
Comput. Methods Appl. Mech. Engrg. 195 (2006) 571–587

www.elsevier.com/locate/cma
In search of a consistent and conservative
mass flux for the GWCE

T.C. Massey *, C.A. Blain

Naval Research Laboratory, Oceanography Division Code 7322, Stennis Space Center, MS 39529, USA

Received 25 August 2004; accepted 25 February 2005
Abstract

Two methods for computing local mass flux for a continuous Galerkin finite element formulation of the Generalized

Wave Continuity Equation (GWCE) are derived and a third method is discussed in light of the first two. The GWCE

is shown to not conserve mass locally, while it can be shown to conserve a certain quantity locally. The two derived

methods are demonstrated for a realistic tidal flow problem in the Bight of Abaco, Bahamas.
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1. Introduction

The need to preserve conservation within the discrete representation of a governing conservation law is

not in dispute. There are however, several ways by which the conservative properties of a particular algo-

rithm can be evaluated. For more than a decade, the locally conservative properties of continuous Galerkin

(CG) finite element formulations of the shallow water equations have been in question, see [16,12,2]. In par-

ticular mass imbalances were first observed independently in 1992 by Kolar and Westerink [9] in transient

solutions obtained using the Generalized Wave Continuity Equation (GWCE) form of the primitive mass

conservation law. These collective experiences have led to the conclusion that CG-based finite element solu-
tions are not locally conservative. The mass error used to evaluate local conservation in these applications

to date has typically been computed element-wise using a volumetric approach by which the discrete form

of the primitive conservation law is formulated using physical arguments, see [8] for example. While
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conceptually satisfying, this approach is inconsistent with the finite element basis and equations used to

solve the GWCE itself as brought to light by Berger and Howington [3] and Hughes et al. [6]. In their work,

Berger and Howington [3] show how to define partial fluxes in such a way as to be consistent with the local

CG conservation statement. They also argue that with this definition of the partial flux, the CG method can

be seen as locally conservative when applied to conservation laws. In recent work by Hughes et al. [6], they
derive an appropriate post-processing technique that through expansion of the basis of the solution, results

in a CG finite element solution that is locally conservative, i.e. on each element the conservation statement

being approximated is satisfied exactly by the discrete solution. Hughes et al. [6] demonstrate that the CG

method is not only globally conservative but is also locally conservative when using a strictly consistent

means for evaluating conservation. To be clear, when checking mass balance, we say that a method is con-

sistent, if it enforces mass balance in the same manner that is prescribed by the discrete equations which are

solved, this includes using the same set of equations and the same basis functions as the solution itself uses.

One important distinction regarding the analyses of both Hughes et al. [6] and Berger and Howington [3]
is that they are relevant to the primitive form of the continuity equation. Of particular interest here is local

conservation with respect to a GWCE-based shallow water equation model. So, in light of the work of

Hughes et al. [6] and Berger and Howington [3], we endeavor to examine the local conservation properties

of the GWCE by constructing fluxes that are consistent with the CG statement for the GWCE, which is not

an explicit conservation law. In doing so we show that the GWCE is not locally mass conservative,

although it is locally conservative with respect to certain quantities.

The remainder of the paper is organized as follows: In Section 2 we briefly go through the derivation of

the GWCE and cast it into an element level statement of the problem. In Section 3 we derive and discuss
three ways of computing local mass fluxes. In Section 4 we give a numerical example of our local mass

fluxes and the resulting local mass balance calculations. We conclude the paper with a summary of our find-

ings and acknowledgments.
2. Derivation of the GWCE for ADCIRC

We wish to derive a consistent method of computing mass flux for the two-dimensional coastal circula-
tion model known as ADCIRC, see [11,13]. ADCIRC solves the generalized wave continuity equation

instead of the primitive form of the vertically-integrated continuity equation which is given as
oH
ot

þ o

ox
ðUHÞ þ o

oy
ðVHÞ ¼ 0; ð1Þ
where U ; V ¼ 1
H

R f
�h u; vdz is the depth-averaged velocities in the x, y directions; u, v is the vertically-varying

velocities in the x, y directions;H = f + h is the total water column thickness; h is the bathymetric depth; f is
the free surface departure from the geoid.

ADCIRC [11] and other CG finite element coastal circulation models, such as Lynch et al. [14], use the

GWCE instead of Eq. (1) as a means of controlling spurious 2Dx oscillations that can result from identical
basis functions being used for both elevation and velocity approximations, see [14,10]. One of the tradeoffs
is that local mass conservation is no longer explicitly enforced by the Galerkin finite element statement.

This does not present a problem in all situations of interest to the modeler, but when one wants to couple

the results from the circulation model to a transport model, local mass conservation is a must. Also, for 3D

computations, incorrect vertical velocity profiles can be attributed to the lack of local mass conservation in

the horizontal current fields, see Luettich et al. [12].

