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Abstract

In this paper we study the superconvergence of the discontinuous Galerkin solutions for nonlinear hyperbolic partial
differential equations. On the first inflow element we prove that the p-degree discontinuous finite element solution con-
verges at Radau points with an O(hp+2) rate. We further show that the solution flux converges on average at O(h2p+2) on
element outflow boundary when no reaction terms are present. For reaction–convection problems we establish an
O(hmin(2p+2,p+4)) superconvergence rate of the flux on element outflow boundary. Globally, we prove that the flux con-
verges at O(h2p+1) on average at the outflow of smooth-solution regions for nonlinear conservation laws. Numerical
computations indicate that our results extend to nonrectangular meshes and nonuniform polynomial degrees. We fur-
ther include a numerical example which shows that discontinuous solutions are superconvergent to the unique entropy
solution away from shock discontinuities.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The discontinuous Galerkin (DG) finite element method has been used to solve first-order hyperbolic
problems and is gaining in popularity. The DG method was first used for the neutron equation [24]. Since
then, DG methods have been used to solve hyperbolic [7–10,15,14,16,20], parabolic [17,18], and elliptic
0045-7825/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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[6,5,25] partial differential equations. For a more complete list of citations on the DG methods and its
applications consult [13]. A main advantage of using discontinuous finite element basis is to simplify adap-
tive p- and h-refinement with hanging nodes.

High-order, p > 0, DG solutions for nonlinear hyperbolic problems exhibit spurious oscillations near
discontinuities. These oscillations may be reduced by using either limiting [10,11] or shock capturing
[12,21] techniques that force the DG solution to converge to the unique entropy solution under mesh refine-
ment. Many techniques to suppress spurious oscillations have been suggested but none is totally successful.
From previous computational experience [1], we discovered that limiting can reduce spurious oscillations
near shock discontinuities but does not enhance superconvergence properties of the DG solution near
shocks. For these reasons, we restrict our superconvergence error analysis to the local error behavior in
smooth-solution regions.

Recently, Adjerid et al. [1] proved that smooth DG solutions of one-dimensional linear and nonlinear
hyperbolic problems using p-degree polynomial approximations exhibit an O(hp+2) superconvergence rate
at the roots of Radau polynomial of degree p + 1. They used this result to construct asymptotically correct
a posteriori error estimates. They further established a strong O(h2p+1) superconvergence at the downwind
end of every element. Krivodonova and Flaherty [22] proved a superconvergence result on average on the
outflow edge of every element of unstructured triangular meshes and constructed a posteriori error esti-
mates that converge to the true error under mesh refinement. Adjerid and Massey [4] extended these results
for multi-dimensional problems using rectangular meshes and presented an error analysis for linear prob-
lems and problems with a nonlinear reaction term. They showed that the leading term in the true local error
is spanned by two (p + 1)-degree Radau polynomials in the x- and y-directions, respectively. They further
showed that a p-degree discontinuous finite element solution exhibits an O(hp+2) superconvergence at
Radau points obtained as a tensor product of the roots of Radau polynomial of degree p + 1. For a linear
model problem they established that, locally, the solution flux is O(h2p+2) superconvergent on average on
the outflow element boundary and the global solution flux converges at an O(h2p+1) rate on average at the
outflow boundary of the domain. They used these superconvergence results to construct asymptotically
exact a posteriori error estimates for linear and nonlinear hyperbolic problems. In this paper, we extend
the error analysis of Adjerid and Massey [4] to nonlinear hyperbolic scalar problems of the form
r � FðuÞ ¼ hðx; yÞ; ðx; yÞ 2 X ¼ ½0; 1�2 ð1:1Þ

and
r � FðuÞ þ /ðuÞ ¼ hðx; yÞ; ðx; yÞ 2 X ¼ ½0; 1�2; ð1:2Þ

with boundary conditions
ujoXin
¼ g. ð1:3Þ
The inflow and outflow boundaries are defined as
oXin ¼ ðx; yÞ 2 oX
dF

