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ABSTRACT

A methodology for quantitative, directional validation of a long-term wave model hindcast is described
and applied. Buoy observations are used as ground truth and the method does not require the application
of a parametric model or data-adaptive method to the observations. Four frequency ranges, relative to the
peak frequency, are considered. The validation of the hindcast does not suggest any systematic bias in
predictions of directional spreading at or above the spectral peak. Idealized simulations are presented to aid
in the interpretation of results.

1. Introduction

a. Background

1) IMPORTANCE/RELEVANCE

Principal wave direction, quantified as a mean or
peak value, is of obvious importance to wave predic-
tion. Directional distribution about the mean or peak
direction is also very important for wave modeling. It
can have a large impact on the prediction of swells,
since it determines how far and wide the swells will
disperse. Nonlinear interactions computed by a wave
model are sensitive to the directional distribution of
energy. Further, as wave model dissipation terms with
more sophisticated directional dependency are devel-
oped, we can expect that directional spreading will have
greater influence on the modeled source term balance
and, thus, total energy.

2) PRESENT CAPABILITY

Validations of modeled peak or mean wave direction
in the literature typically show good skill, though the
response of a third-generation wave model to rapidly

turning winds is a concern (e.g., Young et al. 1987). The
ability of third-generation models to accurately predict
the width of the directional distribution is poorly un-
derstood. Indeed, as is described in a companion manu-
script (Rogers and Wang 2006, hereafter RW), evalua-
tions in the literature show very little consensus.

b. Model description

The so-called third-generation (3G) of spectral wave
models calculate wave spectra without a priori assump-
tions regarding spectral shape. For this investigation,
we use the Simulating Waves Nearshore model
(SWAN; Booij et al. 1999). SWAN is a 3G model de-
signed to address the excessive computational expense
of applying predecessor 3G models (such as WAM;
WAMDI Group 1988) in coastal regions. The govern-
ing equation of SWAN and most other 3G wave models
is the action balance equation. In Cartesian coordi-
nates, the action balance equation is
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where � is the relative frequency, which is the wave
frequency measured from a frame of reference moving
with a current, if a current exists; N is the wave action
density, equal to the energy density divided by the rela-
tive frequency (N � E/�); � is the wave direction; Cg is
the wave action propagation speed in (x, y, �, �) space;
and S is the total of source–sink terms expressed as
wave energy density. In deep water, the right-hand side
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of the governing equation is dominated by three terms:
S � Sin � Snl � Sds (input by wind, four wave nonlinear
interactions, and dissipation, respectively). These three
deepwater source–sink terms are discussed at several
points later in this manuscript. SWAN also includes
physical processes associated with intermediate-depth
and shallow water (e.g., bottom friction, depth-limited
breaking).

c. Objective

It has become increasingly common for a wave mod-
eler to have at his or her disposal directional wave ob-
servations within a model computational domain. This
often leads to an expectation—perhaps a naïve expec-
tation—that the wave modeler can readily use these
observations to validate the model. Unfortunately, vali-
dating a model using directional observations is much
less straightforward than traditional validations of wave
height or peak period. For example, what if the model
in question is a long-term simulation with continuous
directional observations? How could one perform a
meaningful validation that is compact enough to be pre-
sented to others? How far can one go in condensing
these comparisons? At what point do the comparisons
become meaningless or misleading?

This study was initiated with three general objectives:
1) to review the history and state of the art for direc-
tional wave validation methods, 2) to design a valida-
tion methodology/strategy best suited for a specific
model application, and 3) to characterize model behav-
ior in that specific application. The first general objec-
tive is addressed only briefly in this manuscript; a com-
panion manuscript (RW) provides a more detailed re-
view. The specifics of the second and third general
objectives are given here.

1) REQUIREMENTS ON VALIDATION DESIGN

The major challenge of this study is in the design of
a validation method. Since we are allowed the luxury
here of focusing primarily on directional wave valida-
tion, we were not satisfied with the simplest and most
obvious method, which is to use buoy data and a para-
metric model or data-adaptive method to create direc-
tional spectra, and make qualitative side-by-side com-
parisons with model directional spectra at a few instants
in time. Rather, we have fairly specific self-imposed
requirements on the validation method.

The first requirement is that it be a long-term direc-
tional validation, without extensive manipulation of the
output, for example to isolate the pure windsea events.
Usually, when directional spreading is a primary focus,
the investigators focus on specific events. This leads to

uncertainties with regard to generality: is a conclusion
specific to the event, or is it a systematic symptom of
the model physics? We address this limitation using a
relatively long simulation.

The second requirement is to develop and employ a
method of evaluation of model directional skill that is
quantitative, in other words a comparison of model and
observation value pairings from which statistics may be
calculated; traditionally, this is presented as a scatter-
plot comparison of modeled and observed values. Since
many comparisons in the literature are short-term com-
parisons, it is possible to simply present modeled and
observed two-dimensional spectra side by side, thereby
avoiding the necessity of condensing results. With long-
term simulations, it is necessary to condense results
somehow.

The third requirement is that the method of evalua-
tion of model directional skill also utilizes observational
data as they are given, rather than applying a parametric
model [e.g., the well-known cos2s model; Longuet-
Higgins et al. 1963); Cartwright (1963)] or a data-
adaptive method. Two popular methods are the maxi-
mum likelihood estimator [referred to as MLE or
MLM; Capon et al. (1967) and Oltman-Shay and Guza
(1984)] and the maximum entropy method (MEM;
Lygre and Krogstad 1986) to transform the observa-
tional data into a subjective directional spectrum. For
discussion and a description of this subjectivity, we re-
fer the reader to Kuik et al. (1988) and Benoit et al.
(1997).

Our fourth requirement is that the observational data
be taken from a buoy. Other data sources, such as ra-
dar, have been used with success in the past for direc-
tional validation, but these datasets tend to have more
limited availability or accessibility.

Our fifth requirement is that the frequency variation
of directional spreading be considered, as opposed to a
quantity integrated from the entire frequency range.