What follows is a summary of the theoretical formulation of the GWCE, originally developed by Kinn-

mark [7], as formulated and solved in the 2D/3D version of ADCIRC. The details of the derivation follow

closely those presented by Luettich and Westerink [13].
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To start we assume that we have a horizontal computational domain X � R2 and its boundary(ies) C,
from which we create a two-dimensional unstructured finite element mesh consisting of N nodes and M

non-overlapping triangular elements Dn such that no element crosses the physical boundary(ies) C andSM
n¼1Dn ¼ �X. Additionally at each node we are given a bathymetric depth h that varies linearly between

adjacent nodes. In order to derive the GWCE we begin by first differentiating Eq. (1) with respect to time
and assuming a time invariant bathymetric depth i.e. oH

ot ¼
of
ot

� �
, which leads to
o
2f
ot2

þ o
2

otox
ðUHÞ þ o

2

otoy
ðVHÞ ¼ 0. ð2Þ
Next we multiply Eq. (1) by the parameter s0 which may be variable in space, and add the result to Eq.
(2) to get
o2f
ot2

þ s0
of
ot

þ o2

otox
ðUHÞ þ s0

o

ox
ðUHÞ þ o2

otoy
ðVHÞ þ s0

o

oy
ðVHÞ ¼ 0. ð3Þ
We use the chain rule and rearrange terms to get
o2f
ot2

þ s0
of
ot

þ o~Jx

ox
þ o~Jy

oy
� UH

os0
ox

� VH
os0
oy

¼ 0; ð4Þ
where
~Jx ¼
o

ot
ðUHÞ þ s0UH ð5aÞ

¼ oQx

ot
þ s0Qx ð5bÞ

¼ H
oU
ot

þ U
of
ot

þ s0UH ; ð5cÞ

~Jy ¼
o

ot
ðVHÞ þ s0VH ð6aÞ

¼
oQy

ot
þ s0Qy ð6bÞ

¼ H
oV
ot

þ V
of
ot

þ s0VH ; ð6cÞ
and Qx,Qy = UH,VH is the x,y-directed flux per unit width.
A weighted residual method is applied to Eq. (4) by multiplying each term by a weighting function /j, to

be defined later, and integrating over the horizontal computational domain X
o2f
ot2

;/j

� �
X

þ s0
of
ot

;/j

� �
X

þ o~Jx

ox
;/j

� �
X

þ o~Jy

oy
;/j

� �
X

� UH
os0
ox

;/j

� �
X

� VH
os0
oy

;/j

� �
X

¼ 0.

ð7Þ

We then integrate by parts the terms involving ~Jx and ~Jy and use Eqs. (5b) and (6b) to get a weak form of

Eq. (7),
o
2f
ot2

;/j

� �
X

þ s0
of
ot

;/j

� �
X

� ~Jx;
o/j

ox

� �
X

� ~Jy ;
o/j

oy

� �
X

� UH
os0
ox

;/j

� �
X

� VH
os0
oy

;/j

� �
X

þ
Z

C

oQN

ot
þ s0QN

� 	
/joC ¼ 0; ð8Þ
where QN = [Qx,Qy] Æ N is the outward flux per unit width normal to the boundary C.
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ADCIRC in its present formulation makes use of the non-conservative form of the vertically-integrated

momentum equations given as
oU
ot

þ U
oU
ox

þ V
oU
oy

� fV ¼ �g
o f þ P s

gq0
� ag


 �
ox

þ ssx
Hq0

� sbx
Hq0

þMx

H
� Dx

H
� Bx

H
; ð9aÞ

oV
ot

þ U
oV
ox

þ V
oV
oy

� fV ¼ �g
o f þ P s

gq0
� ag


 �
oy

þ ssy
Hq0

� sby
Hq0

þMy

H
� Dy

H
� By

H
; ð9bÞ
where f is a Coriolis parameter, g is the acceleration due to gravity, q0 is the reference density of water, a is
the effective Earth elasticity factor, g is the Newtonian equilibrium tidal potential, Ps is the atmospheric
pressure at the sea surface, ssx, ssy are imposed surface stresses, sbx, sby are bottom stress components,

Mx, My are vertically-integrated lateral-stress gradients, Dx, Dy are momentum dispersion, Bx, By are

vertically-integrated baroclinic-pressure gradients.

