file. The processed data is then
printed to standard output. The Perl wrapper captures this output, and redirects it to the
driver, makef22.pl. In turn, the makef22.pl driver directs the data to its standard output
where the user redirects the data to be written to an ADCIRC fort.22 file. It is important
to note that the Fortran 90 code contained in nrl_coamps.pm or nrl_nogaps.pm serves as
a standalone Fortran source file, compiled using a Fortran 90 compiler, and the resulting
executable can be used alone to read and process the data. The wrapper merely takes
care of the tedious task of running the Fortran 90 executable for each time increment

 - 22 -

needed to complete specified the time series of data.

As of this writing, the Fortran code in these Perl modules is untested. The standalone,
binary executable reader, gmt2f22_navo_gmt, has been used for initial development and
testing.

The driver, makef22.pl, is designed to pass separate options to the reader. Since these
options can potentially change significantly from reader to reader, makef22.pl treats them
as a string passed through the “readeropts” parameter. This string is then passed to the
reader (e.g., nrl_coamps.pm) when it is initialized.

The readers used for NRL model wind fields require certain options, contained in the
makef22.pl.in file, as detailed in Table 5. Note that the readers are built for the makef22
utility, and thus are not designed to be used outside of this context.

Table 5. Flag Specifications for the Data Readers, nrl_coamps.pm and nrl_nogaps.pm

Flag Req Description Valid values

-O [N] OPTIONAL: Data specification
for creation of the fort.22 file

P – pressure data only
PS – pressure and pre-calculated wind
stress (from a file)
W – wind velocity data only (wind stress
will be computed using Garratt, 1977)
S – pre-calculated wind stress only (from a
file)
PW – (default) pressure and wind velocity
data (wind stress will be computed using
Garratt, 1977)

-datadir [N] OPTIONAL: Allows directory
containing NRL COAMPS or
NOGAPS data to be specified at
run time.

Any valid Unix file path.

-domain Y Geographical domain name
associated with data

Domain values are defined within the
reader. See §5b for more details. A listing
of currently supported domains can be seen
in Appendix V.

-arch [N] OPTIONAL: Computer
architecture specification and
associated Fortran compiler
information; passed onto reader as
an option flag of the same name.
If set, the specified value will
override the auto-detected one.
Passed in by makef22.pl

Architecture types as defined internally
inside the reader. See §5c for specific
details. This option is not currently
supported. Passed by makef22.pl

-f14 Y ADCIRC mesh onto which data is
interpolated. Passed in by
makef22.pl

Any valid Unix file path to a valid
ADCIRC mesh file (fort.14). Passed by
makef22.pl

 - 23 -

Flag Req Description Valid values

-overwrite Y Indicates whether data at forecast
times are to be overwritten by the
next available model output file

0 – do not overwrite data; use the current
model output file for the entire period

1 – overwrite data; use the next available
model output file to provide data starting at
the next analysis hour (00 or 12 hr)

-help/-? [N] OPTIONAL: Returns help
information, then exits

N/A

b. Adding New Domains to nrl_coamps.pm and nrl_nogaps.pm

Domain information is stored locally in the readers using a record structure that is similar
to that of navo_gmt.pm. There are several fields required to describe the data: an
identifying reference name, the physical location, file naming convention, and
dimensional parameters specific to the data domain. Many of these parameters are used
to create the input file name based on the date, time, domain, and parameter of interest.