du
� m 6 0

����
� �

ð1:4aÞ
and
oXout ¼ ðx; yÞ 2 oX
dF

du
� m > 0

����
��
; ð1:4bÞ
where the boundary of X, oX = oXin [ oXout and m is the outward unit normal to oX. The difficulty with
nonlinear conservation laws (1.1) is that in general for smooth flux function F(x,y) and smooth boundary
conditions g, smooth solutions do not in general exist for all (x,y) 2 X. Thus, only weak solutions can be
defined. Furthermore, a weak solution is unique if it satisfies the entropy condition [19].
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In order to perform an error analysis on the first inflow element, we assume F : R! R2, / : R! R,
u : R2! R, h and g to be analytic functions. On the first inflow element we show that the DG solution
of (1.1) is O(hp+2) superconvergent at Radau points and the leading term in the error is a linear combina-
tion of two Radau polynomials. Moreover, the flux is O(h2p+2) superconvergent on average on the outflow
boundary of the first inflow element. For reaction problems (1.2) the flux is O(hmin(2p+2,p+4)) superconver-
gent on the outflow boundary of the first inflow element.

If we further assume that u(x,y) is smooth on ~X such that
~X � X and o~Xin � oXin; ð1:5Þ

then the flux is O(h2p+1) superconvergent on average at the outflow boundary o~Xout.

Finally, computational results for a problem with a shock discontinuity reveal that similar local super-
convergence results hold in smooth-solution regions away from the shock. Thus, the error in smooth-solu-
tion regions propagates at a higher order.

This paper is organized as follows: In Section 2 we state and prove the main superconvergence results. In
Section 3 we show numerical results for several problems. We conclude with a few remarks.
2. Error analysis

In this section we will analyze the DG discretization error and show that the leading term in the error is
proportional to (p + 1)-degree Radau polynomials in the x- and y-directions. Prior to proving this result we
need to recall a few preliminary lemmas.

The weak discontinuous Galerkin formulation is obtained by partitioning the domain X into N = n · n
square elements and starting the integration with elements whose inflow boundary is on the domain inflow
boundary.

In order to perform an error analysis we consider the first element D = [0,h]2 where h = 1/n and the space
Vp of polynomial functions such that
Ppþ1 �Vp [ fxpþ1; ypþ1g; p P 0; ð2:1aÞ
where Pk is the space of polynomials of degree k
Pk ¼ qjq ¼
Xk

m¼0

Xm

i¼0

cm
i xiym�i

( )
. ð2:1bÞ
These spaces are suboptimal but they lead to a very simple a posteriori error estimator. For efficiency rea-
sons we consider the smallest spaces that satisfy (2.1)
Vp ¼ V jV ¼
Xp

k¼0

Xk

i¼0

ck
i xiyk�i þ

Xp

i¼1

cpþ1
i xiypþ1�i

( )
. ð2:2Þ
We note that tensor product elements satisfy (2.1).
Assuming dF

du ðuð0; 0ÞÞ ¼ ½a1; a2�t, with ai > 0, i = 1,2, one can prove that for h small enough the inflow
boundary of D is Cin = C1 [ C4 where C1 = {(x, 0), 0 < x < h} and C4 = {(0, y), 0 < y < h}. The outflow
boundary Cout = C2 [ C3 with C2 = {(h,y), 0 < y < h} and C3 = {(x,h), 0 < x < h}.

The discontinuous Galerkin method for (1.1) consists of determining Uðx; yÞ 2Vp on D such that
Z
Cin

m � ðFðU�Þ � FðUÞÞV drþ
Z Z

D
½r � FðUÞ � hðx; yÞ�V dxdy ¼ 0; 8V 2Vp. ð2:3Þ
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The boundary data U� on Cin is
U�ðx; yÞ ¼
pg; if ðx; yÞ 2 C1;

pg; if ðx; yÞ 2 C4;

