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Abstract

We present new results from a joint ocean-acoustic modeling study of solitary wave generation in the Strait of Messina,
their propagation in the Tyrrhenian Sea and subsequent shoaling in the Gulf of Gioia. The nonhydrostatic 3D EULAG
model is used for the oceanographic predictions. The simulations are initialized with measured temperature and salinity
profiles from an October 1995 survey of the Messina region, and forced with semidiurnal tidal magnitudes predicted by
a barotropic tidal model. Parameter sensitivity studies are performed. The predicted solitary wave trains are compared
with CTD chain measurements. The model results and data are examined through a wavelet analysis. The wavelengths
are tracked by the spines (maximum intensity for each wavelength) at various times. From the slope of the variations,
phase speeds are derived as a function of wavelength. For the parameters extracted from CTD measurements and existing
tidal conditions, phase speed distribution for wavelengths ranging from about 0.6 m to 1.6 km are obtained. The model
predicted phase speed magnitudes range from 0.85 m s�1 to 0.93 m s�1. The phase speeds derived from data range from
0.77 m s�1 to 0.88 m s�1. The model predicted phase speed versus wavelength distribution has similar trends to the phase
speed versus wavelength distribution derived from data. The shoaling of the solitary waves in the Gulf of Gioia is studied.
Calculations of the acoustical field are conducted, along the solitary wave propagation path, with the parabolic (PE) acous-
tical model.
Published by Elsevier Ltd.
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1. Introduction

The Strait of Messina connects the Tyrrhenian Sea, on the north side, and the Ionian Sea, on the south side.
Fig. 1 shows the area of interest, with bathymetric contours in meters. The strait contains a sill that raises to
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Fig. 1. Strait of Messina and Gulf of Gioia region. Triangles are CTD stations. CTD chain tracks 5, 6, and 8 are indicated (green curve).
The dashed box shows the horizontal model domain.
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within 80 m of the surface at the shallowest point. The water masses of the Ionian and Tyrrhenian Seas mix in
the strait. On the north side of the strait (towards the Gulf of Gioia), the depth increases, reaches a maximum
and then decreases.

One of the first attempts to explain the tidal dynamics of the Straits of Messina was by Sterneck (1915). He
proposed a pattern of tidal oscillations, in the Strait of Messina, generated by the M2 semi-diurnal tide and
obtained numerical solutions of the linear tidal equations. Vercelli (1925) conducted a survey of the Strait of
Messina and concluded that the current distribution is largely due to tidal action. He showed that there is a
large gradient of tidal amplitude between the tides north and south of the sill because the tides are out of phase
by about 180�. Because of the phase opposition and the topographic constrains the tidal currents can reach
magnitudes of around 3 m s�1. The magnitudes of these currents were know in ancient times, dating back
to Homer’s Odyssey (Alpers and Salusti, 1983). The advent of the SEASAT satellite has brought forth new
information on the oceanography of the strait. Analysis of the SEASAT SAR data showed the presence of
internal waves that were linked to tidal currents moving over the Messina sill (Alpers and Salusti, 1983).

The generation and subsequent propagation of solitary waves over topographic changes – e.g., at shelf-
breaks or sills – has been modeled with nonhydrostatic hydrodynamic models. The hydrodynamic modeling
of tidal flow over steep topography shows that the tidal flow depresses the pycnocline and generates an inter-
nal bore (Lamb, 1994; Brand et al., 1997; Warn-Varnas et al., 2003). The internal bore propagates and its lead-
ing edge steepens through nonlinear effects. Then frequency and amplitude dispersion sets in, and the leading
edge disintegrates into propagating solitary waves (Lamb, 1994; Brand et al., 1997; Warn-Varnas et al., 2003).
In particular, the interaction of the Strait of Messina sill with the semidiurnal tidal motion results in the
formation of internal bores. As the semidiurnal tidal motion reverses itself, the internal bores undergo a
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hydraulic jump over the sill. Internal bore depressions are most pronounced in the thermocline and halocline
regions. During the jump of an internal bore over the sill, temperature and salinity fronts are formed. These
fronts separate the water masses in the lower and upper parts. The interface between the two water masses has
been investigated in Hopkins et al. (1984) and Del Ricco (1981).

The propagating solitary wave trains are seen as evidence of an isopycnal depression (Osborne and Burch,
1980). The depressions associated surface convergence and divergence patterns have been observed in SAR
imagery (Alpers and Salusti, 1983). The isotherm displacements can be measured with a towed CTD therm-
istor chain (Sellschopp, 1997). The propagating solitary wave trains undergo dispersion in amplitude, wave-
length, and phase speed (Brand et al., 1997; Warn-Varnas et al., 2003). On the north side of the sill the internal
solitary waves propagate towards the Gulf of Gioia. In the Gulf of Gioia the solitary waves shoal as the topog-
raphy raises toward the surface. The JANE 1984 (Guardiani et al., 1988; JANE, 1985) cruise measurements
indicated a patch of mixed water between 40 m and 100 m that could be caused by mixing due to the shoaling
of internal solitary waves.

In this study, we model numerically the three-dimensional oceanographic structure from the Messina Strait
sill to the Gulf of Gioia. This encompasses the channel for the Messina sill into the Ionian Sea and the
Tyrrhenian Sea into the Gulf of Gioia. Our objectives are to study the characteristics and effects of solitary
waves embedded in a three-dimensional structure during generation, propagation, and shoaling. The numer-
ical model is initialized from a survey of the region, conducted in October 1995, and the characteristics of the
predicted solitary trains are compared against CTD chain measurements. Effects of oceanographic parameter
variations on solitary wave characteristics are studied. The variations of oceanographic parameters are related
to the characteristics of solitary wave trains measured with the CTD chain. The shoaling of the solitary waves
in the Gulf of Gioia is studied.

The temporal and spatial scales of tidally induced internal bores and solitary waves are such that they can
have a significant effect on the acoustic field through the sound speed structure. At certain frequencies the
interaction of the acoustic field with the solitary waves can be quite significant. Many interactions of the
acoustical field with the solitary wave train can occur between the source and the receiver (Warn-Varnas
et al., 2003).

The paper is organized as follows. The following section briefly characterizes the data that drive the numer-
ical model summarized in Section 3 and Appendix. Section 4 discusses ocean dynamics simulated by the
model; whereas the validation of the model results, using comparisons with measurements and parameter-
sensitivity study, is presented in Section 5. Section 6 discusses acoustical effects, and the summary of our
conclusions is presented in Section 7.
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Fig. 2. Measured (blue) and fitted (red and green; case 1 and 3 in Table 1 of Section 4.1, respectively) ambient profiles of temperature (left
plate) and salinity (right plate).
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2. Data

In October of 1995 a survey of the Atlantic Ionian Stream was conducted in the Strait of Sicily. At the end
of this sea trial, on October 24 and 25, solitary wave trains were tracked in the Strait of Messina with a towed
conductivity–temperature–depth (CTD) chain (Sellschopp, 1997). The chain had 83 sensors attached on a
270 m cable. The accuracies of the sensors were 0.01 K for temperature and 0.02 ppt for salinity. The resultant
horizontal and vertical resolution was 5 m and 2.5 m at a ship speed of 2.5 m s�1 (Sellschopp, 1997).