2) MODEL CHARACTERIZATION

The objective is to quantitatively determine whether
a typical 3G model (SWAN; Booij et al. 1999), in a
typical implementation, has a systematic tendency to
overpredict or underpredict directional spreading. The
Discrete Interaction Approximation (DIA) for four-
wave nonlinear interactions, Snl4, is the approximation
used by all operational 3G wave models today. It is has
been demonstrated a number of times in the literature
that this approximation leads to broader directional
spreading than would be obtained with more rigorous
calculations (Hasselmann et al. 1985; Young et al. 1987;
Young and Van Vledder 1993; Cardone and Resio
1998; Forristall and Ewans 1998, etc.). This can result in
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an expectation that 3G wave models systematically
overpredict directional spreading. This is sometimes
observed in the literature, but the reverse has also been
found (Jensen et al. 1995). One wonders how much this
“expectation” has influenced prior comparisons. Long-
term comparisons can be used to convincingly argue for
or against this broadening effect. We know from the
literature that in cases of pure windsea, directional
spreading tends to follow a fairly consistent pattern
relative to the peak frequency: directional spreading at
the peak is relatively narrow, and spreading is broader
farther from (higher and lower than) the peak. A sec-
ondary objective is to verify that an operationally used
wave model (SWAN with the DIA approximation for
four-wave interactions) adequately reproduces this pat-
tern in directional spreading.

3) PRIOR WORKS

A number of methods for directional validation of
wave predictions have been applied over the years. Due
to page limits, a detailed review of this prior work is
described separately (RW). There have been no prior
works that fit the five requirements described above.
There have, of course, been a number of studies that
share some similarities. For example, Komen et al.
(1994, chapter V.4), Khandekar et al. (1994), and For-
ristall and Greenwood (1998) describe the validation of
directional spreading of hindcasts of medium (15 days)
or longer duration. Jensen et al. (1995), Forristall and
Greenwood (1998), Ardhuin et al. (2003), and Wyatt et
al. (2003) all include quantitative non-data-adaptive
comparisons for validation of hindcast directional
spreading with in situ data as ground truth. Forristall et
al. (1978), Komen et al. (1984), Tolman (1991), Forri-
stall and Ewans (1998), Forristall and Greenwood
(1998), and Alves and Banner (2003) include quantita-

tive validations of directional spreading, with some de-
scription of the variation with frequency. Of these, only
Forristall et al. (1978) was a hindcast of a specific event,
as opposed to an idealized simulation, and showed the
frequency variation simply by choosing a few specific
instances in time. For further descriptions of prior work
on the subjects of directional metrics, directional model
validation, and parametric directional distributions, we
refer the reader to RW.

d. Terminology

The two-dimensional energy density spectrum is
defined as E( f, �) � D( f, �)F( f ), where D( f, �) is
the normalized directional distribution and F( f ) is
the one-dimensional energy density spectrum.
The function D( f, �) is normalized such that
�2�

0 D( f, �)d� � 1.
“Directional spreading” refers to the degree to which

a directional distribution of wave energy is “broad.” It
does not refer to the normalized directional distribution
itself, which is sometimes referred to as the “directional
spreading function.” Notations used herein are given in
Table 1.

e. Organization of manuscript

In section 2, the methodology of this study (general
validation strategy and definition of metrics used) is
described. In section 3, an idealized case is examined to
isolate the effect of the inaccuracy of the Discrete Inter-
Action approximation for four-wave nonlinear interac-
tions. In section 4, an example directional validation is
presented for a hindcast with the SWAN model in Lake
Michigan during fall 2002. Results are summarized in
section 5. Discussion is given in section 6 and conclu-
sions in section 7.

TABLE 1. Summary of notation.

f Frequency, T�1

� The relative (intrinsic) radial frequency, 2�T�1

� Direction of wave propagation
��( f ) The rms circular spreading (note, � here is unrelated to frequency)
�� Mean rms circular spreading; “mean” here refers to some integration over frequencies
N Two-dimensional spectral wave action density, N( f, �)
E Two-dimensional spectral variance density, E( f, �)
F One-dimensional spectral variance density, F( f )
D(�) Dimensionless directional distribution at a particular frequency; integrates to unity
f1 and f2 Lower and upper bounds of a frequency integration
�0( f ) Mean wave direction, taken as the circular centroid of D(�), and denoted 	1( f ) in NDBC notation
�p( f ) Peak wave direction, the peak of D(�); generally not known, except in the context of a model of some sort
�0 Mean–mean wave direction, which has been integrated across some frequency range
m1( f ) Parameter related to directional spreading, denoted r1 in NDBC notation
a1, b1, a2, b2 Fourier coefficients
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2. Method

a. General strategy

1) GROUND TRUTH

Buoy data are the “ground truth” of this study—
specifically, National Data Buoy Center (NDBC) buoy
45007 in Lake Michigan. Directional buoys are often
the most cost-effective method of obtaining directional
data outside the surf zone. [In depths shallower than
around 150 m, three-element pressure gauge arrays and
p–u–v gauges can be cost-effective methods of obtain-
ing information that is essentially the same as that from
a heave-pitch-roll buoy. Additional elements in a pres-
sure gauge or wave staff array will yield higher-
resolution directional data; see Young (1994).]

2) NONDIRECTIONAL ACCURACY

We aim to perform a model validation in which di-
rectional characteristics are the primary focus. Usually,
when directional metrics are used in validation, they
are secondary, with the primary focus being wave
height, wave period, and—more rarely—frequency
spectra. Here, we want to devote most of our attention
to the directional issue. We do this by taking a modeling
system that has consistently good skill with regard to
nondirectional metrics.

3) CHALLENGE: PROBLEM COMPLEXITY

Our objective is to determine the feasibility of con-
ducting a quantitative directional validation of a long-
term hindcast. Anticipating that is a major challenge
even under the most favorable circumstances; we sim-
plify our case study by taking the following steps.