�
ð2:4Þ
where pw is the p-degree polynomial that interpolates w at the roots of (p + 1)-degree right Radau
polynomial
Rþpþ1ðnÞ ¼ Lpþ1ðnÞ � LpðnÞ; �1 6 n 6 1; ð2:5Þ
with Lp being Legendre polynomial of degree p.
Once we determine the solution on the first element D we proceed to the elements whose inflow bound-

aries are either on the inflow boundary of X or an outflow boundary of D and continue this process until the
solution is determined in the whole domain. On an element whose inflow boundary is not on the boundary
of X, U� is defined as
U�ðx; yÞ ¼ lim
s!0þ

Uððx; yÞ þ smÞ; ðx; yÞ 2 Cin. ð2:6Þ
The discontinuous Galerkin solution satisfies the DG orthogonality condition which is obtained by multi-
plying (1.1) by V 2Vp, integrating over the element D and applying Green�s formula to obtain
Z

C
m � FðuÞV dr�

Z Z
D

FðuÞ � rV dxdy ¼
Z Z

D
hðx; yÞV dxdy. ð2:7Þ
Applying Green�s formula to (2.3) yields
Z
Cin

m � FðU�ÞV drþ
Z

Cout

m � FðUÞV dr�
Z Z

D
FðUÞ � rV dxdy ¼

Z Z
D

hðx; yÞV dxdy. ð2:8Þ
Subtracting (2.7) from (2.8) we obtain the DG orthogonality condition
Z
Cin

m � ðFðU�Þ � FðuÞÞV drþ
Z

Cout

m � ðFðUÞ � FðuÞÞV dr

�
Z Z

D
ðFðUÞ � FðuÞÞ � rV dxdy ¼ 0; 8V 2Vp. ð2:9Þ
Using the mapping of D = [0, h]2 into the canonical element D̂ ¼ ½�1; 1�2 defined by x = h(1 + n)/2 and
y = h(1 + g)/2 and ûðn; gÞ ¼ uðxðnÞ; yðgÞÞ we obtain the DG orthogonality condition (2.9) on the canonical
element
Z

Ĉin

m � ðFðÛ�Þ � FðûÞÞV̂ dr̂þ
Z

Ĉout

m � ðFðÛÞ � FðûÞÞV̂ dr̂

�
Z Z

D̂
ðFðÛÞ � FðûÞÞ � rV̂ dndg ¼ 0; 8V̂ 2 V̂p. ð2:10Þ
In the remainder of this paper we omit the ^ unless we feel it is needed for clarity.
Now, we recall the following two preliminary lemmas.

Lemma 2.1. If Qk 2Vk and a 2 R2 satisfy
Z
Cout

a � mQkV dr�
Z Z

D
a � rVQk dndg ¼ 0; 8V 2Vp; k 6 p; ð2:11Þ
then
Qk ¼ 0; k 6 p. ð2:12Þ
Proof. See Adjerid and Massey [4]. h
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Lemma 2.2. Let w 2 C1(0,h) and pw be a p-degree polynomial that interpolates w at Radau points on [0,h].

Then the interpolation error
wðxðnÞÞ � pwðxðnÞÞ ¼
X1

k¼pþ1

Q�k ðnÞhk; ð2:13aÞ
where
Q�pþ1ðnÞ ¼
wðpþ1Þð0Þ

2pþ1ðp þ 1Þ!
ðn� n0Þðn� n1Þ � � � ðn� npÞ ¼ cpþ1Rþpþ1ðnÞ ð2:13bÞ
and
Q�k ðnÞ ¼ Rþpþ1ðnÞrk�p�1ðnÞ; k > p þ 1; ð2:13cÞ
with rk(n) being a polynomial of degree k.

Proof. See Adjerid and Massey [4]. h

Now we are ready to state the main result for nonlinear conservation laws.