On the Tyrrhenian Sea side, tows 5, 6, and 8 (shown as green lines in Fig. 1) passed through the same
packet. The CTD chain measurements were corrected for ship motion. From the measured temperature
and salinity values, Fig. 2, the densities and sound speeds were calculated.

3. Model

3.1. Overview

The numerical predictions were conducted with the nonoscillatory forward-in-time (NFT)1 model, termed
EULAG for its capability to solve the fluid equations in either an Eulerian (flux-form) or a Lagrangian (advec-
tive form) mode (see Smolarkiewicz and Prusa, 2002, for a succinct review). The default analytic formulation
of EULAG assumes the nonhydrostatic anelastic equations of motion, with options available for compress-
ible/incompressible Boussinesq, and incompressible Euler/Navier–Stokes equations (Smolarkiewicz et al.,
2001). The ocean derivative of EULAG developed for the purpose of this study builds on the classical incom-
pressible Boussinesq approximation that enables efficient semi-implicit integrations of stiff governing equa-
tions supporting gravity waves on a broad range of scales. The resulting NFT ocean model retains all
multiscale benefits of the EULAG’s mathematical/numerical design, widely documented in the literature.
Among others, these include: (i) formulation and solution of governing PDEs in generalized time-dependent
curvilinear coordinates, admitting grid adaptivity to flow features and/or irregular boundaries (Prusa and
Smolarkiewicz, 2003; Wedi and Smolarkiewicz, 2004; Smolarkiewicz and Prusa, 2005; Prusa and Gutowski,
2006); and (ii) the direct numerical simulation (DNS), large-eddy simulation (LES), and implicit large-eddy
simulation (ILES) turbulence modeling capabilities, facilitating applications at broad range of Reynolds num-
bers (Smolarkiewicz and Prusa, 2002; Smolarkiewicz and Margolin, 2007).

For clarity, we present only the adiabatic meso-scale model equations, and dismiss the physical forcing
other than buoyancy, pressure, and Coriolis. The following discussion thus conveys only a small portion of
the EULAG’s capabilities, but the summarized methodology is representative of the entire model. Further,
given the physical scope of this paper we use a concise symbolic operator-form description of the governing
equations; for the complete tensorial expositions refer to Smolarkiewicz and Prusa (2005) and references
therein.

3.2. Analytic formulation

To address a broad class of flows in a variety of domains – with, optionally, Dirichlet, Neumann, or peri-
odic boundaries in each direction – we formulate (and solve) the governing equations in a transformed domain
with time-dependent curvilinear coordinates
1 Th
suppre
from c
ð�t; �xÞ � ðt;Fðt; xÞÞ: ð1Þ
The key assumptions are that the coordinates (t,x) of the physical domain are orthogonal and stationary – in
particular, Cartesian in this paper – and that the transformed horizontal coordinates ð�x; �yÞ are independent of
the vertical coordinate z. Given the transformation in (1), the adiabtic incompressible Boussinesq equations
for a salty water can be compactly written as follows:
e acronym NFT labels a class of second-order-accurate two-time-level algorithms built on nonlinear advection techniques that
ss/reduce/control numerical oscillations characteristic of higher-order linear schemes; it is meant to distinguish these algorithms
lassical centered-in-time-and-space linear methods.
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r � ðq��vsÞ ¼ 0; ð2Þ
dv

d�t
¼ �eGðrp0Þ þ g

q0

q0

� f � v0; ð3Þ

dq0

d�t
¼ ��vs � rqe; ð4Þ

ds
d�t
¼ 0; ð5Þ
where, because of the coordinate transformation, the physical and geometrical aspects intertwine each other.
Insofar as the physics is concerned: v � [u,v,w] denotes the physical velocity vector; q, s and p denote density,
specific salinity, and a density-normalized pressure; g is the acceleration of gravity (vector), and f the vector of
Coriolis parameter. Primes denote deviations from the geostrophically-balanced ambient (alias, environmen-
tal) state ve, qe; and q0 is the Boussinesq reference density.

The geometry of the coordinates in (1) enters the governing equations as follows: in the mass continuity
Eq. (2), q� � q0G with G denoting the Jacobian of the transformation; whereas in the momentum Eq. (3),eG symbolizes the renormalized Jacobi matrix of the transformation coefficients � ðo�x=oxÞ; r� � o=o�x�, and
the total derivative is given by d=d�t ¼ o=o�t þ �v� � r, where �v� � d�x=d�t � _�x is the contravariant velocity.
Appearing in the continuity (2) and density (4) equations is a weighted solenoidal velocity
�vs � �v� � o�x

ot
; ð6Þ
which readily follows (Prusa et al., 2001) from the generic (tensor invariant) form of the mass continuity
equation
G�1 oq�

o�t
þr � ðq��v�Þ

� �
� 0: ð7Þ
Use of the solenoidal velocity facilitates the solution procedures because it preserves the incompressible char-
acter of numerical equations, regardless of the time-dependency of the transformed coordinates. While numer-
ous relationships can be derived that express any velocity (solenoidal, contravariant, covariant, or physical) in
terms of the other, in either transformed or physical coordinate system, a particularly useful transformation
�vs ¼ eGTv: ð8Þ

relates the solenoidal and physical velocities directly. For further details of the metric and transformation
tensors as well as formulating viscous and dissipative terms in the governing equations, the interested reader
is referred to Smolarkiewicz and Prusa (2005) and the references therein.

The equations of motion (2)–(5) are supplemented with a linearized constitutive law for sea water
q0 ¼ aT 0 þ bs0 ð9Þ

with constants a = �2.5 � 10�4 and b = 7.6 � 10�4, representative of conditions in the Mediterrean region
(Benoit, 1994; Marshall et al., 1997). The linear relation (9) is used to diagnose temperature/potential-temper-
ature perturbations and to construct the ambient density profile qe from the potential temperature and salinity
profiles he and se.