Information for each of the supported domains is stored in the subroutine,
“get_domain_info.” The record structure has the following form in sub
get_domain_info:

my %DOMAINS = (
 # Record 1
 CEN_AMERICA => {
 ABBREV => "cen_america",
 SUFFIX => "cen_amer",
 COMMENT => "",
 NPTAU => '3', # Tau values (hr)
 NSTAU => '3',
 NWTAU => '3',
 NUM_PTAU => '17', # Number of tau values
 NUM_STAU => '17',
 NUM_WTAU => '17',
 LAT => '161',
 LONG => '301',
 WLATMIN => '0.0', #south
 WLATMAX => '32.0', #north
 WLONMIN => '-120.0', #west
 WLONMAX => '-60.0', #east
 WLATINC => '0.2',
 WLONINC => '0.2',
 WTIMINC => '10800',
 DATA_ROOTS => "/u/NOGAPS/COAMPSg/cen_amer",
 PRESSURE => "pres",
 U_WIND => "wnd_ucmp",
 U_STRESS => "wnd_strs_ucmp",
 V_WIND => "wnd_vcmp",
 V_STRESS => "wnd_strs_ucmp",
 # TYPE is defined above in the @ARCHIVE_TYPE array
 TYPE => "RAW", }, # end Record 1
 # Record 2
 DOMAIN2 => {
 ...
 },# end Record 2
 # Record 3

 - 24 -

 DOMAIN3 => {
 ...
 },
);

Table 6 outlines the fields defined within the domain record listed above. The NRL
binary files have no geographical information stored internally. The binary file re-
formatter and the GMT netCDF re-formatter each require several of the parameters,
which the reader module provides during execution. Also, some domains present in the
Perl source code may not have all of the fields shown above. The domain record
attributes are shown as an example of how to include information for data sources that do
not contain self-descriptive data like the netCDF files. Please note that the Fortran 90
reader is specifically designed for the netCDF files, and the use of differently formatted
data will require modification to the Fortran 90 reader within nrl_coamps.pm,
nrl_nogaps.pm, or to the source code in gmt2f22_navo_gmt.F.

The most important fields within the domain record for the readers are ones that define
the name and location of the data files. Note that all records defining a particular data
domain must be contained within the “%DOMAINS(...)” record structure.

Table 6. Description of the Domain Records Within nrl_coamps.pm and
nrl_nogaps.pm

Key Req Description Valid Value

ABBREV Y Data domain name identical to
that specified by the “-domain”
flag in nrl_coamps.pm or
nrl_nogaps.pm and required by
makef22.pl.in

Any alphanumeric string without
spaces

COMMENT N Description of the data, or list of
model analysis and forecast times
if non-uniform times are used

Any string of characters, or array
of integers

NPTAU Y Time interval of pressure data
files

Integer

NSTAU Y Time interval of wind stress data
files

Integer

NWTAU Y Time interval of wind velocity
data files

Integer

NUM_PTAU Y Number of time intervals found in
pressure data files

Integer

NUM_STAU Y Number of time intervals found in
wind stress data files

Integer

NUM_WTAU Y Number of time intervals found in
wind velocity data files

Integer

 - 25 -

Key Req Description Valid Value

LAT [N] OPTIONAL: E-W dimension of
data grid points in latitude, not
used

Integer

LONG [N] OPTIONAL: N-S dimension of
data grid points in longitude, not
used

Integer

WLATMIN [N] OPTIONAL: Minimum latitude of
data domain, not used

Float (deg)

WLATMAX [N] OPTIONAL: Maximum latitude
of data domain, not used

Float (deg)

WLONMIN [N] OPTIONAL: Minimum longitude
of data domain, not used

Float (deg)

WLONMAX [N] OPTIONAL: Maximum longitude
of data domain, not used

Float (deg)

WLATINC [N] OPTIONAL: Latitudinal
resolution, not used

Float (deg)

WLONINC [N] OPTIONAL: Longitudinal
resolution, not used

Float (deg)

WTIMINC [N] OPTIONAL: Time record
increment, not used

Integer (seconds)

DATA_ROOTS Y Search directories for data files;
searched in order of entry; first
match will be the data source
used.