Now, if we substitute Eqs. (9) into Eqs. (5c) and (6c) and isolate the linear free surface gravity wave

terms for computational reasons, see for example Haidvogel [4], we get
~Jx ¼ Jx � gh
of
ox

; ð10aÞ

~Jy ¼ Jy � gh
of
oy

; ð10bÞ
where
Jx ¼� Qx
oU
ox

þ�Qy
oU
oy

þ fQy �
g
2

of2

ox
� gH

o
P s
gq0

� ag


 �
ox

þ ssx
q0

� sbx
q0

þMx � Dx � Bx þ U
of
ot

þ s0Qx; ð11aÞ

Jy ¼� Qx

oV
ox

þ�Qy

oV
oy

þ fQx �
g
2

of2

oy
� gH

o
P s
gq0

� ag


 �
oy

þ ssy
q0

� sby
q0

þMy � Dy � By þ V
of
ot

þ s0Qy . ð11bÞ
Substituting Eqs. (10) into Eq. (8) and rearranging terms, we arrive at the weighted residual weak form

of the GWCE that is solved by ADCIRC,
o2f
ot2

;/j

� �
X

þ s0
of
ot

;/j

� �
X

þ gh
of
ox

;
o/j

ox

� �
X

þ gh
of
oy

;
o/j

oy

� �
X

� Jx;
o/j

ox

� �
X

� Jy ;
o/j

oy

� �
X

� Qx

os0
ox

;/j

� �
X

� Qy

os0
oy

;/j

� �
X

þ
Z

C

oQN

ot
þ s0QN

� 	
/joC ¼ 0. ð12Þ
We recast Eq. (12) from a global statement to a local, element-wise, statement, by considering node j

along with all nodes adjacent to it and the horizontal weighting function /j. The weighting function /j
is defined to be equal to one at node j and equal to zero at all other nodes such that /j varies linearly
between node j and the nodes adjacent to it, see Fig. 1. For future reference we define a finite element basis

space SN to be,
SN ¼ spanf/j; j ¼ 1 : Ng � H1ðXÞ; ð13Þ



j 

φj = 1 

φj = 0 

Fig. 1. Node j with adjacent nodes and the associated weight function /j.
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whereH1ðXÞ is the usual Sobolev space consisting of all functions such that the function and its first deriv-
atives are both square integrable over the domain X.
Two other important properties of the weighting function are that for any element with local node num-

bers i = 1, 2, 3 we have that the weight functions over that element sum to unity and the sum of the spatial

derivatives of the weight function over the element is zero,
X3
i¼1

/i ¼ 1; ð14aÞ

X3
i¼1

o/i

ox
¼ 0 ¼

X3
i¼1

o/i

oy
. ð14bÞ
At this time we define some additional notations associated with node j, An is the area of element n, NEj
is the number of elements containing node j, Dj

n is the local element number n which contains node

j, Xj ¼
SNEj

n¼1D
j
n is the union of all the elements containing node j, Cj is the boundary of Xj, Cj

n is the

total boundary of local element number n, ~C
j

n is a two edge inner-element partial boundary of element

Dj
n.

Using this new notation and the definition of /j we see that the integrations performed in Eq. (12) over
the entire domain X can be reduced to integrations over the patch Xj, which corresponds precisely with the
region over which /j5 0,
o2f
ot2

;/j

� �
Xj

þ s0
of
ot

;/j

� �
Xj

þ gh
of
ox

;
o/j

ox

� �
Xj

þ gh
of
oy

;
o/j

oy

� �
Xj

� Jx;
o/j

ox

� �
Xj

� Jy ;
o/j

oy

� �
Xj

� Qx

os0
ox

;/j

� �
Xj

� Qy

os0
oy

;/j

� �
Xj

þ
Z

Cj

oQN

ot
þ s0QN

� 	
/joCj ¼ 0. ð15Þ
We note thatR
Cj

oQN
ot þ s0QN

� �
/joCj ¼ 0 whenever node j does not lie on the physical boundary C, thus Eq. (15) is

equivalent to Eq. (12). Also due to cancellation
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Z
Cj

oQN

ot
þ s0QN

� 	
/joCj ¼

XNEj

n¼1

Z
Cj
n

oQN

ot
þ s0QN

� 	
/joC

j
n. ð16Þ
So we rewrite Eq. (15) using elemental notation as
XNEj

n¼1

o
2f
ot2

;/j

� �
Dj
n

þ s0
of
ot

;/j

� �
Dj
n

þ gh
of
ox

;
o/j

ox

� �
Dj
n

þ gh
of
oy

;
o/j

oy

� �
Dj
n

� Jx;
o/j

ox

� �
Dj
n

� Jy ;
o/j

oy

� �
Dj
n

� Qx

os0
ox

;/j

� �
Dj
n

� Qy

os0
oy

;/j

� �
Dj
n

þ
R

Cj
n

oQN

ot
þ s0QN

� 	
/joC

j
n

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼ 0; ð17Þ
which is the element level spatial discretization of the GWCE with respect to the weight function /j.
3. In search of a consistent and conservative flux

In this section we formulate two ways of computing local mass fluxes and the resulting computation of

mass error. We then discuss a third approach in light of the other two.