1) We use a lake as our test basin (Lake Michigan, Fig.
1); thus, the wave climate is dominated by windsea.
Mixed sea/swell states (identifiable as having mul-
tiple peaks) do occur (especially when the wind
shifts rapidly), but are uncommon. Certainly, old
swells do not occur.

2) We use a model (SWAN) that has proven to be
skillful in predicting nondirectional spectra at this
scale, in wind sea-dominated cases (Rogers et al.
2003).

3) We make comparisons at only one location (at the
location of buoy 45007 in Fig. 1).

4) For model–data comparisons, we use a location near
the center of the lake. The depth is 165 m, which is
relatively deep water for the typical wave frequen-
cies in the lake. Thus, the impact of finite depth
physics is limited.

4) CHALLENGE: DESCRIBING FREQUENCY VARIATION

The primary challenge with quantitative directional
validation of a long time series is that a different set of
low-order moments exists for every frequency band.
That is one dimension. Combine that with the time
dimension, and the validation quickly becomes unman-
ageable. One can make a qualitative comparison by
plotting these moments as a function of time and fre-
quency, but our objective is to make quantitative com-
parisons. Thus, it is necessary to perform some kind of
integration in frequency space. Yet we cannot throw
out the frequency-wise variation of these moments al-
together, since (as was mentioned in section 1) one
objective of this study is to determine whether an op-
erationally used wave model adequately reproduces the
directional spreading as a function of frequency relative

FIG. 1. Lake Michigan, with depth contours (m) and NDBC
instrument locations shown.
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to the spectral peak. Thus, there are two competing
motivators: 1) the desire to make the problem more
manageable via frequency-wise integration of direc-
tional metrics and 2) the desire to describe the fre-
quency-wise variation in directional spreading.

Our approach is a compromise between these two
motivators. We retain frequency-wise bins, but use
fewer bins than are used in the model computational
grid:

1) 0.5–0.8 times the relative frequency f/fp (“low fre-
quencies”),

2) 0.8f/fp–1.2f/fp (“frequencies at and near the peak”),
3) 1.2f/fp–2.0f/fp (“frequencies above the peak”), and
4) 2.0f/fp–3.0f/fp (“highest frequencies”).

5) CHALLENGE: DEFINING THE PEAK FREQUENCY

To quantify the variation of the directional spreading
as a function of relative frequency, it is obviously nec-
essary to define the peak frequency. Though this may
sound simple, it is subject to problems, since even in a
region like Lake Michigan, with its typically simple sea
states, peak frequency can be a rather unstable quan-
tity, with significant model–data mismatch being not
uncommon. Obviously, it is very problematic to com-
pare model directional spreading as a function of mod-
eled relative frequency to observed directional spreading
as a function of observed relative frequency in cases
where the modeled and observed peak frequencies are
very dissimilar. Model predictions of mean period tend
to be more reliable and much more stable. To address
this, we use a “synthetic peak period,” which is a simple
function of the mean period. The relation is determined
using a simple linear regression of the two metrics for
the time period of the hindcast described in section 5
below. The mean period is calculated over the fre-
quency range of 0.07–0.4 Hz. For the modeled values,
the result of the regression is

Tp � 1.2142Tmean � 0.7126.

For the buoy, the regression is

Tp � 1.2325Tmean � 0.7051.

In subsequent discussions, Tp and fp refer to this syn-
thetic peak period except in one case where it is explic-
itly stated that the “true” peak period is presented.

6) CHALLENGE: AVOIDING PARAMETRIC MODELS

AND DATA-ADAPTIVE METHODS

It was mentioned in section 1 that one objective is to
avoid using a parametric model (e.g., the cos2s model)
or a data-adaptive method (e.g., MLE and MEM) to

infer directional characteristics from the buoy data. The
solution is simply to use only variables directly ex-
tracted from what the buoy measures: we transform the
model to yield quantities analogous to what the buoy
measures. This approach has been taken by others; for
example, Ardhuin et al. (2003). The specific calcula-
tions are described in section 2b.

b. Definition of directional metrics

There exists a separate directional distribution func-
tion for each frequency component that can be decom-
posed into a Fourier series:

D
 f, �� �
1
��1

2
� �

n�1

�


an cos
n�� � bn sin
n���� ,


1�

where

an
 f � � �
0

2�

D
 f, �� cosn� d� and 
2�

bn
 f � � �
0

2�

D
 f, �� sinn� d�.

The first four Fourier coefficients (a1, b1, a2, b2) can be
inferred from the signals measured by a heave–pitch–
roll directional buoy. This permits only an approxima-
tion from the truncated Fourier series (Longuet-
Higgins et al. 1963; Kuik et al. 1988), which is

D*
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2
� �
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an
 f � cos
n�� � bn
 f � sin
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3�

Unfortunately, Eq. (3) has limited utility for describing
D( f, �), since it is only accurate if the unmeasured,
higher-order Fourier components are very small. One
possible manifestation of this inaccuracy is negative val-
ues of D*( f, �). Parametric models (such as the cos2s

form) have been developed to yield more natural (and
thus presumably more accurate) representations of
D( f, �) given the measured low-order moments, but
these models give details of D( f, �) that are not actually
determinable from buoy motion. Further, at least one
commonly used data-adaptive method—the maximum
likelihood estimator—produces a D( f, �) that is incon-
sistent with the original cross-spectral matrix elements
(Oltman-Shay and Guza 1984). Kuik et al. (1988) sug-
gest “model free” expressions for mean wave direction
�0 and directional width ��. Kuik et al. also suggested
two higher-order statistics (skewness and kurtosis) that
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we do not use herein. All four statistics are expressible
as functions of the four Fourier coefficients [a1( f ),
b1( f ), a2 ( f ), b2( f )]. Mean wave direction is given as
�0( f ) � arctan[b1( f )/a1( f )]. Directional width is quan-
tified as the “circular RMS spreading”:

��
 f � � �2
1 � m1
 f ��, 
4�

where m1( f ) � �a1( f )2 � b1( f )2.
The calculation in reverse is a1 � m1 cos�0 and b1 �

m1 sin�0.
Real-time and historical data from directional Na-

tional Data Buoy Center (NDBC) buoys include esti-
mates of the low-order moments �0 and m1 (Steele et al.
1985).1 We will first discuss in detail the calculation of
the mean direction and then do the same for the direc-
tional spreading.