The numerical apparatus employed to solve the posed equations is summarized in Appendix. Here we note
that there are four important benefits of formulating governing PDEs as described: (i) the relative simplicity of
designing a flow solver fully implicit with respect to gravity waves (Appendix); (ii) conservation of density
perturbations with accuracy to round-off error – cf. Section 3a in Smolarkiewicz et al. (2001), for a discussion
– tantamount to preventing dilution of the ambient stratification due to implicit viscosity of nonoscillatory
advection; (iii) improved accuracy of impermeability conditions imposed along irregular boundaries (Smol-
arkiewicz et al., 2001); and (iv) improved energetics of the model (Wedi, 2006). For a validation against an
akin laboratory experiment with density stratification and transient nonlinear gravity-wave dynamics see Wedi
and Smolarkiewicz (2006).
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3.3. The model setup: details of transformation

Following Wedi and Smolarkiewicz (2004), the general dependence of �z on (x,y,z, t) in (1) collapses into a
similarity transformation
�z ¼ CðnÞ ð10Þ

n ¼ nðx; y; z; tÞ :¼ H 0

z� zsðx; y; tÞ
Hðx; y; tÞ � zsðx; y; tÞ

;

where H and zs are the upper and lower surface elevations, respectively, H0 denotes the vertical extent of the
transformed model domain, and the function C conveniently admits a class of vertically stretched coordinates.
The transformation in (10) is a generalization of the classical terrain-following Gal-Chen and Somerville
(1975) transformation. It has the computational advantage of separability into one- and two-dimensional
fields. In particular, the Jacobian of the transformation is given as
G ¼ dC

dn
on
oz

� ��1
o�x
ox

o�y
oy
� o�x

oy
o�y
ox

� ��1

ð11Þ

� dC

dn

� ��1

G0Gxy ;
with
G0 �
on
oz

� ��1

¼ Hðx; y; tÞ � zsðx; y; tÞ
H 0

: ð12Þ
The similarity transformation (10) is a convenient vehicle for bringing a varying ocean surface from other
sources, either data or models. For illustration see Wedi and Smolarkiewicz (2004), where the authors simu-
lated nonhydrostatic flow of a homogeneous shallow layer of water past a hill, with a variable upper boundary
H(x,y, t) in (10) predicted by integrating the shallow-water equations. Furthermore, the dependence of �x and �y
on the horizontal coordinates of the physical space, admits studies of fluid flows in curved channels (Smol-
arkiewicz and Prusa, 2005). Notwithstanding the generality of (10), throughout this paper �x ¼ x,
�y ¼ y and n ¼ �z; thereby employing the identity transformation in the horizontal (viz. Gxy � 1). Furthermore,
the upper boundary is stationary and flat (viz. H � H0), and there is no vertical stretching of the lower-bound-
ary-fitted coordinate �z (viz. dC=dn � 1). The lower boundary is also stationary but inhomogeneous,
zs = zs(x,y), thereby reducing (10) to the classical case, standard in many atmospheric/oceanic models. In spite
of the resulting mathematical simplifications, the actual EULAG program accommodates (1) and (10) in their
full generality. Consequently, we retain the consistent notation for future reference and ease of connection to
earlier works.

3.4. The model setup: ambient, initial and boundary conditions

A specific perturbation form of PDEs solved in EULAG depends on the admitted class of ambient states.
Consider for illustration that the governing system (2)–(5) derives from the generic Boussinesq form – in which
the pressure and temperature perturbations in the momentum equation are taken with respect to the static
vertical profiles of the Boussinesq expansion – simply by postulating there exists an inertial ambient state
determined by the balance of pressure, buoyancy, and Coriolis forces
0 ¼ �eGðrðpe � p0ÞÞ þ g
qe � q0

q0

� f � ve; ð13Þ
together with implied compatibility conditions (e.g., for a sheared ambient flow, qe must change accordingly in
the horizontal; cf. Smolarkiewicz et al., 2001, for a discussion). Subtracting (13) from the generic form results
in (3), while the perturbational formulation of the density Eq. (4) follows readily the generic form dq=d�t ¼ 0,
given qe = qe(x).
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This feature of the model is employed to incorporate the effects of tidal forcing. In particular, the ambient
flow is assumed as ve = [ue(t),0,0], where
Table
Simula

Case

1
2
3

ue ¼ V T cos
2p
T

t
� �

: ð14Þ
Here, constant VT denotes the flow magnitude at the south boundary of the model located on the Ionian side
of the Messina Strait, with numerical value (Table 1) determined after Martin (2000); whereas T = 12.4 h is the
semidiurnal period of the tidal forcing. Because the ambient flow is allowed to vary in time, the governing
momentum equations should include ove=o�t on the rhs – in light of the preceding discussion. However, since
the characteristic time-scale of solitary-wave evolution is much shorter than T, these terms are neglected in
further discussion. The perturbation form of the governing equations is incapable per se of appreciating
the tidal flow, as it is simply a result of subtracting a prescribed subset of solutions from both sides of the
complete Boussinesq problem. The system is actually connected to tidal flow via inflow boundary conditions
v � n = VT imposed at the south inflow boundary, determining there the Neumann boundary condition for
pressure in the elliptic boundary value problem (Appendix). In order to account for the sign-change of the
tide after T/2, at the time of the model initialization the constant bV T is determined at the north lateral model
boundary, such as to satisfy the integrability condition

R
oX q��vs � ndr ¼ 0 implied by (2). As the tide changes

sign and the south and north boundaries become outflow and inflow, respectively, the solution accounts for
the tide via v � n ¼ bV T enforced at the north boundary. To minimize numerical-boundary artifacts, dissipative
absorbing layers attenuate the solution gradually towards the ambient flow in the vicinity of the boundaries.

To ensure a well-posed initial condition (cf. Temam, 2006), v(t = 0) is assumed a superposition of the ambi-
ent flow and potential perturbation
vðt ¼ 0Þ ¼ veðt ¼ 0Þ � eGðr/Þ; ð15Þ
and it is determined by solving (on the model grid) a discrete elliptic problem, for the potential /, implied by
the mass continuity equation (2) and the imposed boundary conditions. The initial fields of potential temper-
ature and salinity are set to ambient values; whereupon, the initial density perturbation is set to zero. To con-
struct the initial profiles, the ambient temperature and salinity fields were obtained from CTD stations shown
in Fig. 1. For modeling convenience, analytic functions were fitted to the measurements, as shown Fig. 2.

The model domain of Lx � Ly � H = 80 � 10 � 0.4 km3 in x, y and z, respectively, is covered with
800 � 100 � 100 grid points. The vertical extend is restricted to the top 400 m of the ocean. The x-direction
is oriented from the Strait of Messina towards the Gulf of Gioia; consult Fig. 1 for the outline of the horizon-
tal domain. Numerical simulations cover 2–5 semidiurnal tidal periods using time step dt of 1.5 s limited by the
advective CFL condition. The z = zs and z = H boundaries are impermeable. At x = 0 the lateral boundary is
open, whereas at x = Lx the bathymetry zs(x,y) continues into the coastline. To prevent a singularity in the
transformation (10) where the bathymetry protrudes to the ocean surface z = H, the actual bathymetry is lim-
ited such that zs = min(zs,H � D) with D = 20 m; cf. Fig. 3. Concomitantly, in the sea region above the
maximum bathymetry zs max = H � D, flow is attenuated rapidly to stagnation using the Rayleigh friction
(on the rhs of the momentum equation) – in the spirit of gravity-wave absorbers common in atmospheric mod-
els – with the e-folding time scale s = 18 s. At the y = Ly model boundary, for all x < 0.5Lx and z > zs the
coastline is steep, thus justifying the approximation with impermeable vertical walls. At y = Ly and x P 0.5Lx

the boundary is open for all z > zs. The latter results in a complex shape of the opening towards Tyrrhenian
Sea – an intersection of the (x,z) plane at y = Ly with the bathymetry. This motivates the customized scheme
1
tion parameters: the center of the thermocline depth PT, the center of the halocline depth PS, and the semidiurnal tidal magnitude