Theorem 2.3. Let u and U be the solution of (1.1) and (2.3), respectively. Then the local finite element error
� ¼ U � u; ð2:14Þ

can be written as
�ðn; gÞ ¼
X1

k¼pþ1

hkQkðn; gÞ; ð2:15Þ
where
Qpþ1ðn; gÞ ¼ b1Rþpþ1ðnÞ þ b2Rþpþ1ðgÞ. ð2:16Þ
Furthermore, at the outflow boundary of the physical element D
Z
Cout

m � ðFðuÞ � FðUÞÞdr ¼ Oðh2pþ2Þ. ð2:17Þ
If the solution is smooth on ~X ¼
S~N

i¼1Di satisfying (1.5), we have the strong superconvergence
Z
o~Xout

m � ðFðuÞ � FðUÞÞdr ¼ Oðh2pþ1Þ. ð2:18Þ
Proof. The proof is established using the DG orthogonality condition (2.10). h

First we write the Taylor series of F about u to obtain
FðUÞ � FðuÞ ¼
X1
k¼1

FðkÞðuÞ
k!
ðU � uÞk. ð2:19Þ
Assuming U� to be the interpolant of u on the inflow boundaries described in (2.4) and using (2.13) we see
that on an inflow boundary edge
FðU�Þ � FðuÞ ¼ Fð1ÞðuÞðU� � uÞ þOðh2pþ2Þ. ð2:20Þ

The Maclaurin series of F(1)(u) with respect to h can be written as
Fð1ÞðuÞ ¼
X1
l¼0

U½1�l hl; ð2:21aÞ
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where
U½1�l ¼
1

l!
dlFð1Þðuðx; yÞÞ

dhl

����
h¼0

. ð2:21bÞ
Combining (2.13), (2.21) and (2.20) to obtain
m � FðU�Þ � FðuÞð Þ ¼
hpþ1Rþpþ1ðnÞ

Pp
k¼0

hkr1;kðnÞ
� �

þOðh2pþ2Þ on C1;

hpþ1Rþpþ1ðgÞ
Pp
k¼0

hkr4;kðgÞ
� �

þOðh2pþ2Þ on C4;

8>>><
>>>:

ð2:22Þ
where r1,k, r4;k 2 Pk.
The Maclaurin series of U � u and F(k)(u) with respect to h can be written as
U � u ¼
X1
l¼0

Qlh
l; ð2:23aÞ
where
Qlðn; gÞ ¼
1

l!
dlðU � uÞ

dhl

����
h¼0

. ð2:23bÞ
We also have
FðkÞðuÞ ¼
X1
l¼0

U½k�l hl; ð2:24aÞ
where
U½k�l ðn; gÞ ¼
1

l!
dlFðkÞðuÞ

dhl

����
h¼0

. ð2:24bÞ
Combining (2.19), (2.23) and (2.24) yields
FðUÞ � FðuÞ ¼
X1
k¼0

Wkhk; ð2:25Þ
where Wk 2 Pk �Pk.
Substituting (2.22) and (2.25) in (2.10) and collecting terms having the same powers of h lead to
Xp

k¼0

hk

Z
Cout

m �WkV dr�
Z Z

D
Wk � rV dndg

� �
X1

k¼pþ1

hk

Z
Cin

m �W�
k V drþ

Z
Cout

m �WkV dr

�
�
Z Z

D
Wk � rV dndg

�
¼ 0; 8V 2Vp; ð2:26Þ
where using (2.22) we have
m �W�
k ¼

Rþpþ1ðnÞr1;k�p�1ðnÞ on C1;

Rþpþ1ðgÞr4;k�p�1ðgÞ on C4;

(
; p þ 1 6 k 6 2p þ 1. ð2:27Þ
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The O(1) term in (2.26) with V = 1 yields
W0 ¼ Q0

X1
l¼0

U½lþ1�
0 Ql

0

ðlþ 1Þ!