CALCULATION OF MEAN WAVE DIRECTION AND

DIRECTIONAL SPREADING

In the literature, the mean direction is the most com-
monly presented directional property of waves (e.g., in
maps of wave heights with arrows representing mean
direction). Models such as SWAN (Booij et al. 1999)
and WAVEWATCH-III (WW3; Tolman 1991, 2002)
directly calculate actual two-dimensional spectra E( f ),
�) and output-averaged �0 for frequencies f1–f2 calcu-
lated as

�0 � arctan�b1

a1
�, 
5�

where
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where E � �2�
0 � f2

f1
E( f, �)dfd�. (SWAN and WW3

are coded to output �0 only for f1 and f2 equal to 0 and
�, respectively.)

Now, we want to derive �0 based on a1, b1 from the
buoy’s measurements according to the SWAN–WW3
definition in (5). We use

a1 � �
f1

f2

a1
 f �F 
 f � df�E and

b1 � �
f1

f2

b1
 f �F 
 f � df�E, 
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where E � �
f1

f2

F 
 f � df.

Note that if we choose f1 and f2 as values close to fp, say
f1 � 0.9fp and f2 � 1.1fp, this is in practice very similar
to the “mean wave direction corresponding to energy of
the dominant period” (MWD) reported by NDBC and
to the “Dp” reported by the Coastal Data Information
Program (CDIP) (“mean direction from which energy
is coming at the peak period”). The use of a broader
band of frequencies makes the metric more stable, but
increases the risk that two distinct wave systems could
be integrated together.

As with mean direction, the directional spreading
�� � ��( f ). In this study, we use a weighted mean of ��

over particular frequency ranges. We denote this as ��.
To be consistent with our calculation of mean direction
(5), and with calculation methods of SWAN and WW3,
the form of the calculation of the mean directional
spread adopted in this paper is

�� � �2
1 � 
a1
2 � b1

2�1�2��1�2 
8�


WW3 uses f1 � 0 and f2 � ��.

With the model, a1 and b1 are calculated as in (6). For
buoy measurements, a1 and b1 are calculated as in (7).

3. An idealized case

Rather than move straight to the hindcast simulation,
we will first provide an idealized application, since the
idealized application is used as a point of discussion
when interpreting the hindcast results.

a. Introduction of nonlinear interaction
computation methods

One limitation of the dynamics used by third-
generation (3G) wave models is the highly simplified
DIA (Hasselmann et al. 1985) used to compute four-
wave nonlinear interactions in both models: the DIA
uses only a small subset of the possible resonant qua-
druplets. A software routine based on the Webb–
Resio–Tracy method (WRT; see Resio and Perrie 1991
and references therein) has been implemented in the
SWAN model by G. van Vledder, designated as “Xnl”
in the user’s manual. In contrast to the DIA, this

1 On notation used elsewhere: NDBC uses the notation “	1”
instead of “�0” (used by Kuik et al. and herein) and “r1” instead
of “m1” (used by Kuik et al. and herein). Further, the NDBC
definitions of the Fourier coefficients (a1, b1, a2, b2) [as used in
their literature such as Steele et al. (1985)] are dimensional,
whereas we use the Kuik convention of nondimensional Fourier
coefficients (a1, b1, a2, b2). The notation “	1” is useful, as it indi-
cates a relation to (a1, b1).
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method is essentially exact, but relatively time consum-
ing.

b. Simulation descriptions

An example application of this WRT subroutine is
shown in Fig. 2. The computation is with a “point
model,” implying either zero propagation or infinite
fetch: (�Cg,xN/�x) � (�Cg,yN/�y) � 0. First, a “spinup”
simulation was run using all three deepwater source
terms [DIA for nonlinear interactions, Tolman and
Chalikov (1996) for wind input and dissipation], a con-
stant wind speed of U10 � 18 m s�1, and a duration of
1 day. The resulting spectrum2 was used to initialize two
simulations that are identical except that one uses WRT
and the other DIA. These two simulations, also of
1-day duration, include only nonlinear interactions, to
lend insight regarding the effect of nonlinear interac-
tions on swell as it leaves its source. To summarize, the
following spectra are presented here:

1) the initial conditions for the other two simulations,
which is the final condition of the spinup simulation,
and which includes all three deepwater source–sink
terms, S � Sin � Sds � Snl4;

2) the final condition of a simulation, which includes
only four-wave interactions, S � Snl4, calculated us-
ing the WRT routine; and

3) the final condition of a simulation, which includes
only four-wave interaction, S � Snl4, calculated us-
ing the DIA routine.

Note that since this model does not include propaga-
tion, dispersion of the swell is not represented. The
effects of dispersion could be significant within 1 day,
depending on the size of the storm; this dispersion
would be expected to reduce wave steepness and there-
fore nonlinear interactions. The differences seen here
between the DIA and WRT models are qualitatively
consistent with computations of the nonlinear source
term by Hasselmann et al. (1985; e.g., see their Fig. 7).

c. Discussion of results

Figure 2 shows the nondirectional spectral density of
the three spectra (top panel) and the directional
spreading of the second and third spectra (bottom
panel). Since only three spectra are being presented
with no time dimension, it is not necessary to integrate
in frequency space, and the actual variation with fre-
quency at the model resolution is shown. Skewness and
kurtosis for the second and third spectra were also com-
pared, but the comparisons were not noteworthy and
are not presented here. The two-dimensional spectral
density distributions for the simulations with S � Snl4

are shown in Fig. 3. In this figure, both spectra have
been normalized by 1.19 m2 Hz�1 °�1, which is the
maximum of the third spectrum. Thus, the contours are
labeled relative to the peak of the larger spectrum. The
following observations can be made.