Valid file path (may be empty)

SUFFIX Y File naming convention; assumed
common to all data file names in
the domain

Alphanumeric string, no spaces

PRESSURE Y String used to identify pressure
data files

Alphanumeric string, no spaces

U_WIND Y String used to identify U-
component of wind velocity data

Alphanumeric string, no spaces

U_STRESS Y String used to identify U-
component of wind stress data

Alphanumeric string, no spaces

V_WIND Y String used to identify V-
component of wind velocity data

Alphanumeric string, no spaces

V_STRESS Y String used to identify V-
component of wind stress data

Alphanumeric string, no spaces

 - 26 -

Key Req Description Valid Value

TYPE [N] OPTIONAL: Identifies data
format type, not used

Any alphanumeric string, no
spaces

c. Adding New Compilers and Architectures
Some modifications to the data readers may be required to add compatibility for new
computer architectures and their Fortran compilers. Additionally, the makefile (Makefile)
and the compiler flag file, cmplrflags.mk, for the standalone binary executable program
also may require modification to add compatibility with new architectures or compilers.
Refer to §5c for details. Note however this option is not currently supported. As
previously mentioned, development and testing of these readers was performed using the
binary executable reader option with gmt2f22_navo_gmt. This is the recommended
option to use for normal fort.22 data file generation.

6. Fort.22 Processing

a. Overview

Processing an existing fort.22 data file is performed by the standalone, Fortran 90
program, read_expand_ramp_f22_v3.F or the binary executable program,
read_expand_ramp_f22_v3. One option within the processing program is the expansion
of the number of records prior to the beginning existing fort.22 data file using a user-
specified number of zero records (i.e., the wind velocity or stress U- and V-components
are zero, and the atmospheric pressure is a "background" [i.e., ambient] value, such as 10
m2/s2). Another option is to expand the number of records at the beginning of the
existing fort.22 data file by making repeated copies of the initial time record. The
processing program also controls the ramping of the data from zero or background values
to full scale values over a user-specified time interval that is equivalent to some multiple
of time steps. Typically ramping is applied over a series of repeated records based on
copies of the initial data record in the original fort.22 file. The processing program also
has a feature by which one can extract a user-specified number of time steps from the
original data, starting from the beginning of the data. Through extending and ramping,
the original data can be expanded by the number of time steps corresponding to the
specified spin-up period of an ADCIRC model run.

b. Details

A copy of the program, or a symbolic link to it, must reside in the user's CWD. The input
parameters for the program, described in Table 1 in §2b, are provided in the input
parameter file, makef22.pl.in. An example of this file is presented in Appendix II. The
input data file (or symbolic link) must be named fort.22, and an ADCIRC grid file (or
link), named fort.14, also must be present in the CWD. The output of the program is a
fort.22-format file named fort.221. The user should know the number of time steps in the
input fort.22 file.

 - 27 -

The program is interactive, but user input can be supplied using an input redirection file.
An example of this method is as follows:

read_expand_ramp_f22_v3 < ramp.in

where ramp.in is the name of the input file containing the required parameters.
Alternatively, the Unix “here document” construct can be used, as shown in the following
example:

read_expand_ramp_f22_v3 << TheEnd
Param1
Param2

 ⋮
TheEnd

where the individual parameters (represented by Param1, Param2, and so on) are entered
in the correct order, and the text string TheEnd is a flag indicating the end of input. The
makef22.pl driver invokes the program using a Perl named pipe scheme, in the same
manner as the data reader is invoked.

Each execution of the program produces a log file containing the local time and date of
the run and a summary of the user inputs and resulting outputs for the fort.221 file. The
name of the log file is of the form fort22ramp_YYYYMMDDHHMMSS.log where
YYYYMMDDHHMMSS is the current system date and time at the start of program
execution. In particular, YYYY is the 4-digit year, MM is the 2-digit month number, DD is
the day of the month, HH is the hour in 24-hour time, MM is the minutes, and SS is the
seconds.

c. Input Parameters

The processing program parameters listed in Table 1 are described below. If the
read_expand_ramp_f22_v3 program is run interactively, the program name is entered at
the command prompt, and the user is prompted for the five inputs as follows:

Enter the number of records to read from the original file:

This is the number of time steps of the original fort.22 file to use (norig). The user
should know how many time steps are in the input file. Typically, the entire file would
be read. If the number of records of the original file is unknown, a large number (e.g.,
999) should be entered to read the entire file. If this is done, the total number of records
to be written, as recorded in the log file and written to standard output, probably will be
incorrect. (See the note below for further information on this topic.) As that number is
merely for informational purposes, an erroneous value will not affect program operation
or output quality.

How many background ("zero") records needed?

This is the number of zero-padded time steps that are prepended to the output file
(nback). A reasonable number of zero-padded time steps, say, 15 days' worth, may be

 - 28 -

desirable. This number depends on the length of the ADCIRC run and how much spin-up
is desired. A value of zero can be specified if no zero-padding is desired.

How many copies of the 1st record needed?

This is the number of copies of the first original data record (i.e., time step) (ncopy). It is
recommended that as many copies be made as are needed for the length of the ramped
data. This allows the data values to gradually increase from zero (or background) to the
full scale of the first record over a period of several hours, up to as much as one day. If
no ramping is desired, ncopy can be greater than zero to extend the data that many time
steps, or it can be zero to not extend the data (e.g., to simply zero-pad the beginning of
the data set). If ramping is desired and ncopy is set to zero, the ramping function will be
applied to either the zero-padded values (if any) and/or the original data, depending on
the time step at which ramping starts and the interval over which ramping is applied.

How many ramped records needed?

This is the number of time steps over which ramping will be performed (nramp). As with
the previous input, this number should cover up to 1 day, or possibly more, as model run
particulars require. A value of zero can be specified if no ramping is desired.

Ramped records will start at which record?

This is the time step at which the ramping will commence (nstart). If ramping is not
desired (i.e., nramp=0), this prompt is not issued. The value of nstart, along with the
others, should be determined in advance so that the beginning of the ramped data starts
immediately after the zero-padded data (if any), and the end of the ramped data coincides
with the end of the model spin-up period. Contact the primary author (Blain) for further
details.

To obtain an estimate of the number of records in a fort.22 file, one can use the Unix tail
and grep commands. First, enter:

tail fort.22

to see the number of elements for the last record (the 1st column on the last line of
output). Then, to obtain the number of records, enter:

grep -c ' NNN ' fort.22

where NNN is the number of elements (e.g., 121) displayed in the last line of the output of
the tail command. The spaces inside the quotation marks are needed to obtain a correct
count.

7. Reference

Garratt, J. R., 1977. Review of drag coefficients over oceans and continents, Monthly
Weather Review, 105, 915-929.

 - 29 -

APPENDIX I. ADCIRC fort.22 File Information

Fort.22 File Format (source: adcirc.org):

The first two records are written using an implicit do-loop (examples from the Fortran 90
code found in the data reader navo_gmt.pm):

write(6,*) (i,wsx(i,k),wsy(i,k),pr(i,k),i=1,np)

Example output format (first or second record):

 1 1.1568529E-05 3.5584922E-05 100431.9 2
 1.1568529E-05 3.5584922E-05 100431.9 3 1.1568529E-
05
 3.5584922E-05 100431.9 4 1.1568529E-05 3.5584922E-
05
 100431.9 5 1.1568529E-05 3.5584922E-05 100431.9
 6 1.1568529E-05 3.5584922E-05 100431.9 7
 1.1568529E-05 3.5584922E-05 100431.9 8 1.1568529E-
05
 3.5584922E-05 100431.9 9 1.1568529E-05 3.5584922E-
05
 100431.9 10 1.1568529E-05 3.5584922E-05 100431.9

The remaining records are written using an explicit do-loop:

do i=1,np
 write(6,*) i,wsx(i,k),wsy(i,k),pr(i,k)
enddo

Example output format (third record and higher):