3.1. Finite volume flux

We begin with a simple and straightforward way of computing local mass fluxes and the resulting com-

putation of mass error. This method is commonly used, see for example [8,5,2], easy to compute and gives a

physically realistic mass flux, in that it is defined normal to an element�s edge. The local mass flux defined in
this section is akin to one used by Kolar et al. [8] except we do not integrate in time.

We introduce a new space Ŝ
M � L2ðXÞ, such that ŜM ¼ spanfwn : n ¼ 1 : Mg where wn(x,y) is equal to

one wherever (x,y) 2 Dn and zero everywhere else. We begin with a weak statement of the primitive form of
the continuity equation (1) over an arbitrary element Dn,
of
ot

;wn

� �
Dn

þ o

ox
ðUHÞ;wn

� �
Dn

þ o

oy
ðVHÞ;wn

� �
Dn

¼ 0; ð18Þ
where wnðx; yÞjDn
¼ 1. Next we integrate the second and third terms by parts and rearrange to get,� �
Z

Cn

QNwnoCn ¼ � of
ot

;wn
Dn

. ð19Þ
Thus, we define the first of our local mass fluxes, what we will call a finite volume flux, asZ

Pn
fv ¼

Cn

QNwnoCn. ð20Þ
We can evaluate this mass flux directly over any edge of any element using the computed finite element

solution. This mass flux is uniquely defined by the nodal values at the endpoints of an element edge, which

means that the edge flux from neighboring elements will differ only in sign, due to the outward normals.

However, this method is not consistent with the finite element statement solved in ADCIRC in that it is

derived from Eq. (1) rather than Eq. (17) which is solved by ADCIRC, furthermore, the weight function,
wn 2 Ŝ

M
is not part of the original basis space,SN . As a result local mass balance in the context of this flux

is not guaranteed, by this we mean that if we evaluate Eq. (19) directly from the GWCE-based computed

solution, we will not in general obtain equality.
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This method remains attractive because the resulting fluxes are physically realistic, it is easy to compute,

and as Kolar et al. [8] note, it is a good indicator of a methods ability to conserve mass.

3.2. A consistent flux

Since the finite volume flux is inconsistent with our finite element statement, we also consider a local

mass flux that is defined in a manner consistent with the finite element formulation of the GWCE. This

approach is similar to one proposed by Berger and Howington [3] for conservation laws in primitive form.

We seek to derive a consistent elemental flux from the discrete, local form of the GWCE given in Eq.

(17). In a fashion similar to that detailed by Berger et al. [3], we consider a node j and its adjacent neighbors

which form the patch Xj. We present in Fig. 2 an exploded view of the patch Xj, where we have extracted
element Dj

1 in order to show the edge fluxes along the inner element boundaries,
~C
j

1. Note that for conve-

nience we are using local element numbering.
We separate out the terms involving element Dj

1 in Eq. (17) and get
o
2f
ot2

;/j

� �
Dj
1

þ s0
of
ot

;/j

� �
Dj
1

þ gh
of
ox

;
o/j

ox

� �
Dj
1

þ gh
of
oy

;
o/j

oy

� �
Dj
1

� Jx;
o/j

ox

� �
Dj
1

� Jy ;
o/j

oy

� �
Dj
1

� Qx
os0
ox

;/j

� �
Dj
1

� Qy

os0
oy

;/j

� �
Dj
1

þ
Z

Cj
1

oQN

ot
þ s0QN

� 	
/joC

j
1

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

þ
XNEj

n¼2

o2f
ot2

;/j

� �
Dj
n

þ s0
of
ot

;/j

� �
Dj
n

þ gh
of
ox

;
o/j

ox

� �
Dj
n

þ gh
of
oy

;
o/j

oy

� �
Dj
n

� Jx;
o/j

ox

� �
Dj
n

� Jy ;
o/j

oy

� �
Dj
n

� Qx

os0
ox

;/j

� �
Dj
n

� Qy
os0
oy

;/j

� �
Dj
n

þ
Z

Cj
n

oQN

ot
þ s0QN

� 	
/joC

j
n

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼ 0. ð21Þ
Notice that since /j = 0 on Cj, evaluating the boundary integral in Eq. (21) over Cj
1 is equivalent to eval-

uating it over just ~C
j

1.