• Though it is not directly related to the subject matter
of this study, the effect of the inaccuracy of the DIA

2 The slight difference between the two initial conditions is due
to the difference in frequency resolution for the two simulations;
with the DIA method, a logarithmic distribution with fi � 1.1fi�1

is preferred and with the WRT method, a higher resolution is
preferred; we use fi � 1.07fi�1 (48 frequency bins from 0.0418 to
1.0 Hz).

FIG. 2. Nondirectional spectral density distributions for the ide-
alized simulations and circular rms spreading for the simulations
with S � Snl4. The vertical lines in the bottom panel indicate the
peak frequencies of each model.

FIG. 3. Directional spectral density distributions for the S � Snl4

idealized simulations: (top) the WRT (Xnl) and (bottom) the
DIA results.
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on frequency downshifting is seen clearly in the spec-
tral density plot.

• The inaccuracy of the DIA is leading to slightly too
narrow a directional distribution at the low frequen-
cies, slightly too broad a distribution near the peak,
and clearly too broad spectra above the peak, most
noticeable beyond 0.1 Hz.

• The directional spectrum plot (Fig. 3) gives an imme-
diate visual impression that directional spreading is
much greater with the DIA model; this is reflected
quantitatively in Fig. 2. However, the higher direc-
tional spreading is really apparent only in the lowest
energy contour (2% of peak), at the higher frequen-
cies.

4. A hindcast validation

a. Simulation description

The grid domain is shown in Fig. 1. The following
settings/features were identical to those of Rogers et al.
(2003).

• Cartesian coordinates were used, with grid spacing of
2 km.

• The lake bathymetry is provided by the National
Oceanic and Atmospheric Administration (NOAA)/
Great Lakes Environmental Research Laboratory.

• The directional resolution is 10°.
• The wind field is created using wind observations

from the two open-water buoys in Lake Michigan
(45002 and 45007), adjusted to 10-m elevation, with
linear interpolation in the latitudes, and no variation
in longitude.

• Default parameterizations for Sin, Sds, and Snl4 are
used, except that the power on the relative wavenum-
ber [denoted n in Rogers et al. (2003)] is set to 2.0.
(The default parameterizations in SWAN are that of
WAM, cycle 3, sometimes referred to in the literature
as “WAM3 physics.”)

The following settings/features are different from
those of Rogers et al. (2003).

• Season hindcast covers 0000 UTC 1 September–0500
UTC 14 November 2002.

• The frequency grid is logarithmic, with 29 frequencies
from 0.07 to 1.0 Hz.

• Since 1 September 2002 was relatively calm, only a
very short “ramp” time was needed (6 h), so the com-
parisons to the data start at 0600 UTC 1 September.

• A time step of 6 min is used.
• The version of SWAN used is 40.41A (Booij et al.

2005).

The physical parameterizations used are not tuned
for this simulation or for this area; rather, they are the
same as those used in the SWAN forecasting systems
run at NRL for other areas.

b. Simulation results

The primary focus of the study is the accuracy of the
predictions of directional spreading in the hindcast.
However, results of any validation of directional
spreading will be much more meaningful if it is first
shown that the nondirectional spectra and the mean
direction are well predicted. Thus, we present results
other than the directional spreading before making the
comparisons of directional spreading.

1) RESULTS: NONDIRECTIONAL SPECTRA AND

MEAN WAVE DIRECTIONS

To provide a sense of the length of the simulation
and how many events are being verified, a time series of
zero-moment wave height Hm0, at buoy 45007, is shown
in Fig. 4. These wave heights are also compared to data
in scatterplot form, along with the mean period, the
mean-mean wave direction, and the true peak period,
in Fig. 5.3 Statistics associated with the comparison are
indicated in the plots. The wave height and mean pe-
riod are for the frequency range 0.07–0.4 Hz (essen-
tially the entire spectrum). The mean–mean wave di-
rection is the mean wave direction integrated over 0.8
fp–1.2fp using (5), so it is a stable metric of the mean
direction near the peak frequency. By the standards of
a wave model that uses only wind forcing, the agree-
ment is very good for all four metrics. The good pre-
diction of the wave height and mean period suggests
that the nondirectional wave spectra F( f ) are fairly
well predicted. This provides confidence that the hind-
cast is suitable for detailed study of the accuracy of the
prediction of the directional spreading. Some bias is
evident in the prediction of the mean period, indicating
a problem with overestimation of energy below the
peak or underestimation of energy above the peak, or
both.

Even with excellent agreement in the three nondi-
rectional parameters, there can still be problems with
the frequency width that are not revealed. Thus, we
present in Fig. 6 time-collocated scatterplot compari-
sons of the energy level in the four frequency bands
described in section 2, quantifying the bias and random

3 In the case of the peak period, the density of occurrence is
plotted rather than individual points, since discrete peak period
values tend to overlay each other.
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error in each band. The “partial wave height” pre-
sented in Fig. 6 is calculated from the variance (i.e.,
energy) of the wave spectrum over a frequency range
defined by lower and upper bounds f1 and f2: Hm0,partial

� 4��partial and �partial � �f2
f1

F( f )df, the “partial vari-
ance.” (The fictitious quantity Hm0,partial is used rather
than variance, since wave height is more intuitively un-
derstood.) A time-averaged nondirectional spectrum
F( f /fp) is shown in Fig. 7. This is created by using 24 f/fp

bins instead of 4. Since it is time averaged, it quantifies
bias only. The robust feature in Figs. 6 and 7 is an
overestimation of energy below the spectral peak, thus
explaining the modest positive bias in the mean period.
Interestingly, the model–data comparison here is quali-
tatively very similar to the F( f ) comparison for the
idealized case (Fig. 2, top panel). This similarity sug-
gests that the overprediction of low-frequency energy
in Fig. 7 is at least partially attributable to inaccuracy
associated with the DIA. The problem can be compen-
sated for by reducing the weighting on the relative
wavenumber in the Komen et al. (1984) Sds formulation
used by SWAN, but this would only shift the positive
bias to the frequencies above the peak: this has been
verified by repeating the hindcast with a weighting of
n � 1.5 instead of n � 2.0. [In SWAN, the default
setting is n � 1.0, but this setting consistently leads to
underprediction of the mean period in cases of wind
speeds up to 21 m s�1; for more detailed discussion of
this tuning parameter in SWAN, see Rogers et al.
(2003).]