 1 -1.4711546E-05 3.2182335E-05 102322.4
 2 -1.4711546E-05 3.2182335E-05 102322.4
 3 -1.4711546E-05 3.2182335E-05 102322.4
 4 -1.4711546E-05 3.2182335E-05 102322.4
 5 -1.4711546E-05 3.2182335E-05 102322.4
 6 -1.4711546E-05 3.2182335E-05 102322.4
 7 -1.4711546E-05 3.2182335E-05 102322.4
 8 -1.4711546E-05 3.2182335E-05 102322.4
 9 -1.4711546E-05 3.2182335E-05 102322.4
 10 -1.4711546E-05 3.2182335E-05 102322.4

where
np is the number of nodes in the mesh
wsx, wsy are the x,y wind stress components at node i, time record k
pr is the surface pressure at node i, time record k

Description of Wind and Pressure Data Read in from UNIT 22

The input variables are described in Table Ia and are listed below by the line sequence

 - 30 -

within the file:

IF(NWS.EQ.1) NHG,WSX2(NHG),WSY2(NHG), PR2(NHG), NHG=1,NP
IF(NWS.EQ.2) NHG,WSX2(NHG),WSY2(NHG), PR2(NHG), NHG=1,NP
IF(NWS.EQ.3)
IWTIME
WSPEED(I,J)
WDIR(I,J)

IF(NWS.EQ.4)
NHG, WSX2(NHG),WSY2(NHG), PR2(NHG)

Table Ia. Description of the Variable Names Associated with the ADCIRC fort.22 File

Variable Type Description
NWS Integer Wind stress and surface pressure option parameter in fort.15 (See

below table for further notes).

NHG Integer Node number

PR2(NHG) Real If NWS = 1 or 2, Applied atmospheric pressure at the free surface
(N/m2 = PA) divided by the reference density of water divided
by gravity.

If NWS = 4, Applied atmospheric pressure at the free surface
(millibars).

WSX2(NHG) Real If NWS = 1, or 2, Applied horizontal free surface stress in the X-
direction divided by the reference density of water at the node
(should be units (length/time)2).

If NWS = 4, Applied horizontal wind velocity (knots) blowing
toward the + X-direction.

WSY2(NHG) Real If NWS = 1or 2, Applied horizontal free surface stress in the Y-
direction divided by the reference density of water at the node
(should be units (length/time)2).
If NWS = 4, Applied horizontal wind velocity (knots) blowing
toward the + Y-direction.

IWTIME Integer If NWS = 3, Time of the wind field in the following integer
format: YEAR*1000000 + MONTH*10000 + DAY*100 + HR.

WSPEED(I,J) Real If NWS = 3, Wind speed in meter/sec.
WDIR(I,J) Real If NWS = 3, Direction wind blows from in degrees CW from

north.

Table Ib describes some notes on using the ADCIRC wind forcing specification
parameter, NWS. Details on NWS are provided following the table.

Table Ib. Notes on the Use of the Wind Forcing Specification Parameter, NWS

Variable Type Description
NWS Integer Wind stress and surface pressure option parameter.

 = 0 No wind stress or surface pressure is applied.
 > 0 Spatially varying wind stress and surface pressure are applied.

 = 1 Wind stress and pressure are read in at all grid nodes every time step from
UNIT 22.

 - 31 -

 = 2 Wind stress and pressure are read from the UNIT 22 file at all ADCIRC
grid nodes at a wind time interval that does not equal the model time step.
Interpolation in time is used to synchronize the wind and pressure
information with the model time step. The wind time interval must be
specified later in the UNIT 15 file.

 = 3 Wind velocity is read in from an outdated U.S. Navy Fleet Numeric
format wind file on UNIT 22. This data is interpolated in space onto the
ADCIRC grid. Interpolation in time is used to synchronize the wind
information with the model time step. Garret's formula is used to compute
wind stress from velocity. Several parameters describing the U.S. Navy
Fleet Numeric wind file must be specified later in the UNIT 15 file.