 !
¼ 0; ð2:28Þ
which in turn leads to Q0 = 0. We note that, for instance, for F(u) = [u2/2,u]t there exists Q0 5 0 solution of
(2.28) which corresponds to a nonphysical DG solution with � = O(1). Here, we will not consider such non-

physical solutions.
By induction the O(hk), k < p + 1 leads to
Z

Cout

m �U½1�0 QkV dr�
Z Z

D
QkU

½1�
0 � rV dndg ¼ 0; 8V 2Vp. ð2:29Þ
Applying Lemma 2.1 we establish that Qk = 0, k = 1,2, . . . ,p.
Following the same line of reasoning as in [4], we show that the leading term Qp+1 can be split as
Qpþ1 ¼
1

ðp þ 1Þ!
dpþ1ðU � uÞ

dhpþ1
ðn; gÞ

����
h¼0

¼ �Qpþ1 þ ~Qp; ð2:30aÞ
where ~Qpðn; gÞ 2Vp and
�Qpþ1 ¼ cpþ1

1

2pþ1ðp þ 1Þ!
o

pþ1u
oxpþ1

ð0; 0ÞRþpþ1ðnÞ þ cpþ1

1

2pþ1ðp þ 1Þ!
o

pþ1u
oypþ1

ð0; 0ÞRþpþ1ðgÞ. ð2:30bÞ
Substituting (2.30) in the O(hp+1) term of the series (2.26) leads to
Z
Cin

U½1�0 � mQ�pþ1V drþ
Z

Cout

U½1�0 � m�Qpþ1V dr�
Z Z

D
U½1�0 � rV �Qpþ1 dndgþ

Z
Cout

U½1�0 � m~QpV dr

�
Z Z

D
U½1�0 � rV ~Qp dndg ¼ 0; 8V 2Vp. ð2:31Þ
Using (2.13) and (2.30b) we can show that
Z
Cin

U½1�0 � mQ�pþ1V drþ
Z

Cout

U½1�0 � m�Qpþ1V dr�
Z Z

D
U½1�0 � rV �Qpþ1 dndg ¼ 0; 8V 2Vp. ð2:32Þ
Combining (2.31) and (2.32) with Lemma 2.1 leads to ~Qp ¼ 0. Using (2. 30) we establish (2.16).
Using (2.13) we can show that
Z

Cin

U½1�0 � mQ�k V dr ¼ 0; 8V 2V2p�k; k ¼ p þ 1; . . . ; 2p. ð2:33Þ
Using (2.33), the O(hk), p + 1 6 k 6 2p, term of (2.26) yields
Z
Cout

U½1�0 � mQkV dr�
Z Z

D
U½1�0 � rVQk dndg ¼ 0; 8V 2V2p�k. ð2:34Þ
Testing against V = 1 we obtain
Z
Cout

U½1�0 � mQk dr ¼ 0; k ¼ p þ 1; . . . ; 2p; ð2:35Þ
which establishes (2.17).
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Next we prove global superconvergence by showing that on every element D
Z
Cin

m � ðFðU�Þ � FðuÞÞdrþ
Z

Cout

m � ðFðUÞ � FðuÞÞdr ¼ 0. ð2:36Þ
Summing over all elements Di � ~X we obtain
Z
o~Xin

m � ðFðU�Þ � FðuÞÞdrþ
Z

o~Xout

m � ðFðUÞ � FðuÞÞdr ¼ 0. ð2:37Þ
Using (2.13) leads to (2.18). h

Next, we will describe similar results for problems of the form (1.2) where the DG weak formulation
consists of determining Uðx; yÞ 2Vp on D such that
Z

Cin

m � ðFðU�Þ � FðUÞÞV drþ
Z Z

D
½r � FðUÞ þ /ðUÞ � hðx; yÞ�V dxdy ¼ 0; 8V 2Vp. ð2:38Þ
In the following theorem we state a superconvergence result for nonlinear hyperbolic problem with reaction
terms.

Theorem 2.4. Let u and U be the solution of (1.2) and (2.38), respectively. If u, F and / are analytic functions,
then the local error estimates (2.15) and (2.16) hold. Furthermore, we have the following superconvergence

results on the first inflow element
Z
Cout

m � ðFðUÞ � FðuÞÞ ¼ Oðhminð2pþ2;pþ4ÞÞ ð2:39Þ
and
 Z
Cout

m � ðFðUÞ � FðuÞÞdrþ
Z Z

D
½/ðUÞ � /ðuÞ�dxdy ¼ Oðh2pþ2Þ. ð2:40Þ
If the solution is smooth on ~X satisfying (1.5) and ~X ¼
S~N