In summary, low-frequency energy is overpredicted
by the model in the hindcast (bias � 9 cm, r � 0.64),
and this should be considered when evaluating direc-
tional spreading in this frequency range.

2) RESULTS: DIRECTIONAL SPREADING

(i) Scatterplot comparisons

The scatterplot comparisons of the mean directional
spreading �� are made in Figs. 8a and 8b. Figure 8a is a
simple scatterplot comparison of ��; statistics associ-
ated with the comparison are shown in each plot. In Fig.
8b, the horizontal axis is the buoy partial wave height
for the indicated frequency range, and the vertical axis
is the misfit in the mean directional spreading, ��,hc �
��,obs. There are fewer points in the highest-frequency
comparisons (2fp to 3fp) because the highest frequency
in the directional buoy data is 0.35 Hz; thus, there are
often no data available in this frequency range, depend-
ing on the value of fp. In all plots of the directional
spreading, “weak signal” data points are not included,
being defined as collocated values for which either the
buoy or modeled total wave heights (Fig. 5) are less
than 0.5 m.

We make the following observations.

• Low frequencies (0.6fp–0.8fp): SWAN underpredicts
spreading (bias of �24°) and there is much scatter
[�RMS � 27° and the scatter index (SI) � 0.52]. Note

FIG. 4. Time series of zero-moment wave height (hindcast vs observation). Wave heights
are calculated by integration of spectra from 0.07 to 0.4 Hz.
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that in this case, even the mean value for the “ground
truth” is not reliable; this is discussed in detail in
section 6.

• Frequencies near peak (0.8fp–1.2fp): Random error is
smaller (�RMS � 6.5°), but still not as good as it is for
the other metrics (wave height, etc.). There is not a
discernable systematic error (bias � 1.2°). The agree-
ment is especially good for moderate and large wave
heights (Fig. 6b). Note that the buoy data are more
reliable for these moderate and large wave heights
(Anctil et al. 1993).

• Frequencies above the peak (1.2fp–2fp): SWAN does
not do a very good job of following the observations
(predicted spreading varies much less than the ob-

served spreading, r � 0.44), but error tends to be low4

(�RMS � 5.6°), and there is no significant systematic
error (bias � 2°).

• Highest frequencies (2fp–3fp): Like the prior fre-
quency range, SWAN does not do a very good job of
following the observations (r � 0.44): predicted
spreading is consistently close to 40°. However, again
the error tends to be low (�RMS � 4.5°), since the

4 Judgment of what constitutes “low” rms error in directional
spreading is necessarily subjective; it can be compared with ex-
pected measurement uncertainty. For substantiation—why this
level of random error might be considered “low”—see section 6.

FIG. 5. Scatterplot comparison of wave height, mean period, true peak period, and mean–mean wave direction
for the hindcast. The statistics listed are correlation coefficient (r), scatter index (SI), std dev of error (�SD), rms
error (�RMS), and mean error (bias). In the plot of true peak period, points are not plotted; instead, the density of
points is indicated by the size of the circles.
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observations, though they show more variation, are
also clustered near 40°.

(ii) Time-averaged comparisons

To perform time averaging, the hindcast and ob-
served directional spreading are calculated over smaller
frequency bins of 0.1fp (so the bins are 0.5fp, 0.6fp, . . . ,
2.7 fp, 2.8fp). To enhance stability, the integration to
calculate �� is performed over a �0.1 fp range, so points
are used more than once, similar to a moving average
comparison. A simple time averaging is used (i.e., the
values are not weighted). The resulting distributions
are shown in Fig. 9, along with the empirical parametric
model of Donelan et al. (1985), which was extended by
Banner (1990) [see also Young (1999), Eq. (5.66)].

At the lower frequencies, directional spreading of the

buoy is approximately 60% higher than that of either
the parametric model or the numerical model. At the
highest frequencies, the directional spreading of the
parametric model is approximately 25% higher than
that of the buoy and the numerical model.

5. Summary of results regarding bias in
directional spreading

Our reading of the literature—specifically, Khande-
kar et al. (1994), Forristall and Ewans (1998), Forristall
and Greenwood (1998), Cardone and Resio (1998),
Wyatt et al. (2003)—gave us the impression that third-
generation wave models such as WAM have a fairly
consistent tendency to overpredict directional spread-
ing. In Forristall and Greenwood (1998) (and see also

FIG. 6. Comparison of “partial wave height” (m), describing the energy level in the four frequency bands
described in section 2.
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Cardone and Resio 1998), the problem is quite reason-
ably attributed to inaccuracy associated with the DIA
approximation of nonlinear interactions used in third-
generation wave models.

In this section we consider the results of the hindcast
together with those of the idealized simulations and
contrast both to our prior expectations. For the ideal-
ized simulations, a model with exact calculations of
nonlinear interactions is taken as “ground truth” while
for the hindcast, buoy data are taken as ground truth.

The comparison

Low frequencies: Our prior expectation was that the
model directional distribution would be too broad,
but in the long hindcast, the model directional
spreading is narrow relative to the ground truth. In
the idealized case the “model” is close to the
ground truth (only slightly too narrow).

Near the peak: Our prior expectation was that the
model directional distribution would be too broad,
but in both the idealized case and the long hind-
cast, the average model directional spreading is
quite close to that of the ground truth.