By examining the first bracketed expression in Eq. (21), we can ascertain the inherent definition of a flux

like quantity from the finite element statement, similar to what Berger and Howington [3] observed in their
∆
1
j  

∆
2
j  

∆
3
j  

∆
4
j  

∆
5
j  

∆
6
j  

j 

Γ
1
j  

Γ1
j~ 

~ ~ Γ 1
j  

Fig. 2. The patch Xj with, Dj
1 separated to show edge fluxes.
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work. Thus, we define a partial numerical ‘‘flux’’ P 1cj and its time rate of change of
_P
1

cj
through the interface

~C
j

1 as
_P
1

cj
þ s0P 1cj¼

: �

o2f
ot2

;/j

� �
Dj
1

þ s0
of
ot

;/j

� �
Dj
1

þ gh
of
ox

;
o/j

ox

� �
Dj
1

þ gh
of
oy

;
o/j

oy

� �
Dj
1

� Jx;
o/j

ox

� �
Dj
1

� Jy ;
o/j

oy

� �
Dj
1

� Qx

os0
ox

;/j

� �
Dj
1

� Qy

os0
oy

;/j

� �
Dj
1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
. ð22Þ
Here we assume that node j does not lie on the boundary C, otherwise we must adjust Eq. (22) so that we
use the appropriate boundary conditions set forth in the model specifications. We recognize the right hand
quantity is a function of time and thus treat Eq. (22) as an ODE that we numerically solve using Huen�s
method, which is second order accurate. For discussion purposes we present the analytical solution

P 1cjðtÞ, such that
P 1cjðtÞ ¼ e
�s0t

Z t

0

es0sW1
j ðsÞdsþ c; ð23Þ
where
W1
j ðtÞ ¼ �

o2f
ot2

;/j

� �
Dj
1

þ s0
of
ot

;/j

� �
Dj
1

þ gh
of
ox

;
o/j

ox

� �
Dj
1

þ gh
of
oy

;
o/j

oy

� �
Dj
1

� Jx;
o/j

ox

� �
Dj
1

� Jy ;
o/j

oy

� �
Dj
1

� Qx

os0
ox

;/j

� �
Dj
1

� Qy

os0
oy

;/j

� �
Dj
1

8>>>><
>>>>:

9>>>>=
>>>>;

ð24Þ
and c ¼ P 1cjð0Þ. For most applications, the water surface is initially at rest, so that c = 0. The quantity P
1
cj
ðtÞ

represents only a partial mass flux for element Dj
1, namely the contributions to the total flux associated with

node j. Thus to find the total mass flux for element Dj
1, we sum the partial fluxes associated with the vertices

of that element, P 1ðtÞ ¼
P3

j¼1P
1
cj
ðtÞ. It is not clear if this partial flux is physically realistic, certainly one can

not get the flux across a single edge of an element with this method.

Notice that the solution of (23) is over the time interval [0, t] while we are interested in the solution in the

time interval [tk�1, tk]. To obtain a time integration over the desired time interval we subtract subsequent

solutions, namely,
P 1BðtkÞ ¼ P 1ðtkÞ � P 1ðtk�1Þ; ð25Þ
and define P 1BðtkÞ as a local mass flux for element D1j at time tk.
To complete the derivation of Pn

B and to ensure consistency, we first must use the integration rules

employed by ADCIRC for the components of Wj(t), given in Table 1, whereby Wj(t) becomes
WjðtÞ ¼ �A1
12

X3
i¼1

ui;j
o
2fi
ot2

þ �s01
X3
i¼1

ui;j
ofi
ot

 !
� g�h1
4A1

bj
X3
i¼1

fibi þ aj
X3
i¼1

fiai

 !

þ 1
2

�Jx1bj þ �Jy1aj þ �Qx1

X3
i¼1

s0i
bi
3
þ �Qy1

X3
i¼1

s0i
ai
3

 !
. ð26Þ
Finally we note that in solving the GWCE, ADCIRC uses a weighted three step semi-implicit time dis-

cretization procedure at s � 1, s, and s + 1. All the time steps are uniform in size, i.e. Dt = ts � ts�1. The
time dependent quantities in Eq. (26) are approximated in the following way



Table 1

Relevant integration rules used in ADCIRC

o2f
ot2

;/j

* +
Dj
1

¼ A1
12

X3

i¼1ui;j
o2fi
ot2

s0
of
ot

;/j

� �
Dj
1

¼ A1�s01
12

X3

i¼1ui;j
ofi
ot

gh
of
ox

;
o/j

ox

� �
Dj
1

¼ g�h1
4A1
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o
2fi
ot2

¼ fsþ1i � 2fsi þ fs�1i

Dt2
; ð27aÞ

ofi
ot

¼ fsþ1i � fs�1i

2Dt
; ð27bÞ

fi ¼ a1f
sþ1
i þ a2f

s
i þ a3f

s�1
i ; ð27cÞ

�Jx1; �Jy1 ¼ �J s
x1;

�J s
y1; ð27dÞ

�Qx1; �Qy1 ¼ �Q
s
x1;