 = 4 Wind velocity and pressure are read in at selected ADCIRC grid nodes
from a PBL/JAG format file on UNIT 22. Interpolation in time is used to
synchronize the wind information with the model time step. Garret's
formula is used to compute wind stress from velocity. The wind time
interval must be specified later in the UNIT 15 file.

 = 10 10 m high wind velocity and surface pressure are read in from NWS
AVN model MET files. These files are in binary and have been created
from a larger GRIB format file using UNPKGRB1. Each file is assumed
to contain data on a Gaussian longitude/latitude grid at a single time.
Data consecutive files are assumed to be separated by 6 hours in time.

 =11 10 m high wind velocity and surface pressure are read in from stripped
down NWS ETA-29 MET files. These files are in binary.

NWS = 1
 - The first data set is provided at TIME=STATIM+DT. Subsequent data sets are

provided at every time step.
- Data must be provided for the entire model run, otherwise the run will crash.

NWS = 2
- The first data set is provided at TIME=STATIM. Subsequent data sets are provided

every wind time interval.
- Data must be provided for the entire model run, otherwise the run will crash.
- The wind time interval must be set in the UNIT 15 file.

NWS = 3
- The first data set must be at or before the date and time listed in the UNIT 15 file as the

beginning time of the simulation.
- Data sets are provided every WTIMINC, where this parameter is the wind time interval

and is specified in the UNIT 15 file.
- Data must be provided for the entire model run, otherwise the run will crash.
- Values for NWLAT, NWLON, WTIMINC, the beginning time of the and several other

parameters must be set in the unit 15 file.
- The following transformations are preformed to put this information into usable form

for the model calculations.
WIND_STRESS = DRAG_COEFF*0.001293*WIND_VEL*WIND_SPEED
DRAG_COEFF = 0.001*(0.75+0.067*WIND_SPEED)
IF(DRAG_COEFF.GT.0.003) DRAG_COEFF=0.003

NWS = 4
- This line must have the format I8,3E13.5.
- This line is repeated for as many nodes as desired.

 - 32 -

- A line containing the # symbol in column 2 indicates new wind and pressure fields (i.e.,
values at the next time increment) begin on the following line.

- Each node that is not contained in the UNIT 22 file is assumed to have zero wind
velocity and pressure = 1013.0.

- The following transformations are preformed to put this information into usable form
for the model calculations.

WIND_VEL (M/S) = WSX2*1.04*0.5144, WSY2*1.04*0.5144
WIND_STRESS = DRAG_COEFF*0.001293*WIND_VEL*WIND_SPEED
DRAG_COEFF = 0.001*(0.75+0.067*WIND_SPEED)
IF(DRAG_COEFF.GT.0.003) DRAG_COEFF=0.003
PR2*100/GRAVITY/1000.

- The first data set is provided at TIME=STATIM. Subsequent data sets are provided
every wind time interval.

- Data must be provided for the entire model run, otherwise the run will crash.
- The wind time interval must be set in the UNIT 15 file.

 - 33 -

APPENDIX II. Input Parameter File Example

All necessary input parameters are listed in the input parameter file, makef22.pl.in. This
ASCII text file contains values for all parameters, although some may not be used during
the current execution of the program. The parameters are described in Table 1, §2b. An
example of the file is presented here. Each parameter is on a single line, including the
“readeropts” parameter. The parameter file name, the column after the “#” symbol in
the third and subsequent lines below, must be included, and must be surrounded by at
least one space.