High frequencies: Our prior expectation was that the
model directional distribution would be too broad.
The idealized simulation supports this, but in the
long hindcast, the average model directional
spreading is quite close to that of the ground truth.

As a sort of a disclaimer, we refer above to other
third-generation wave models used in prior studies. We
do not imply that, had we used another 3G wave model
in our hindcast, our results would be the same. We are
contrasting our results with our prior expectations. Just

as biases in predictions of nondirectional moments
(e.g., wave height, mean period) are obviously sensitive
to a model’s source–sink formulations (wind input, dis-
sipation, etc.), biases in predictions of directional width
��( f ) should be expected to be sensitive to these for-
mulations.

6. Discussion

a. Accuracy of mean direction in turning winds

Comparisons of mean wave directions for this hind-
cast simulation show rather good accuracy overall. The
response of a 3G wave model to rapidly turning winds
is a concern. We do not specifically address this prob-
lem here, but we do not mean to imply that it is not an
area in which the models may bear significant improve-
ment.

b. Fetch geometry

The influence of the fetch geometry is represented
within the formulation of third-generation wave models
such as SWAN. Thus, it is presumed that the observed
and modeled spectra are both influenced by the geom-
etry of Lake Michigan. Ataktürk and Katsaros (1999, p.
643), cite a large reduction in wave energy—modeled
and observed—associated with the narrow width of
Lake Washington. Since it is a relatively large lake, this
effect is expected to be much less pronounced in Lake
Michigan, perhaps more comparable to the Lake On-
tario observations cited in Ataktürk and Katsaros
(1999), which are from Donelan et al. (1985).

c. The challenge of mixed seas and swells

In the case of mixed seas and swells, the challenge of
directional validation is much greater. The location of
our hindcast was deliberately chosen to avoid this ad-
ditional complexity. Frequency-wise integration intro-
duces the risk of mixing multiple components (e.g., seas
and swells). A frequency-integrated metric (e.g., mean
direction or directional spreading) that includes mul-
tiple wave systems is of dubious value. Under such cir-
cumstances, in order to present the type of comparison
made here (e.g., in Figs. 6 and 7), the windsea compo-
nent must be identified and separated from the swell
components.

Methods for separating individual sea and swell com-
ponents in a wave spectrum exist in the literature (e.g.,
Beal 1991; Gerling 1992; Komen et al. 1994; Hanson
and Phillips 2001). Thus, it is theoretically possible to
compare measured and observed wave spectra in a
component-wise fashion (Hanson and Jensen 2004).

FIG. 7. (top) Time-averaged nondirectional spectrum F( f /fp).
(bottom) Number of time records used to create a time average at
each of the 24 f/fp bins.
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Unfortunately, due to model limitations, it is not un-
common to have a swell system that exists in observa-
tions but not in the model spectra, or vice versa. In this
case, validation of the directional spreading is obviously
not possible.

Based on our experiences, we expect that a valida-
tion such as was performed here would be difficult for
an exposed coastline, with frequent mixed sea–swell
conditions. In such a case, some compromise is prob-
ably necessary. By way of summary, two possible com-
promises are to either

1) consider a shorter time period, so that qualitative
comparisons can be made, for example by graphing
�� � ��( f, t) and E � E( f, t), or

2) separate the windsea from swell components, and
validate the directional spreading of the windsea
component.

Of course, it is possible to evaluate the directional
spreading of swell components also. This was done for
observational data by Ewans (2001). However, if the
objective is to evaluate generation-stage source–sink
terms, study of the directional spreading of the windsea
seems to be the most direct approach.

d. Sensitivity of results to method of calculation of
peak frequency

It is well accepted (e.g., Donelan et al. 1985; Banner
1990) that a typical windsea directional distribution will

FIG. 8. (a) Scatterplot comparisons (hindcast vs observation) of mean directional spreading (°) over four fre-
quency ranges. (b) Scatterplot comparisons (hindcast vs observation) for four frequency ranges. The horizontal axis
is the buoy partial wave height for the indicated frequency range, and the vertical axis is the misfit in mean
directional spreading (hindcast � observed).
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tend to be most narrow somewhere near the peak fre-
quency. The most natural way to analyze this behavior
(or lack thereof) in a model and collocated observa-
tions is via normalization of the results by peak fre-

quency, as is done here. However, this does introduce
some ambiguity. There are multiple options regarding
which peak frequency to use (model peak, buoy peak,
or some combination), and one can expect that results
will demonstrate some sensitivity to this choice unless
fairly broad frequency bands (e.g., the four bands used
in Figs. 6 and 8) are used. With small frequency bands
very near the spectral peak (say, 0.95–1.05 fp),
one should not be surprised if even the sign of the bias
is not robust. Thus, it is critical to use consistent meth-
ods when intercomparing statistics from different hind-
casts.

e. Consideration of uncertainty in observations

It is useful to put the model–data misfit in the context
of measurement error. Quoting Voorips et al. (1997),
“Observation errors consist of instrumental errors, er-
rors due to the random variability of the spectrum and
limited sample time, and representation errors. Repre-
sentation error is the difference between what the buoy
actually measures . . . . and its model equivalent.” Sta-
tistical error—determined by degrees of freedom—has
been successfully incorporated into a validation of non-

FIG. 8. (Continued)

FIG. 9. Comparison of time-averaged results (model and obser-
vation) with the parametric model of Donelan et al. (1985) and
Banner (1990). The bottom panel shows the number of time
records used to create a time average for the model and buoy data
at each of the 17 f/fp bins.
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directional spectra by Alves et al. (2002). Unfortu-
nately, no such method exists that accounts for the total
error, since this is not defined, at least not in the context
of spectral density from 3-m discus buoys.

Kuik et al. (1988) estimate the confidence limits on
directional moments based on statistical uncertainty; in
terms of rms error, they are 5°–10° for mean direction,
10%–15% for directional width, 30%–50% for skew-
ness, and 25%–100% for kurtosis (see also Anctil et al.
1993). So, 0.10–0.15 can be compared with the scatter
index values given in Fig. 8a.