i¼1Di, we have the strong superconvergence
Z
o~Xout

m � ðFðUÞ � FðuÞÞdrþ
Z Z

~X
½/ðUÞ � /ðuÞ�dxdy ¼ Oðh2pþ1Þ. ð2:41Þ
Proof. The DG orthogonality condition is
Z
Cin

m � ðFðU�Þ � FðuÞÞV drþ
Z

Cout

m � ðFðUÞ � FðuÞÞV dr

�
Z Z

D
ðFðUÞ � FðuÞÞ � rV þ ½/ðuÞ � /ðUÞ�V dxdy ¼ 0; 8V 2Vp. ð2:42Þ
On the canonical element [�1,1]2 (2.42) becomes
Z
Cin

m � ðFðU�Þ � FðuÞÞV drþ
Z

Cout

m � ðFðUÞ � FðuÞÞV dr

�
Z Z

D
ðFðUÞ � FðuÞÞ � rV þ h

2
½/ðuÞ � /ðUÞ�V dndg ¼ 0; 8V 2Vp. ð2:43Þ
Applying Taylor series to / about u we have
/ðuÞ � /ðUÞ ¼ �aðuÞ�� �
2

2
/00ð�uÞ; aðuÞ ¼ /0ðuÞ. ð2:44aÞ
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The Maclaurin series of a(u) with respect to h yields
aðuÞ ¼ 2
X1
k¼0

hkQkðn; gÞ; Qkðn; gÞ ¼
1

2

/ðkþ1ÞðuðxðnÞ; yðgÞÞÞ
k!

dku

dhk ðxðnÞ; yðgÞÞ
�����
h¼0

2 Pk. ð2:44bÞ
Now we substitute (2.44), (2.22) and (2.25) in (2.43), collect terms having the same powers of h to obtain
Z
Cout

m �W0V dr�
Z Z

D
W0 � rV dndg

� �

þ
Xp

k¼1

hk

Z
Cout

m �WkV dr�
Z Z

D
½Wk � rV � Zk�1V �dndg

� �

þ
X1

k¼pþ1

hk

Z
Cin

m �W�
k V drþ

Z
Cout

m �WkV dr�
Z Z

D
½Wk � rV � Zk�1V �dndg

� �
¼ 0; 8V 2Vp;

ð2:45Þ

where
Zk ¼
Xk

l¼0

QlQk�l ð2:46Þ
and m �W�
k is given in (2.27).

Following the same line of reasoning as in Theorem 2.3 we prove (2.15) and (2.16) for problems with a
nonlinear reaction term. We note that the term in (2.44a) involving �2 is higher order and does not
contribute to our leading terms and that
Zm ¼
0 if m 6 p;Pm�p�1

l¼0

QlQm�l; if m P p þ 1.

8<
: ð2:47Þ
We prove the strong superconvergence result (2.39) for nonlinear hyperbolic problems with reaction terms
by setting V = 1 in (2.45). Using (2.13), (2.15) and (2.16), to obtain
Z

Cout

m �U½1�0 Qpþ1 dr ¼ 0. ð2:48Þ
Setting V = 1 in the O(hk), k > p + 1 in (2.45) leads to
Z
Cin

m �U½1�0 Q�k drþ
Z

Cout

m �U½1�0 drþ
Z Z

D
Zk�1 dndg ¼ 0. ð2:49Þ
Using (2.22) and (2.47) the O(hp+2) term leads to
Z
Cout

m �U½1�0 Qpþ2 dr ¼ 0. ð2:50Þ
The O(hp+3) term yields
Z
Cout

m �U½1�0 Qpþ3 dr ¼ �
Z Z

D
Q0Qpþ2 dndg; ð2:51Þ
which is not necessarily zero. Thus, we establish (2.39).
Now, using (2.42) with V = 1 and (2.22) establishes (2.40).
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Letting V = 1 in (2.42) and summing over all elements Di � ~X lead to
Fig. 1.
Z
o~Xin

m � ðFðU�Þ � FðuÞÞdrþ
Z

o~Xout

m � ðFðUÞ � FðuÞÞdrþ
Z Z

~X
½/ðUÞ � /ðuÞ�dxdy ¼ 0. ð2:52Þ
Applying (2.13) and (2.22) yields (2.41) which completes the proof of Theorem 2.4. h
3. Numerical examples