PT [m] PS [m] VT [m s�1]

40 50 0.5
40 50 0.25
60 70 0.5
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Fig. 3. Strait of Messina sill with Tyrrhenian Sea on the right and Ionian Sea on the left. Isohalines contours from 37.995 ppt to 38.638 ppt
in intervals of 0.09 ppt in the y = 5 km xz plane at: (a) 0.52 h; (b) 1.55 h; (c) 3.62 h and (d) 4.13 h.
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for handling the tide reversal, discussed earlier in this subsection. At y = 0 the boundary is impermeable for all
z > zs, and the narrowing of the channel at the sill is represented by the bathymetry, analogously to the x = Lx

boundary; cf. Fig. 7a.
All calculations reported in this paper are performed using the Eulerian flux-form option of EULAG, exe-

cuted in the ILES mode, in which the truncation terms of nonoscillatory transport schemes play the sole role
of the subgrid-scale turbulence models; see Smolarkiewicz and Margolin (2007) for a review.
4. Dynamics

4.1. Generation of internal bores, fronts and solitary waves

At the Strait of Messina sill region, the salty water originates from Levantine Intermediate Water (LIW).
The surface water can consist of modified atlantic water (MAW) or Tyrrhenian Sea surface water (TSW). As
the semidiurnal tide moves over the Strait of Messina sill from the Ionian to the Tyrrhenian Sea, the pycno-
cline and halocline region is moved upwards at the sill and depressed on the right side of the sill, Fig. 3a. The
depression is an internal bore with salinity and temperature gradients along its boundaries. The first internal
bore to be formed by the tidal flow to the right, generates a right and a left propagating internal wave. The
salinity field for such an internal bore is shown in Fig. 3a at the simulation time t = 0.52 h along a vertical xz

plane located at mid distance along the y coordinate, y = 5 km. The parameters of the simulation are listed as
case 1 in Table 1, where PT is the center of the thermocline depth, PS is the center of the halocline depth, and
VT is the prescribed semidiurnal tidal magnitude (cf. Section 3.4 for discussion). At t = 1.55 h, Fig. 3b, the
right propagating wave steepens on the leading edge through nonlinear effects. Then, later in time, frequency
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and amplitude dispersion set in and it disintegrates into solitary waves, Figs. 3c and 3d. These are solitary
waves of depressions that push the isohalines, isotherms and isopycnals down. When the semidiurnal tidal
flow reverses the direction, from positive to negative along x, the left propagating internal bore of depression
that was formed by the positive tidal flow, Fig. 3b, undergoes a hydraulic jump over the sill, Figs. 3c and 3d.

Inside the internal bore, Figs. 3c and 3d, there is a tendency for a more homogeneous temperature and
salinity distribution. At the bottom, left and right sides of it there are large salinity and temperature gradients
– the temperature field has a similar distribution to the salinity field. As the bore moves over the sill, the bot-
tom part generates a front between the surface and the top of the sill. During the dynamics of the motion that
takes place over the semidiurnal tidal cycle, a large salinity and temperature gradient can be located anywhere
between the sill and the surface of the ocean. The water masses that exist in the lower and upper parts of the
sill region, are separated by this frontal temperature and salinity gradient. At t = 6.2 h the salinity distribu-
tions has evolved to the configuration shown in Fig. 4a.

There is a salinity gradient or front located past the mid depth over the sill. The two water masses, upper
and lower, are on each side of the front. The internal bore that jumped over the sill, Fig. 3d, has now moved
close to the x = �24 km location and has became steep on the leading side through nonlinear effects. Proceed-
ing to t = 7.75 h the flow over the sill is moving to the left, towards the Ionian Sea. As the tidal flow continues
to the left, the salinity front moves further up on the sill towards the surface. The gradient, associated with the
front, is now located near the surface, Fig. 4b. To the right of the sill, the solitary wave train that was previ-
ously near x = 24 km, Fig. 4a, is heading towards the Gulf of Gioia, Fig. 4b.

The location of the salinity front changes as one proceeds westward from the mid plane (at y = 5 km)
towards increasing y values. In a vertical plane close to the Sicilian shore, y = 8 km, at the time of 7.75 h
the front is anchored on the left side of the sill and extends to the surface with a upwards slope, Fig. 5a. When
the tidal flow reverses to be along the positive x-direction, at t = 11.37 h, the front becomes anchored on the
right side of the sill and extends to the surface by sloping upwards to the left, Fig. 5b. The low salinity water
tends to be on the right side of the front and the high salinity water on the left. In the previous case, Fig. 5a,
the reverse situation existed. The solitary wave train that was located at x = 24 km in Fig. 5a at t = 7.75 h, has
reached the Gulf of Gioia shore at t = 11.37 h, shoaled, and resulted in a depression along the shelfbreak,
Fig. 5b.

Hopkins et al. (1984) and Del Ricco (1981) have investigated the time evolution of the interface between the
two water masses over the Messina sill with two-layer models. The interface of the two-layer models was
found to exhibit large vertical oscillations between the surface and bottom of the sill region. The interface
can be at the surface, bottom or anywhere in-between. Our simulation with the nonhydrostatic model exhibit
a similar phenomena of water mass separation by a frontal gradient of temperature and salinity caused by the
semidiurnal tidal motion over the sill.

The solitary waves trains propagate away from the sill. The structure of the solitary waves changes along
and across the direction of propagation. Consider a vertical section located towards the outer boundary in the
Fig. 4. Isohalines contours from 37.975 ppt to 38.636 ppt in intervals of 0.094 ppt in the y = 5 km xz plane at: (a) 6.2 h and (b) 7.75 h.



Fig. 5. Isohalines contours from 37.993 ppt to 38.642 ppt in intervals of 0.092 ppt in a xz plane at y = 8 km at: (a) t = 7.75 h and (b)
t = 11.37 h.
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y-direction, Fig. 5a. The beginning of the solitary wave train at t = 7.75 h is near x = 24 km. Along the mid
section of the y-direction, Fig. 4b, the solitary wave train is located past x = 24.0 km, which is further ahead in
the x-direction. As one moves across the direction of propagation in the y-direction, there is a curvature effect
in the location of the solitary wave trains. The curvature of the solitary wave train can be seen in a horizontal
plane located 100 m below the surface, Fig. 6. At around 65 km down range there is a warmer temperature
distribution generated by the depressions associated with the solitary waves. These depressions bring the war-
mer surface temperature down. Note the curvature of the warmer temperature arcs. The arcs curve backwards,
as one proceeds from land (bottom) towards the open sea (top).