Measurement of long, low-amplitude waves by buoys
is problematic due to the weak acceleration or slope
signal against the background noise. However, we do
not know of any arguments that this may manifest itself
as bias in the spectral density. In contrast, it has been
shown by Kuik et al. (1988) that low levels of noise in
the surface elevation or slope will cause a positive bias
in the directional spread (see also discussions in
O’Reilly et al. 1996). In the case of the low frequencies,
the directional spreading of the buoy used as ground
truth in the hindcast herein is almost certainly too high.
This behavior is consistent with the overestimating of
the directional spreading of swells by NDBC 3-m dis-
cuss buoys, as reported by O’Reilly et al. (1996) (a 6°
bias, with the metric integrated over 0.06–0.14 Hz).

To summarize, in the model–buoy comparisons
herein, bias below the spectral peak is evident both in
the spectral density F( f ) and the directional spread
��( f ). Bias in ��( f ) below the peak cannot be defini-
tively attributed to the model, whereas bias in F( f )
below the peak is credibly attributed to the model.

f. The high-frequency cutoff in the idealized
simulations

The WAVEWATCH-III and WAM models employ
a diagnostic tail above a prescribed frequency relative
to the spectral peak frequency. Banner and Young
(1994) point out that removal of this tail has dramatic
consequences on all quantities derived from the wave
spectrum. SWAN, however does not employ a self-
adjusting high-frequency cutoff, and in the idealized
simulations herein, we use a high frequency cutoff fixed
at 1.0 Hz, which is in fact higher than the fixed cutoff
frequency used by Banner and Young (1994). Thus,
there is less concern about the effect of the parametric
tail on the results presented. However, these same
simulations were performed with the WAVEWATCH-
III model (not shown herein), and the qualitative im-
pact of the nonlinear solver, WRT versus DIA, in this
simulation is similar regardless of which model is used
as the platform.

g. The impact of the nonlinear solver in a hindcast

Though we apply the WRT nonlinear solver in an
idealized scenario, it would be possible to apply it in a
shortened version of our Lake Michigan hindcast to
specifically study the impact of the inaccuracy of the
DIA. Presuming that the WRT-based model would
have narrower spreading in high frequencies (vs. the
DIA-based model), we can reasonably expect that the
WRT-based method would underpredict the directional
spreading in the high frequencies in this hindcast. Ob-
viously, this indicates a situation in which a model (the
DIA-based model) is correct for the wrong reasons.
Indeed, if this pattern is systematic (observed in other
hindcasts), it would justify a retuning of the directional
spreading of the wind input term in SWAN to create
broader directional spreading in the high frequencies
with the WRT-based model. We believe that in any
case, a move to more accurate calculations of nonlinear
interactions will necessitate retuning of the other two
deepwater source–sink terms.

In fact, a hindcast with a WRT-based model has been
performed recently (F. Ardhuin 2005, personal commu-
nication), which suggests that DIA does lead to broader
directional spectra in the higher frequencies, compared
to a model with exact nonlinear computations. With the
WAM3 physics (also employed in the present study),
the DIA-based model tends to be too broad overall and
the WRT-based model tends to be too narrow, in the
higher frequencies, compared to observations. Further,
an interesting question is raised by the authors of that
study: whether modeled directional spreading is sensi-
tive to directional spreading of the Sin term, or con-
trolled solely by the Snl4 term. Further, our experience
is that modeled directional spreading is sensitive to the
Sds term: we have verified that our a priori choice of the
weighting on the relative wavenumber in Sds (section
4a) does affect the bias statistics presented in Fig. 8.
Arguments exist in the literature that high-frequency
directional spreading in nature is controlled solely by
the Snl4 term (Young and Van Vledder 1993; Banner
and Young 1994; Young et al. 1995).

h. Potential subsequent work

A subsequent, more ambitious directional validation
exercise might be of longer duration, with multiple ob-
servational points, and might also consider higher-
order moments: skewness and kurtosis.

7. Conclusions

In an enclosed basin such as Lake Michigan, it is
demonstrated herein that it is possible to quantitatively
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validate directional characteristics—mean direction
and directional spreading—of a relatively long wave
model hindcast. Further, buoy observations can be used
in such a validation without applying a parametric
model (such as the cos2s model) or a data-adaptive
method (such as the MLE or MEM) to the observa-
tions. Populations of model–observation pairs such as
the scatterplot comparisons herein are readily con-
densed to statistics such as root-mean-square error,
bias, and standard deviation of error, so it is feasible to
present directional validations for multiple locations
within limited space, such as a journal article.

Due to the considerable added complexity associated
with mixed sea–swell conditions, it is not as straightfor-
ward to perform a validation in this manner on an ex-
posed coastline. Some sea–swell separation algorithm
would need to be applied.

In addition to the validation of the long hindcast, a
pair of idealized simulations is presented herein to aid
in the interpretation of the results. The two idealized
simulations differ in their methods of calculating the
nonlinear interaction [essentially an exact method
(WRT) versus an operational method (DIA)]. Consid-
ering both the hindcast validation and the idealized
simulations, we find the following about the bias char-
acteristics.

• At frequencies below the spectral peak, in both the
idealized case and the long hindcast, the model di-
rectional spreading is narrow relative to the ground
truth. In the case of the hindcast, however, the signal-
to-noise ratio of the ground truth may be poor at
these low frequencies. In the example of the idealized
case, the bias is very slight. In both cases, model en-
ergy is overpredicted in this frequency range, limiting
the validity of the comparison of the directional
spreading.

• Near the peak frequency, in both the idealized case
and the long hindcast, the average model directional
spreading is quite close to that of the ground truth.

• At frequencies above the spectral peak, the model in
the idealized simulation is too broad relative to the
ground truth, but in the long hindcast, the average
model directional spreading is quite close to that of
the ground truth.

Regarding statistics other than bias, in the long hind-
cast at all frequency bands, model–data agreement is
not favorable except in high-energy conditions.
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