We will consider three examples to validate the superconvergence results of Section 2 for smooth and
discontinuous solutions.
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Example 1. We consider the nonlinear Burger�s equation
Fig. 2.
Distrib

Fig
uy þ uux ¼ f ðx; yÞ; ðx; yÞ 2 X; ð3:1aÞ

where X is the quadrilateral P1P2P3P4 where P1 = (0,0), P2 = (1,1), P3 = (2,1) and P4 = (�0.5,2). We se-
lect the boundary conditions and f such that the exact solution is
uðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2x2 þ y2

p
. ð3:1bÞ
We solve this problem on a uniform mesh having 16 elements with p = 1,2,3,4 and plot the 0-level
curves of the discontinuous Galerkin error in Fig. 1 with Radau points marked by x.
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These results show that the solution is superconvergent at Radau points which is in full agreement with
Theorem 2.3. Next we solve (3.1) with nonuniform p as shown in Fig. 2. The results shown in Fig. 2 indicate
that the superconvergence results of Section 2 are still valid for nonuniform polynomial degree starting with
higher degree on elements at the inflow boundary of the domain and lower polynomial degree on elements
at the outflow boundary. These results are yet to be proved for nonuniform polynomial degree.

Example 2. In order to show that the superconvergence result (2.39) is optimal, we consider the linear
hyperbolic problem with a reaction term
ux þ 2uy þ u ¼ f ðx; yÞ; ðx; yÞ 2 ½0; 1�2; ð3:2aÞ

where the boundary conditions and f are selected such that the exact solution is
uðx; yÞ ¼ ð1þ xþ yÞ7. ð3:2bÞ

We solve (3.2) on uniform meshes having 4, 16 and 36 square elements with p = 4 and plot
WD ¼
Z

Cout

½1; 2� � mðu� UÞdr

����
����
versus 1/h in Fig. 3. As predicted by Theorem 2.4, these results show an O(hmin(2p+2,p+4)) superconvergence
rate of the flux on the outflow boundary of the first inflow element.

Example 3. Let us consider the homogeneous inviscid Burger�s equation
uy þ uux ¼ 0; ðx; yÞ 2 ½�1; 1� � ½0; 1:999�; ð3:3aÞ

subject to the initial condition
g0ðx; 0Þ ¼ 1þ sinðpxÞ=2. ð3:3bÞ

We select g1(0,y) such that the unique entropy solution is periodic and forms a shock discontinuity at the
point ð2p� 1; 2

pÞ which propagates along the line y = x + 1. We solve this problem on meshes having 5 · 5,
14 · 10, 21 · 15, 28 · 20, 35 · 25, 42 · 30, and 140 · 100 elements with p = 1,2. We plot the zero-level
curves for the error in Fig. 5. We compute the maximum errors at Radau points in five different regions
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Fig. 4. Regions 1–5 for problem (3.3).
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shown in Fig. 4 and present the results for all meshes and orders in Table 1. We also plot the maximum
errors versus mesh size for p = 1,2 in Fig. 6. We note that the convergence rates are close to the optimal
O(hp+2) superconvergence rates in Regions 1, 2 , 4 and 5, for p = 1 and p = 2, while there is no convergence
in Region 3 which contains the shock discontinuity. These results are in agreement with the superconver-
gence results of Theorem (2.3) for the entropy solution in regions away from the shock discontinuity. We
note that high-order, p > 0, DG solutions are known to develop spurious oscillations near shock disconti-
nuities which explains the nonconvergence in Region 3. Spurious oscillations may be eliminated using, for
Table 1
Maximum errors at Radau points for problem (3.3) in Regions 1–5