4.2. Flow structure

At t = 7.75 h consider the semidiurnal tidal circulation that exists in the numerical domain. The forcing of
the semidiurnal barotropic flow, Eq. (14) in Section 3.4, is in the reverse direction at this time. In the sill region
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Fig. 6. Horizontal temperature distribution at 7.75 h in a plane located 100 m below the surface. Down range corresponds to the x-
direction and cross-range to the y-direction.



a b c

Fig. 7. Horizontal components of velocity at t = 7.75 h: (a) u component in the yz plane at 30 km down range of Fig. 6 with contours from
�2.75 to �0.33 m s�1 in intervals of 0.04 m s�1; (b) u component at the 60 km down range with contours from �0.363 to +0.53 m s�1 in
intervals of 0.128 m s�1 and (c) v component in the same plane as (b) with contours from �0.203 to �0.013 m s�1 in intervals of
0.047 m s�1. Vertical and horizontal axes are marked in m and km, respectively.
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between Italy and Sicily, Fig. 7a at 30 km down range (over the sill, cf. Fig. 6) there is a large section of
negative flow (towards the Ionian Sea) of around 3 m s�1. The yellow upper corners in the figure are modeling
artifacts that represent continuation of the bathymetry by means of stagnant water; cf. discussion at the end of
Section 3.4. Further down the x-axis at 60 km, between the sill and the Gulf of Gioia, the flow structure has a
large section directed towards the sill, Fig. 7b, extending from the right to left boundaries and encompassing
the bottom. The flow towards the sill on the right boundary reflects the inflow from the side boundary con-
dition. On the left boundary there is flow towards the sill, also, in the lower layer. This indicates a local cir-
culation. In the yz plane at 40 km down range (not shown), the flow away from the sill (in positive � direction)
disappears and all the flow is towards the sill.

The flow is superposed on a sloping bottom that deepens as one proceeds away from the land into the sea.
At the 60 km down range, Fig. 7c, the spanwise velocity indicates inflow along the ocean y = Ly boundary
where the barotropic forcing flow is prescribed (Section 3.4). The spanwise flow controls the negative flow
away from the sill in the x-direction. When the semidiurnal tidal forcing reverses, the direction of flow on
the sill and other locations reverses also.
4.3. Shoaling in the Gulf of Gioia

The solitary wave trains that are generated in the Strait of Messina region propagate into the Gulf of Gioia.
Fig. 4 shows a solitary wave train, in the Gulf of Gioia area, approaching the shore over a rising topography.
The flat region at the right represents continuation of the bathymetry by means of stagnant water; Section 3.4.
At a time of 8.78 h the train has moved closer to shore, Fig. 8a. The initial soliton in the train has been slowed
down by the topographic obstruction and the subsequent solitons are catching up with it. Eventually the sol-
itons in the train are pushed together and one resultant depression is formed along the topography, Fig. 8b.
This depression is slanted along the topographic rise. There is a pushing down of less dense water to depths of
around 150 m from the surface over a horizontal extend of about 1–2 km. This opens the possibility for water
mass modification through mixing. At a later time of 13.95 h the depression along the topography disappears
and the isopycnals move up, towards their original equilibrium position, Fig. 8c. There remains a signature on
the isopycnals to the left of the shore line suggesting reflectance effects. Reflectance effects have been observed
by Guardiani et al. (1988).

In a horizontal plane at a depth of 100 m, the temperature field indicates the disturbances induced by the
solitary waves and internal bores, Fig. 9. The plate (a) corresponds to Fig. 8a that shows the solitary wave



Fig. 8. Shoaling of a solitary wave train. Isohaline contours from 37.992 ppt to 38.638 ppt in intervals of 0.092 ppt in the y = 5 km (xz)
plane at: (a) t = 8.78 h; (b) t = 10.33 h and (c) t = 13.95 h.
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train about to shoal. Fig. 9a exhibits warmer temperatures caused by the solitary wave train depressions and a
curvature of the solitary waves away from land, bottom of graph. At a time of 10.33 h, Fig. 9b, the depressions
of the solitary waves line up along the shelfbreak slope and result in a warmer temperature there. At
t = 13.95 h, Fig. 9c, the depressions along the shelfbreak slope have disappeared and the temperature distri-
bution has returned towards its normal values.

We have introduced three moorings into the domain of the numerical experiment. The moorings were
placed at 63, 68 and 69.5 km down range, in the middle (xz) plane at 5 km cross-range. The mooring at
68 km is centered in the leading depression of the shoaling solitary wave train shown in Fig. 8a at
t = 8.78 h. The resultant temperature, salinity, and density distributions, at the moorings, are shown in
Fig. 10 at the times of 8.78 h, 10.33 h, and 13.95 h. The density distribution for t = 8.78 h indicates a down-
ward displacement of the pycnocline for the mooring at 68 km down range, green curve, relative to the moor-
ing at 63 km, blue curve. For t = 10.33 h, the time at which a large depression along the shelfbreak slope is
evidenced in Fig. 8b, there are lighter density regions at depth for the mooring location of 68 and 69.5 km
down range, green and red curves. This suggests mixing below the surface. At t = 13.95 h conditions relax
towards normal.

Previously, Guardiani et al. (1988) have noted a patch of mixed water at mid depth in the Gulf of Gioia,
during the JANE 1984 cruise. The patch was centered from 40 m to 100 m in depth. It was suggested that tur-
bulent mixing due to breaking of internal waves could be the cause of a patch of mixed water. During the
shoaling of internal wave trains, we do not observe internal wave breaking in the model predictions. The
shoaling consist of solitary waves of the train piling up along an extended shelf slope causing a large depres-
sion that eventually return to equilibrium. What we do observe, however is a movement down of the surface
water mass and a subsequent movement back up to the original position. This up and down movement causes
water mass modifications through mixing, at depths of about 30 m to 150 m.
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Fig. 9. Horizontal temperature distribution in a plane located 100 m below the surface at: (a) t = 8.78 h; (b) t = 10.33 h and (c)
t = 13.95 h. Down range corresponds to the x-direction and cross-range to the y-direction.
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5. Comparisons with data and parameter sensitivities

5.1. Wavelet analysis of soliton packets

Traditionally researchers have relied on standard Fourier techniques to investigate the spectral composition
of soliton packets. Nonetheless, because Fourier analysis gives signal amplitudes averaged over entire tempo-
ral or spatial domain, it is indiscriminating when a signal evolution is concerned. Unlike global Fourier
decomposition, wavelet analysis expands one-dimensional time/space series into the two-dimensional param-
eter space (a,b) to provide a local measure of relative amplitude of activity at scale a and temporal or spatial
location b (Meyers et al., 1993; Torrence and Compo, 1998). In order to obtain the characteristic scales and
phase speeds exhibited by simulated soliton packets, we applied the wavelet analysis to isopycnal displace-
ments in the pycnocline. We use the Morlet wavelet, proven successful in analyzing dispersion of Yanai waves
in an ocean model (Meyers et al., 1993).

The analyzed signal, Fig. 11, represents a simulated soliton train in range (x-direction) consisting of 1024
grid points linearly interpolated from the model output to obtain a resolution of 10 m. The scale parameter a is
varied to obtain wavelengths extending from 103 m to 2.81 km. Because the increase in sampling resolution is
an artifact of the interpolation, the scales considered in practice range from a few 100 m to just over 2 km.