makef22.pl.in -- Input parameter file for makef22.pl.
Custom versions of this file must use the same format.
2004011200 # start - Starting date/time (YYYYMMDDHH)
2004011400 # end - Ending date/time (YYYYMMDDHH)
6h # inc - Time increment
fort.14 # f14 - fort.14 file name
~makef22pl/readers # readerdir (*.pm direct.) [OPTIONAL]
navo_gmt # reader - Source code (Perl module, e.g., navo_gmt.pm)
gmt2f22_navo_gmt # readerbin - Binary executable rdr. Program [OPTIONAL]
-O PW -domain CENT_AM -datadir /scr/ooc # readeropts - rdr. options
i686 # arch - Architecture [OPTIONAL]
1 # ramp - Flag to perform ramping
7 # norig - Number of original time steps to read
11 # nback - Number of background records to prepend
6 # ncopy - Number of 1st original records to copy
6 # nramp - Number of time steps to apply ramping
11 # nstart - Time step at which ramping starts

In this example, the value of “ramp” is 1, so that extension and/or ramping is to be
performed on an existing fort.22 file. See §6 for details on this processing option.

 - 34 -

APPENDIX III. Details of the Date Iterator

The module responsible for stepping through a date sequence was written specifically for
applications such as makef22.pl that are meant to read/manipulate data identified by a
date-time stamp. Iterator.pm is not dependent on any non-core Perl modules which
makes it portable to any system that has Perl version 5.6 (or greater) installed.

As an aside, any application in Perl that requires iteration over a range of dates can use
this module. Its application interface is designed to be straightforward and easy to use.

Here is an example Perl application that uses the Iterator.pm module:

#!/usr/bin/perl –w # shebang line identifies interpretor for script
use strict; # Perl “strict” mode enforces strict code rules
use lib qw(./); # look in './' directory for 'use'ed modules
use Iterator qw(:All); # use Iterator(.pm) module

my $iter = Iterator->new(); # create new Iterator object
$iter->set_start('2003100800); # start date, YYYYMMDDHH required format
$iter->set_end('2d'); # end date, relative or YYYYMMDDHH date
$iter->set_increment('12h'); # date increment, use y,m,d,h or combin.
$iter->set_format('%Y%m%d%k'); # format of date string – consistent with
Unix `date` utility

Loop over date range

while ($iterator->next()) {
 # do something
 my $current_date = iter->get_current();
 print “Iteration for date $current_date\n”;
}

THAT'S IT!

Resulting Output:

Iteration for date 2003100800
Iteration for date 2003100812
Iteration for date 2003100900
Iteration for date 2003100912

Table II describes the functions used by Iterator.pm in the provided example.

Table II. Description of Functions Used by Iterator.pm

Method Req Description Valid Values

new Y Creates new instance of
iterator object

N/A

set_start Y Start date YYYYMMDDHH – this format is
required

 - 35 -

Method Req Description Valid Values

set_end Y End date; an actual date can
be specified or a relative
period of time after the start
date.

YYYYMMDDHH, or any combination and order
of:

#h – hours past start,
#d – days after start,
#m – months after start,
#y – years after start

For example, “2m3d4h” will end 2 months, 3
days, and 4 hours after the start date.

set_increment Y Time increment; the time
interval of the data records

Any combination and order of:

#h – hours,
#d – days,
#m – months,
#y – years

For example, “2m3d4h” will increment 2
months 3 days and 4 hours for each iteration.

set_format [N] OPTIONAL: Set format
using macros (see right)

%B January...December
%b Jan...Dec (same as %h)
%d padded day of month
%e day of month (no padding)
%h Jan...Dec (same as %b)
%k padded hour of day; 00-23
%l hour of day (no padding)
%m padded month; 01-12
%Y four digit year
%y two digit year; 00-99

next [N] OPTIONAL: Increases
current date by the specified
increment of time

N/A

get_current [N] OPTIONAL: Returns the
current date in the specified
format.