�Q
s
y1; ð27eÞ
where, a1, a2, a3, are the time weighting factors which are set by the user.
In terms of realizing perfect local mass conservation with this consistent flux, it is worth looking at the

analytical solution to the total flux for element Dj
1, prior to time discretization, i.e. Eq. (23). We assume for

the time being that s0 is constant on the element; this assumption is not prohibitive and is presently the
default case for historical simulations using ADCIRC. For each element, we sum the partial mass flux asso-

ciated with each node to get
P 1ðtÞ ¼
X3
j¼1

P 1cjðtÞ ¼
X3
j¼1
e�s0t

Z t

0

es0sW1
j ðsÞds ¼ e�s0t

Z t

0

es0s
X3
j¼1

W1
j ðsÞ

 !
ds. ð28Þ
Next we use the definition of W1
j ðtÞ and Eq. (14a) and (14b) to get
P 1ðtÞ ¼ e�s0t

Z t

0

es0s � o2f
os2

; 1

� �
Dj
1

� s0
of
os

; 1

� �
Dj
1

 !
ds. ð29Þ
Now we apply Leibniz�s rule to switch the order of integration and differentiation along with the assump-
tion that on the current element, s0 is constant, to obtain
P 1ðtÞ ¼ e�s0t

Z t

0

es0s � o

os
of
os

; 1

� �
Dj
1

� s0
of
os

; 1

� �
Dj
1

 !
ds. ð30Þ
We recognize that the integrand is a result of a product rule differentiation, so upon rearrangement we

get
P 1ðtÞ ¼ e�s0t

Z t

� o

os
es0s

of
os

; 1

� �
j

 !
ds. ð31Þ
0 D
1
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By the Fundamental Theorem of Calculus, Eq. (31) collapses to a statement of local mass conservation,

namely
P 1ðtÞ ¼ � of
ot

; 1

� �
Dj
1

. ð32Þ
Of course, when we do discretize Eq. (23) in time whereby we can no longer exactly perform the operations
done to get Eqs. (30)–(32), we should not expect perfect local mass conservation. This is mainly due to the

presence of numerical errors in the approximation of the second derivative of elevation with respect to time.

In Section 3.1 we developed a flux that is physically realistic, yet is not consistent with the finite element

formulation of our problem and hence does not guarantee local mass conservation. In Section 3.2 we devel-

oped a flux that is consistent with the finite element formulation, but may not be physically realistic and still

does not result in local mass conservation due to the required time discretizations. This leads us to examine

another option for determining a consistent local mass flux for the GWCE.
3.3. A post-processed flux

The final flux, a post-processed flux, will only be discussed in the context of the GWCE and follows the

ideas set forth in the work of Hughes et al. [6]. In their work, Hughes et al. [6] show another method for

defining local fluxes in such a way as to be consistent with the finite element state, see also Oshima et al.

[17]. As a result they are able to show that the continuous Galerkin finite element method when applied

to conservation laws like Eq. (1), is locally conservative. This is accomplished through a post-processing

of the original finite element statement. Their approach dispels a common and long held notion that the
CG method is only globally conservative.

Their basic idea is to solve the original finite element statement first, then define an auxiliary flux for the

global boundary, whereby they solve a modified finite element problem for this auxiliary flux. Once this is

complete they solve modified local finite element problems for element level fluxes. The modifications con-

sists of adding new boundary terms for the areas of interest, elements in our case. Furthermore, the original

basis space SN is enlarged by including all the weight functions wn in Ŝ
M
, when solving for element level

fluxes. Using this procedure, Hughes et al. [6] show that the resulting fluxes are locally and globally con-

servative. One consequence of solving the additional problem for the fluxes, they point out, citing Babuška
and Miller [1], is that these new fluxes have many desirable qualities about them, including superconver-

gence properties. Their work falls into a broader category of methods called ‘‘goal-oriented error estima-

tion’’ or ‘‘quantities of interest’’ see for example [19,18,15], where estimates are obtained for integral

functionals, such as mass flux in our case and lift or drag in aeronautical applications to list just a few.

By applying the ideas detailed in Hughes et al. [6] to the GWCE in an effort to preserve conservation and

consistency, we need to solve a system of equations for not only the mass flux but also the time rate of

change of the mass flux, e.g. quantities similar to those on the left hand side of Eq. (22). Both of these quan-

tities taken together are necessary to achieve local conservation and maintain consistency with the GWCE-
based finite element formulation. But what we desire is only the local mass flux. So a similar situation

presents itself to the one we had in Section 3.2 where an ODE was solved in order to extract the mass flux

quantity. The need to discretize in time would again result in a lack of local mass conservation.

As a word of caution, Hughes et al. [6] point out, that their post-processing technique is basically an L2
projection which can result in spurious oscillations near discontinuities. If spurious oscillations are reintro-

duced using such a post-processing technique, then we have defeated the purpose of using the GWCE in the

first place.

It is possible to use the ideas of Hughes et al. [6] to setup the post-processing procedure to solve for just
the mass flux, i.e. pretend we are solving Eq. (1). This approach results in a locally conservative mass flux,
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but is not consistent with the original equation solution from the GWCE and very well may reintroduce

spurious oscillations. Therefore, even considering the method of Hughes et al. [6], we are not able to satisfy

both consistency and local mass conservation for a GWCE-based model.