Consider the mid-thermocline displacement at t = 6.2 h in Fig. 11a. This is identically the result shown in
Fig. 4a, however the range has been shifted in order to measure the solitary wave train from the sill and facil-
itate comparison to data. The contour indicates a train with several depressions. The wavelet power spectra of
this train is shown in Fig. 11b. The figure exhibits the power as a function of range and wavelength. The abso-
lute maximum intensity occurs at a wavelength near 1.33 km, the range location corresponding to the back
side of the first depression at 31 km.2 A tracking of the maximum power intensity as a function of wavelength
is shown by the black curve in Fig. 11c, also referred to as the spine. It exhibits wavelengths ranging from
about 0.75 km to 2 km, where intensities below the background intensity of 749.88 are not shown. The var-
iation of the wavelengths along the spine over the contoured area show initial decrease of location in range
as the small wavelengths increase to larger ones, Fig. 11c. This section of the spine contains large wavelength
gradients. The variation reaches a minimum value in range, along the spine. The location of the minimum
value in range is in the vicinity of large wavelength gradients, Fig. 11c. After the minimum, the range increases
along the spine as the wavelengths increase.

The behavior of the spines at t = 4.13, 6.2, and 7.75 h are shown in Fig. 12b together with the model pre-
dicted soliton train structures in the pycnocline, Fig. 12a. The spines are shown as a function of wavelengths
versus range; the range spans 20–45 km in order to show the evolving spine pattern. Each of the spines has a
minimum range value. The wavelengths derived from the maximum wavelet power spectra vary as 1.16, 1.33,
and 1.4 km, Table 2. The wavelength represents distances between troughs of the solitons. As time progresses
the distance between the first two troughs of the soliton train tends to increase, Fig. 12a. The amplitude of the
first soliton decreases from 52.3 m to 48.5 m from the first to the second location of the train. This follows the
expected trend of decreasing amplitude in range. Then it increases somewhat, to 50.1 m, at the third location
of the solitary wave train. This increase can be a fluctuation related to a decreasing ocean depth.

Along each spine the wavelengths increase from small to larger ones. High wavelength gradients occur
along the spine slope as the wavelength increases up to minimum range value of the spine, Fig. 11c. The loca-
tion of this section of the spine tends to extend to larger wavelengths as time progresses, Fig. 12b. Beyond the
minimum range point along the spines, there are two dominant spine slopes with a transition region between
them, Fig. 12b. The structure of the power distribution contours, Fig. 11c, also undergo changes as time
progresses. The elliptical-like shape of power contour tends (not shown) to become more compressed along
the wavelength distribution axis and more elongated in range as time increases. The major axis of the ellipse
undergoes rotation and deformation. The deformation reflects the evolution of the soliton trains in time.
2 Note that the range shift results in a roughly 11 km difference between Figs. 11 and 4a, where the first depression is located at about
20 km.



Fig. 11. (a) Model predicted mid-thermocline displacement at time of 6.2 h; (b) displacement intensity [m2] as a function of wavelength
and range and (c) spine (black line) – i.e., maximum intensity for each wavelength – together with the intensity contours, which range from
749.88 to 11,248 and span 11.76 dB.
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Table 2
Model predictions for case 1 in Table 1; kp is the wavelength corresponding to the maximum wavelet power spectra, A1 is the amplitude of
the 1st soliton and r is the range

Wavelength kp [km] 1.16 1.33 1.4
Amplitude A1 [m] 52.3 48.5 50.1
Range r [km] 24.78 30.96 36.08
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5.2. Comparisons with data characteristics

The evolution of the measured soliton wave trains over time and distance are compared with the evolution
of the model predicted solitary wave trains. The CTD chain data described in Section 2 is used for comparing
the model results. The range of the EULAG model predicted solitary wavetrains, Fig. 12a, are different from
the ranges of the measured solitary wavetrains, Fig. 13a. The differences in ranges, or distances from the sill, of
the model results and the measurements are due to the tidal phase used in initialization of the model results.
The focus of the comparison is not on the range location but on changes over distance and time.

For the three CTD chain passes on the Tyrrhenian side, the mid-pycnocline displacement was extracted for
the wavelet analysis. Table 3 lists the wavelengths, obtained through wavelet analysis, at maximum power for
tows 5, 6, and 8 at ranges of 12.68, 15.65, and 20.67 km. The maximum power wavelength decreases in range
and then increases. This is different from the model behavior, Table 2, where the wavelengths increase with
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Fig. 13. (a) Measured soliton trains at t = 616.83 h (blue, tow 5), t = 617.95 h (green, tow 6), and t = 619.47 h (red, tow 8), and (b)
corresponding spines as a function of wavelengths and range.
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range. We attribute the behavior of wavelengths extracted from data to the presence of features in the ocean
such as eddies that can compress and elongate the solitons.

The amplitude of the first soliton decreases from the first soliton train to the second, Table 3. From the
second to the third train, the situation becomes more complicated. The first soliton’s location and amplitude
are influenced by a ‘‘feature”, Fig. 13a. The location of the first soliton is advanced relative to the second and
its amplitude increases relative to the second train. The magnitudes of the measured first soliton amplitudes,
Table 3, are lower than the model predicted amplitudes, Table 2. For the first and third soliton trains the dif-
ference is around 6 m, with the model results being larger. For the second train the model results are about
15 m larger. This suggests some feature distortion, in the data for the amplitude of the first soliton in the sec-
ond train.

The behavior of the spines as a function of range for each of the tows (5, 6 and 8) is shown in Fig. 13b
together with the mid-pycnocline displacement, Fig. 13a. The spine for tow number 6, is reminiscent of the
spine for tow number 5 with the modification of the initial minimum in range. Wavelengths below 0.5 km
and above 2.5 km are in the power intensity background. For tow number 8, the spine has a discontinuous
decrease in range for wavelengths ranging from about 0.7 km to 1.2 km, Fig. 13b. This discontinuous jump
is associated with the solitary wave signal distortion that is visible in Fig. 13a, where the distance between
the first and second depression is increased relative to tows number 5 and 6. This is caused by a feature.

The wavelengths tracked by the spines are measured by the tows and predicted by the model at certain
times. A curve of wavelength as function of range and time can be obtained from the spine distributions. From
the slope of these curves, the phase speeds are calculated as function of wavelength, solid blue curve in Fig. 14.
The discontinuity in phase speed between the wavelengths of about 0.65 km and 1.1 km is evident and involves



Table 3
Results from data: kp is the wavelength corresponding to the maximum wavelet power spectra, A1 is the amplitude of the 1st soliton and r

is the range

Wavelength kp [km] 1.09 0.77 1.68
Amplitude A1 [m] 46.58 33.3 44.57
Range r [km] 12.68 15.65 20.67
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Fig. 14. Calculated phase speeds as a function of wavelength: green curve is derived from model predictions and blue curve from
measurements.

A. Warn-Varnas et al. / Ocean Modelling 18 (2007) 97–121 115
a decrease in phase speed of about 0.25 m s�1. This discontinuity can be caused by a feature that results in the
advection, or stretching, of the first depression of the train away from the second depression, Fig. 13a. The
other depressions in the soliton train can also be affected by the feature. Such a feature can be a local eddy
with a velocity component along the solitary wave train. A correction for the movement due to advection
can be introduced by moving the discontinuous portion of the phase speed curve up, dotted blue line in
Fig. 14.