N/A

 - 36 -

APPENDIX IV. Plug-in Reader Application Programming Interface

The functions shown in Table IV are required in order to create a basic data reader for
makef22.pl. Other functions can be added to the reader as desired, but these four
functions are called explicitly by makef22.pl. Otherwise, a non-existent function call will
result in an error that will cause the program to terminate.

Table IV. Required Plug-in Reader Functions

Function Parameters Description

new String Initializes the reader and passes reader options defined
by the string in makef22.pl’s “readeropts”
parameter to the reader for parsing.

print_info None Prints information about the reader to the screen after
initialization.

get_record Date string of format
“YYYYMMDDHH”

Returns the fort.22 record for this date/hour.

finalize None Performs any remaining tasks after iteration through the
entire date range has been completed.

 - 37 -

APPENDIX V. Supported Domains in the Data Readers

Currently, the NAVO GMT data reader, navo_gmt.pm, supports ten geographical
domains for which the COAMPS model is executed operationally. These are listed in
alphabetical order of the alias name in Table Va. Details about the domains can be found
in §4b and Table 3.

Table Va. List of the Geographical Domains Supported by navo_gmt.pm

Domain Alias Generating Model Supported Fields

ARAB_SEA COAMPS wind, wind stress, pressure

CENT_AM COAMPS wind, wind stress, pressure

E_PAC COAMPS wind, wind stress, pressure

EUROPE COAMPS wind, wind stress, pressure

N_IND COAMPS wind, wind stress, pressure

SOUTHWEST_ASIA2 COAMPS wind, wind stress, pressure

SOUTHWEST_ASIA3 COAMPS wind, wind stress, pressure

W_ATL COAMPS wind, wind stress, pressure

W_PAC COAMPS wind, wind stress, pressure

W_PAC2 COAMPS wind, wind stress, pressure

The NRL COAMPS data reader, nrl_coamps.pm, also supports ten geographical domains
for which COAMPS model output are archived. These are listed in alphabetical order in
Table Vb. Details about the domain structure in the reader are described in §5b and Table
6.

Table Vb. List of the Geographical Domains Supported by nrl_coamps.pm

Domain Alias Generating Model Supported Fields

CEN_AMERICA COAMPS wind, wind stress, pressure

E_PAC COAMPS wind, wind stress, pressure

EUROPE2 COAMPS wind, wind stress, pressure

N_IND COAMPS wind, wind stress, pressure

N_IND2 COAMPS wind, wind stress, pressure

 - 38 -

Domain Alias Generating Model Supported Fields

SW_ASIA2 COAMPS wind, wind stress, pressure

SW_ASIA2_N3 COAMPS wind, wind stress, pressure

W_ATL COAMPS wind, wind stress, pressure

W_PAC COAMPS wind, wind stress, pressure

W_PAC2 COAMPS wind, wind stress, pressure

The NRL NOGAPS reader, nrl_nogaps.pm, supports three geographical domains for
which NOGAPS model output are archived. These are listed in alphabetical order in
Table Vc. Details about the domain structure in the reader also are described in §5b and
Table 6.

Table Vc. List of the Geographical Domains Supported by nrl_nogaps.pm

Domain Alias Generating Model Supported Fields

NOGAPS0_5g NOGAPS wind, wind stress, pressure

NOGAPS1_0g NOGAPS wind, wind stress, pressure

NOGAPS1_0 (older files) NOGAPS wind, wind stress, pressure

Details about the NRL COAMPS and NOGAPS atmospheric model data can be found at
the web site http://www7320.internal.nrlssc.navy.mil/CANS/index.php which lists the
model domains, the parameters generated by the models, model time steps, and other
pertinent information. To obtain a list of the currently supported domains, change to the
readers directory where the .pm files reside and issue the following command from the
command line:

grep ABBREV *.pm

which will list all of the domains available in the readers. The output will look
something like the following:

navo_gmt.pm: ABBREV => "CENT_AM",
navo_gmt.pm: ABBREV => "E_PAC",

and may contain additional domains from this and any other reader files.