While the methodology laid down by Hughes et al. [6] for finding locally conservative fluxes is valuable,

the resulting flux is relatively expensive to compute and is an element averaged quantity which is not useful
for transport purposes. Furthermore, the lack of local mass conservation caused by the need to solve an

ODE for the flux and the possibility of reintroducing spurious oscillations through Eq. (1) are counterpro-

ductive. Thus, for these reasons we do not derive the flux as proposed by Hughes et al. [6] for the GWCE,

nor give any numerical examples of it.
Fig. 3. The (a) mesh and (b) bathymetry in meters, for the Bight of Abaco, Bahamas with selected stations marked with a �.

Fig. 4. For the Bight of Abaco, Bahamas: (a) Computed vorticity of the flow (1/s) at day 12.0 of the simulation with time-series

stations marked with a � and (b) the time-series of vorticity at each station from day 10.0 to 12.0.
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4. Numerical example

The finite volume flux, Pfv, and the consistent flux, PB, defined in the previous sections for the GWCE-

based finite element method employed by the coastal ocean circulation model ADCIRC, have been tested

for a realistic coastal flow problem. The results of this test are presented below in an effort to support the
analytical findings.

We present a realistic application for tidal circulation in the Bight of Abaco, Bahamas, which lies be-

tween the islands of Great Abaco to the east, Little Abaco to the north, and Grand Bahama to the west.

This region is a site of significant nonlinear tidal generation due to its isolation from deep offshore waters

(1000–2000 m) and its own very shallow depths. Tides propagate from open waters and are largely modified

by frictional dissipation and nonlinear tidal interactions within the Bight.
Fig. 5. For the Bight of Abaco, Bahamas: Computed (a) elevation (m), (b) magnitude of velocity (m/s), (c) magnitude of the x

component of velocity (m/s), and (d) magnitude of the y component of velocity (m/s) at day 12.0 of the simulation with selected stations

marked with a �.
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The basin is discretized by an unstructured triangular mesh using 1696 elements and 926 nodes, see Fig.

3a, such that the maximum element radius is 1750 m and the minimum element radius is 454 m (element

radius being defined as the radius of the circle that circumscribes the element). The bathymetry varies from

only 1.0 to 9.0 m as shown in Fig. 3b. Tidal forcings consisting of five primary constituents (K1, O1,M2, S2,

and N2) are applied at the open ocean boundary and are used to drive the 12-day simulation that includes a
5 day ramp period. A fixed time step value of 30 s. is used along with a GWCE parameter set to s0 = 0.01.
Lateral mixing effects are not considered.

For the Bight of Abaco simulation, the minimum and maximum elevation values over approximately

fourM2 tidal cycles (day 10 to day 12) were �0.3622 and 0.4594 m, respectively. The x component of velo-
city ranges (from�0.4212 to 0.3594 m/s) and the y component of velocity ranges (from�0.3734 to 0.3140 m/
s) with a resulting maximum magnitude of velocity of 0.4451 m/s. Fig. 5 presents a snapshot from day 12.0
Fig. 6. For the Bight of Abaco, Bahamas: Computed fluxes (a) Pfv, the finite volume flux, and (b) PB, the consistent flux, and their

corresponding mass accumulation terms (c) and (d) � of
ot ; 1
� �

at day 12.0 of the simulation; selected stations are marked with a �. Note
that (c) and (d) are the same quantities viewed at different color scales.



Table 2

Invariant mesh and bathymetric information relevant to each of the station locations for the Bight of Abaco, Bahamas

Station # Element area (km)2 Node # i Depth hi (m) khi � hjk1 (m) Nodal radius (m) Edge length (m)

1 2.7223 412 6.00 1.500 2687.4 2608.8

440 4.75 1.500 2608.8 2522.1

436 6.00 1.250 2687.4 2403.7

2 2.7083 792 3.75 0.500 2713.1 2534.5

813 3.50 0.250 2713.1 2713.1

809 3.25 0.500 2760.1 2304.9

3 2.7778 317 7.50 0.750 2833.3 2669.0

336 7.25 0.500 2713.1 2687.4

312 7.75 0.500 2833.3 2713.1
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Fig. 7. For the Bight of Abaco, Bahamas: Comparisons of the finite volume flux Pfv, the consistent flux PB, and the mass accumulation
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in m3/s for (a) station 1, (b) station 2, and (c) station 3.
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of the computed elevation, magnitude of the velocity, and values of the x- and y-velocity components over

the entire mesh, while Table 3 list the specific values of these quantities at the nodes of the three stations to be
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discussed in more detail later. We also show the corresponding computed two-dimensional vorticity of the

flow (1/s) in Fig. 4 for day 12.0.