The model predicted phase speed, green curve in Fig. 14, has similar trends to the corrected measured phase
speed curve. From wavelengths of 0.7 km to 1.6 km, the phase speeds increase up to a maximum, decrease,
and then increase again. In the comparative range, the model phase speeds range from 0.93 m s�1 to
0.86 m s�1 and phase speeds derived from data range from 0.88 m s�1 to 0.77 m s�1. For the comparative por-
tion of the curve, the model results have somewhat higher phase speeds and a slightly different dispersion ver-
sus wavelength variation. The overall phase speed trends are similar between model and data. For the non-
comparative portions of the curves – below wavelengths of 0.7 km and above 1.6 km – the phase speed trends
of model predictions and data are different. These are the portions where the power intensity distribution in
wavelength and range merges with the background; cf. Fig. 11b.

Sapia and Salusti (1987) observed internal solitary waves in the Strait of Messina and derived theoretical
estimates of linear and nonlinear phase speeds from hydrography measurements. On the north side of the
strait the linear phase speed estimate was 0.6 m s�1 and the nonlinear 0.72 m s�1. These calculations are
dependent on the measured density and the application of a two-layer approximation. Measurement with a
towed temperature sensor yielded nonlinear phase speed estimates of 0.8 m s�1. Phase speeds of 0.8 m s�1

are in the range of the phase speeds derived from the present data sets.
5.3. Parameter variations

We have varied the initial conditions and the magnitude of the semidiurnal barotropic tidal forcing. Table 1
lists the parameters variations that we considered. Left and right plates in Fig. 2 illustrate the initial temper-
ature and salinity profiles, respectively, that were used for model initializations.

A comparison of derived phase speed as a function of wavelength for different parameters is shown in
Fig. 15. Cases 1 and the data are the same as in Fig. 14. Case 2 represents a lower barotropic tidal forcing.
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The predicted phase speeds versus wavelength are smaller than those for case 1. A lower tidal forcing, results
in less isopycnal displacement, retardation in solitary wave formation, and smaller tidal background velocity
(Lamb, 1994; Warn-Varnas et al., 2003). As a result the phase velocities are smaller. Case 3 represents deeper
thermocline and haloclines. The phase speed has an increasing trend and for wavelengths exceeding 1 km is
larger than those of case 1. For wavelengths from about 0.65 km to 1 km, the phase speed is smaller than
in case 1 and closer to the data, Fig. 15. The phase speed variation versus wavelength exhibits less variation
than case 1 or the data. Case 1 and the data show an increase, a decrease, and an increase again to about wave-
lengths of 1.6 km. Case 1 exhibits more of the data trends than case 2 and 3.

The wavelengths derived from wavelet analysis are summarized in Table 4 for the three cases. Case 1 indi-
cates wavelengths ranging from 1.16 km to 1.4 km. Case 3 wavelengths range from 1.25 km to 2.18 km. Case 3
wavelengths are correspondingly larger for each of the three solitary wave trains. The deeper thermocline and
halocline locations of case 3 lead to larger wavelengths in relation to case 1. The first soliton amplitudes for
case 3, Table 4, are larger for the second and third solitary wave trains than the corresponding amplitudes for
case 1. For the first soliton train the amplitude is smaller for case 3 than in case 1. The first soliton could still
be in the development stage.

In Case 2, the lower tidal forcing at the boundary results in decreasing wavelengths from the first to the
third solitary wave trains, Table 4. A lower tidal forcing results in smaller internal bores that disintegrate into
wider width solitons. The corresponding amplitudes of the first soliton increase for the first train to the second
and then decrease in the third train. The magnitude of the amplitudes are smaller than those for case 1, case 2
and the data. A smaller tidal velocity leads to smaller displacements of isopycnals and smaller amplitudes for
the solitons. The tidal forcing magnitude of case 2 does not lead to amplitudes close to those observed in the
data.



Table 4
Model prediction summary: kp is the maximum power spectra wavelength, A1 is the amplitude of the 1st soliton and r is the range

Case kp [km] A1 [m] r [km]

1 1.16 52.3 24.78
1.33 48.5 30.96
1.4 50.1 36.08

2 2.18 17.49 20.40
2.05 23.87 25.71
1.9 21.32 29.78

3 1.25 43.9 25.65
1.67 52.1 33.1
2.18 51.27 38.56
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6. Acoustical effects

From an acoustic point of view the interesting part of this study was the 3D aspects of the modeled ocean
environment. The ocean model results covered an area of 10 km by 80 km. This area is shown by the dashed
box of Fig. 1.

Acoustic model simulations were used to illustrate the effects of a 3D ocean environment as compared to
the acoustic effects of a 2D environment. The acoustic simulations were made using the finite element para-
bolic equation (FEPE) model (Collins, 1988a; Collins, 1988b; Collins and Westwood, 1991). The FEPE model
gives accurate, wave-theoretic, numerical predictions of acoustic pressure at all forward propagating angles
about the direction of propagation. Since the model uses a marching solution technique taken at intervals that
are a fraction of the acoustic wavelength, the model is ideal for accurately including small ocean environmen-
tal changes, and their effects (refraction, diffraction, interference) on the acoustic field. The FEPE model has
been verified as benchmark accurate (Collins, 1990); thus, it was an appropriate choice for these simulations.

Three tracks were chosen that would illustrate the acoustic effects of the simulated 3D ocean environment
in Fig. 3d. One track was in the middle of the ocean area (designated as ‘‘Center”). One track was parallel to
the Center track and displaced 4 km to the west (designated as ‘‘West”) of the Center track. One track was
parallel to the center and displaced 4 km to the east (designated as ‘‘East”). These three tracks traversed par-
allel, adjacent ocean environments that were oriented from the northeast to southwest (refer to Fig. 1). The
Fig. 16. Transmission loss vs. range plot for the Center (gray line), West (dashed line) and East (solid black) tracks for a frequency of
400 Hz, source depth 50 m and receiver depth of 90 m.



Fig. 17. Transmission loss vs. range for the same three tracks shown in Fig. 16, but with the bathymetry the same for all three tracks.
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starting location is in the Gulf of Gioia and going southwest. A source depth of 50 m was selected for each
track and the start range for each track made to correspond to with the 70 m depth contour line.

Fig. 16 shows the results of the acoustic model simulation. The vertical axis is acoustic transmission loss in
decibels (referenced to 1 m). The horizontal axis is the range in km. The acoustic source is at a frequency of
400 Hz, and the receiver depth is 90 m. The transmission loss for the center track is represented by the gray
curve. The dotted line is transmission loss for the parallel track that is 4 km to the west. The solid black line is
the parallel track 4 km to the east. The three transmission loss curves show differences over the whole range
with the most notable at about 40 km where differences of nearly 20 dB are evident. This large discrepancy is
due to the different bathymetry along each track. The strait is located around 40 km in range and the bathym-
etry depth at that range is less for the East and West tracks than for the Center track. Thus, to a large degree,
the differences in the bathymetry are contributing to the differences in transmission loss between the three
tracks.