N · M Region 1 Region 2 Region 3 Region 4 Region 5

p = 1
7 · 5 2.3787e�03 6.1577e�02 4.4390e�01 3.0670e�02 4.7646e�02
14 · 10 5.7487e�05 3.8567e�03 4.4521e�01 2.7064e�03 9.8580e�03
21 · 15 1.7168e�05 1.6498e�03 4.3000e�01 6.9151e�04 4.4972e�03
28 · 20 7.4312e�06 1.0519e�03 5.8166e�01 3.1665e�04 2.0990e�03
35 · 25 3.8739e�06 1.2146e�04 5.3141e�01 1.7085e�04 1.1055e�03
42 · 30 2.2684e�06 1.1820e�04 5.8720e�01 1.0250e�04 7.2652e�04
140 · 100 6.3664e�08 4.0439e�06 6.0357e�01 3.2124e�06 2.1123e�05

Rate 2.9636 2.4543 �0.091848 2.8665 2.8549

p = 2
7 · 5 1.0780e�03 3.5124e�02 4.5072e�01 2.3503e�02 5.4503e�03
14 · 10 2.1984e�06 9.6276e�03 4.5917e�01 1.1295e�03 1.5127e�03
21 · 15 2.0416e�07 2.0612e�03 6.4203e�01 4.2546e�04 4.2145e�04
28 · 20 6.2627e�08 1.9124e�04 4.8639e�01 7.7144e�05 1.2900e�04
35 · 25 2.5654e�08 4.4611e�05 6.2678e�01 4.8348e�06 5.2180e�05
42 · 30 1.2284e�08 2.1228e�05 6.1557e�01 6.0801e�07 2.8264e�05
140 · 100 9.7912e�11 8.1746e�09 6.7466e�01 5.5857e�09 2.4411e�07

Rate 4.0167 6.2070 �0.053101 4.8788 3.8699
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Fig. 6. Rates of convergence for problem (3.3) on meshes have 7 · 5, 14 · 10, 21 · 15, 28 · 20, 35 · 25, 42 · 30 and 140 · 100 elements
on Regions 1–5 with p = 1 (left) and p = 2 (right).
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instance, shock capturing [21] or limiting [10,11] techniques. Adjerid et al. [1] used the limiting technique of
Biswas et al. [10] for one-dimensional nonlinear problems that eliminates spurious oscillations near discon-
tinuities while preserving superconvergence in smooth regions. We note that reliable shock detection is key
to successful adaptive limiting strategies [23].
4. Conclusions

We extended the results of Adjerid and Massey [4] to nonlinear conservation laws. We proved that the
discontinuous Galerkin finite element solution is O(hp+2) superconvergent at the Radau points. We also
showed that locally the flux is O(h2p+2) superconvergent on average on the outflow boundary of the first
inflow element. In the presence of reaction terms we proved similar superconvergence results for the solu-
tion at Radau points and an O(hmin(2p+2,p+4)) superconvergence rate for the flux on average at the outflow
boundary of the first inflow element. Furthermore, we showed that on sub-domains satisfying (1.5) the sum
of the flux on the outflow boundary and the reaction term is O(h2p+1) superconvergent. The strong super-
convergence of the flux yields superconvergence of the solution at Radau points on every element. As
shown in Adjerid and Massey [4], these superconvergence results for discontinuous finite element solutions
may be used to construct asymptotically correct a posteriori error estimates for steering adaptive finite ele-
ment methods. Numerical computations of Adjerid and Klauser [3] suggest that similar superconvergence
results still hold for local discontinuous Galerkin solutions of convection–diffusion problems. The error
analysis described in this manuscript has been extended to semi-discrete DG methods for transient nonlin-
ear scalar hyperbolic conservation laws [2]. A more difficult problem is to extend the analysis to arbitrary
elements in smooth-solution regions and to the shock region with limiting or shock capturing. We will
investigate the superconvergence properties of the shock capturing discontinuous Galerkin method
[21,12] for hyperbolic systems. The preliminary work of Krivodonova and Flaherty [22] shows supercon-
vergence of the flux on element outflow boundaries for general unstructured triangular meshes, however,
no pointwise superconvergence has been observed.
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