For the same time period we present values of the local mass fluxes (m3/s), computed as the finite volume

flux, Pfv from Eq. (20) and the consistent flux PB from Eq. (25) along with their corresponding mass accu-

mulation terms � of
ot ; 1
� �

in Fig. 6. The color scales for Fig. 6a–c are fixed between �573 and 673 m3/s in
order to facilitate a direct comparison between the two flux measures. What is immediately obvious in

the computed flux terms is that no apparent pattern emerges for the consistent flux values PB, while the

finite volume flux Pfv seems to track the tidal propagation in and out of the basin as shown in Fig. 5. How-

ever, neither flux balances their respective mass accumulation term � of
ot ;wn

� �
, the consequence being that

local mass is not conserved. Notice that the largest mass accumulation values in Fig. 6d occur roughly

in the same regions where Pfv is largest in Fig. 6a. At these same locations the vorticity is also at its largest

magnitude as seen in Fig. 4a. The correspondence between vorticity and local mass imbalance with respect

to Pfv is discussed in more detail by Blain and Massey [2].
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Fig. 8. For the Bight of Abaco, Bahamas: Comparisons of the element-averaged (a) elevation (m), (b) magnitude of velocity (m/s),

(c) values of the x component of velocity (m/s) and (d) values of the y component of velocity (m/s) for each of the three stations.



Table 3

Information for the three stations at day 12.0 of the simulation for the Bight of Abaco, Bahamas

Station # Node # i fi (m) ui (m/s) vi (m/s)

1 412 4.9848e-02 �2.7433e-02 �1.2202e-01
440 5.0124e-02 �7.2452e-02 �1.2054e-01
436 5.2335e-02 �3.1919e-02 �1.2376e-01

2 792 1.0706e-01 �2.4113e-02 �7.3052e-02
813 1.0905e-01 �3.2615e-02 �7.2947e-02
809 1.1022e-01 �2.4024e-02 �6.6203e-02

3 317 4.5431e-02 3.1354e-03 �1.0572e-01
336 4.7007e-02 �3.1790e-03 �1.1093e-01
312 4.6062e-02 2.3181e-03 �1.0037e-01
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To examine the time behavior of these fluxes three stations are identified, see Fig. 3 for their locations,

based on the local mass imbalances computed for each type of local mass flux considered. The relevant

mesh and bathymetric details for each station are recorded in Table 2. Station 1 is an element having a high

local mass imbalance when using the finite volume flux, Pfv. By contrast, station 2 has a low mass imbalance

for either the finite volume, Pfv, or the consistent partial flux PB. Lastly, station 3 is an element that has a

high mass imbalance when using the consistent partial flux PB. The time series behavior for each of the two

fluxes at each station is shown in Fig. 7. Corresponding time series for the element averaged quantities of

elevation (m), values of velocity (m/s) and the values of the x and y components of velocity (m/s) are shown
in Fig. 8. Again, from Fig. 7, we see that neither of the computed fluxes balances the mass accumulation

term � of
ot ;wn

� �
at any of the station locations. Both fluxes appear to have the same phase yet slightly dif-

ferent shapes at the extrema. Both fluxes are also out of phase with the mass accumulation term � of
ot ;wn

� �
,

especially at stations 1 and 3 where the flux values clearly lead the mass accumulation. The larger values of

the finite volume flux, Pfv at station 1, are physically realistic based on a comparison of the velocity mag-

nitudes at each of the three stations. Station 1 has a velocity magnitude that is nearly one and half times the

magnitude of the velocity at the other two stations. Station 1 is also located within a region that experiences

a relatively steep gradient in bathymetry as depths drop dramatically beyond the shallow sill at the entrance
to the Bight of Abaco (see the nodal depths for station 1 in Table 2). Such steep bathymetric gradients are

known to result in larger mass imbalances, see Oliveira et al. [16].

This numerical example illustrates that the finite volume flux, Pfv, is physically realistic even though it is

not consistent with the finite element formulation. The finite volume flux is also a good indicator of where

local mass imbalances are likely to occur. Additionally, we have shown that the consistent flux, PB, is not

physically based and does not always predict regions where local mass imbalances would occur. We feel

that for the GWCE, the finite volume flux, Pfv, should be retained as an analysis tool.
5. Conclusions

We examined three ways of computing local mass flux and the resulting mass balance for the coastal

ocean circulation model, ADCIRC, which uses the GWCE in order to control 2Dx spurious waves. We
have shown that none of the fluxes discussed satisfy all three desired traits of being, physically realistic,

locally mass conservative, and consistent with the finite element statement being solved. We have shown

that the most straight forward way of computing fluxes, the finite volume flux, Pfv, gives physically realistic
results. We hope that this paper has added clarity to the concept of local conservation with respect to con-

tinuous Galerkin finite element statements.
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