To isolate the effects of the 3D sound speed field, the bathymetry was made the same for all three tracks,
Center, West and East. The Center track bathymetry was used for all three tracks. The results of this set of
simulations is show in Fig. 17. With the bathymetry the same for all three tracks, the only environmental dif-
ference left is due the three dimension effects of the sound speed field. The transmission loss in Fig. 17 shows
that the environments for the three tracks are acoustically similar up to a range of about 14 km, where the
effects of the difference in the sounds speed fields are beginning to modify the transmission loss. After the
acoustic track passes the sill the differences become even more pronounced.

This simple acoustic simulation helps to demonstrate the acoustic impact of accounting for the 3D aspects
of the oceanography. Ignoring the variation in the sound speed field can produce significant differences in the
acoustic propagation.
7. Conclusions

Three-dimensional simulations of the Strait of Messina and Gulf of Gioia region were conducted with the
newly developed and documented ocean version of nonhydrostatic model EULAG, proven successful in sim-
ulating a variety of rotating stratified flows. The simulation were initialized from measured temperature and
salinity profiles and forced by the existing semidiurnal tidal magnitudes obtained from a tidal model. The sim-
ulation showed that as the semidiurnal tide moves over the sill in the Strait of Messina, it generates a depres-
sion. The depression results in right and left propagating waves that form internal bores. During tidal
reversals, the formed bores undergo hydraulic jumps over the sill and salinity and temperature fronts develop.



A. Warn-Varnas et al. / Ocean Modelling 18 (2007) 97–121 119
The fronts are defined by the internal bore boundaries. Over the sill the interface formed by the front separates
water masses. The interface can be located anywhere between the surface and the sill.

The internal bores that propagate away from the sill, steepen on the leading edge through nonlinear effects
and disintegrate into solitary wave trains as amplitude and frequency dispersion set in. This has been shown
previously with a 2D layer model by Brand et al. (1997). The propagating solitary wave trains towards the
Gulf of Gioia exhibit curvature effects in horizontal planes. In the Gulf of Gioia, the solitary wave trains shoal.
In the shoaling process a depression is formed along the Gulf of Gioia slope. The depression pushes less dense
surface water to depths of about 150 m. Moorings placed in the model predictions indicate the presence of
lighter water at depths below the surface during the shoaling of solitary wave trains in the Gulf of Gioia. This
suggests mixing of water masses at depth. Mixed patches of water have been observed by Guardiani et al.
(1988), in the Gulf of Gioia, during the JANE 1984 cruise.

The model results and data were compared by conducting a wavelet analysis. The wavelengths were tracked
by the spines (maximum intensity for each wavelength) at various times. From the slope of the variations,
phase speed were derived as a function of wavelength. For the parameters extracted from CTD measurements
and existing tidal conditions, phase speed distributions for wavelengths ranging from about 0.6 m to 1.6 km
were obtained. A correction for feature distortion was applied to the last tow of the measured soliton phase
speed distribution. The model predicted phase speed versus wavelength had similar trends to the phase speed
derived from data. The model predicted phase speed magnitudes ranged from 0.88 m s�1 to 0.93 m s�1. The
phase speeds derived from data ranged from 0.77 m s�1 to 0.88 m s�1. Model predicted wavelengths and
amplitudes were within 15% of CTD chain measurements.

Parameters of thermocline and halocline depths were varied from the measured conditions at the CTD
station by increasing them. The semidiurnal tidal forcing was also varied by reducing it to half of the extracted
barotropic tidal forcing at the boundary. A variation of the tidal parameter to half, yielded a lower model
predicted phase velocity distribution versus wavelength. The magnitude of the phase velocity ranged from
about 0.805 m s�1 to 0.75 m s�1 and exhibited a different wavelength dependence from the larger tidal param-
eter case. An increase of the thermocline and halocline depth parameters yielded a higher phase speed versus
wavelength for wavelengths greater than 1 km. The phase speed as a function of wavelength had an increasing
trend as the wavelength increased.

Finally, the acoustic predictions using a 3D ocean environment can be significantly different when com-
pared with similar acoustic predictions using a 2D ocean environment. In our simulations, even with bathym-
etry effects removed, 5 dB differences in acoustic signals were observed over a range of 70 km.
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Appendix. Numerical apparatus

Given (7), the prognostic Eqs. (3)–(5) can be written in the symbolic form of an Eulerian conservation law
oq�w
o�t
þr � ðq��v�wÞ ¼ q�R; ð16Þ
where w symbolizes components of v, q0, or s and R denotes the associated rhs. The archetype problem (16) is
approximated to second-order accuracy in space and time using an NFT algorithm
wnþ1
i ¼Aið~wÞ þ 0:5DtRnþ1

i � ŵi þ 0:5DtRnþ1
i ; ð17Þ
where wnþ1
i is the solution sought at the grid point ð�tnþ1; �xiÞ, ~w � wn þ 0:5DtRn, and A denotes a two-time-level

flux-form Eulerian nonoscillatory advective-transport operator MPDATA; see Smolarkiewicz (2006) for a
recent overview.
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Eq. (17) represents a system implicit with respect to all dependent variables in (3) and (4), because all forc-
ing terms are assumed to be unknown at n + 1. Notably, the salinity Eq. (5) has zero right-hand side, where-
upon s has a status of a passive scalar. For the physical velocity vector v, (17) can be written compactly as
vi ¼ v̂i � 0:5DtðeGðrp0ÞÞi þ 0:5DtRiðv; q̂0Þ; ð18Þ
where
Riðv; q̂0Þ � g
1

q0

ðq̂0i � 0:5DtððeGTvÞ � rqeÞiÞ � ðf � ðv� veÞÞi ð19Þ
accounts for the implicit representation of the buoyancy via (4), and the superscript n + 1 has been dropped as
there is no ambiguity. Given a grid co-located with respect to all prognostic variables, (18) can be inverted
locally to construct expressions for the solenoidal velocity components that are subsequently substituted into
(2) to produce an elliptic equation for pressure
Dt
q�
r � q� ~GT½^̂v� ðI� 0:5DtbRÞ�1 eGðrp00Þ�

� �
i

¼ 0; ð20Þ
where eGT½^̂v� ðI� 0:5DtbRÞ�1 eGðrp00Þ� � �vs defined in (6), and the additional hats and prime denote straight-
forward algebraic modifications; cf. Prusa and Smolarkiewicz (2003) for the complete exposition. Boundary
conditions imposed on �vs � n, subject to the integrability condition

R
oX q��vs � ndr ¼ 0, imply the appropriate

boundary conditions on p00 (Prusa and Smolarkiewicz, 2003; Wedi and Smolarkiewicz, 2004). The resulting
boundary value problem is solved using a preconditioned generalized conjugate residual GCR(k) algorithm
(Eisenstat et al., 1983); for further discussion, see Smolarkiewicz et al. (2004) and references therein. Given
the updated pressure, and hence the updated solenoidal velocity, the updated physical and contravariant
velocity components are constructed from the solenoidal velocities using transformations (8) and (6),
respectively.
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