Convergence of Laplacian diffusion versus resolution of an ocean model

Alan J. Wallcraft, A. Birol Kara, and Harley E. Hurlburt
Oceanography Division, Naval Research Laboratory, Stennis Space Center, Mississippi, USA

Received 21 January 2005; revised 18 February 2005; accepted 8 March 2005; published 7 April 2005.

This paper presents a convergence study for second order finite difference Laplacian diffusion used in ocean models. For demonstration, ocean model simulations are performed over a rectangular domain, based on the North Pacific subtropical gyre region with grid resolution between 1/2° and 1/32° and with horizontal eddy viscosity coefficient (\(A_H\)) ranging from 8000 to 30 \(m^2 s^{-1}\). A range of \(A_H\) which is appropriate for useful model simulations of an oceanic domain is found to exist. This range is determined by examining the spatial patterns of Eddy kinetic energy and mean sea surface height. The results fall into three broad categories: (a) converged, (b) converging, and (c) numerical problems. Solutions in the “converged” category do not change with increased grid resolution, and solutions in the “numerical problems” category exhibit distinct differences to the converged result at the same \(A_H\).

1. Introduction

[2] In all numerical ocean models it is necessary to parameterize the effects of unresolved scales of motion. Since the horizontal (isopycnal) and vertical scales are so different they are usually treated separately, and some form of Laplacian diffusion is a common choice for the horizontal parameterization [e.g., Berloff and McWilliams, 2002]. Diffusion on a fixed Eulerian grid is complicated by issues concerning the difference between “horizontal” in grid coordinates and in isopycnal coordinates [e.g., Killworth, 1997].

[3] Layered models are already using isopycnal, or approximately isopycnal, coordinates and hence give a cleaner separation between horizontal and vertical diffusion [Smith and Gent, 2004]. However, Lagrangian layers provide several possible forms for the Laplacian diffusion term. In fact, there is only one correct form which is expressible as divergence of the viscous stress tensor [e.g., Shchepetkin and O’Brien, 1996]. In Cartesian coordinates, the form of Laplacian diffusion used here is \(A_H \nabla^2 (h \vec{V})\), and the correct form is \(A_H (\nabla \cdot (h \nabla)) \vec{V}\), where \(A_H\) is the horizontal eddy viscosity coefficient (\(m^2 s^{-1}\)), \(\vec{V}\) is the layer velocity (\(m s^{-1}\)), and \(h\) is layer thickness (\(m\)). These two forms are equivalent if \(h\) is constant as would be the case in z-level models [e.g., Griffies et al., 2000].

[4] In this paper, a convergence study of the second order finite difference horizontal eddy viscosity variablility is undertaken in the idealized Pacific Ocean by examining simulations from an ocean model. In numerical ocean modeling studies, “convergence” can have at least two meanings. Here, we have taken it to mean convergence to the continuum limit of the finite difference equations as the horizontal grid resolution is refined. An alternative meaning, of more practical interest to ocean modelers, is convergence on the actual behavior of the ocean region under study. In this stronger sense, convergence implies no significant difference in fidelity to the real ocean between the best choice of model parameters at one resolution and the best choice of model parameters at a finer resolution. Here, “best choice” can obviously include a lower eddy viscosity on the finer grid but it can also include a more accurate coastline and bottom topography.

2. Ocean Model Application

[5] The numerical model, Naval Research Laboratory (NRL) Layered Ocean Model (NLOM), uses a primitive equation layered formulation where the equations have been vertically integrated through each Lagrangian layer. Prognostic variables are layer density, layer thickness, and layer volume transport per unit width (layer velocity times layer thickness) as described by Wallcraft et al. [2003]. Our experience has been that horizontal diffusion is largely independent of the number of layers used. Two isopycnal layers are typically sufficient at an appropriate horizontal resolution and value of \(A_H\) to yield relevant (semi-quantitatively) representations of mesoscale eddies and western boundary currents in subtropical-gyre-like model domains [Schmitz and Thompson, 1993]. The simplicity of a layered model formulation permits many numerical experiments to be performed at comparatively high horizontal resolutions [Hurlburt and Hogan, 2000] with a variety of values of \(A_H\) such that western boundary current path and structures, including recirculating gyres are also realistically represented. Thus, subtropical gyre simulations in this study use a two layer model, a configuration which has the additional advantage that mixing between layers (an additional source of damping) is minimized.

[6] Since we are concerned with convergence to the continuum limit of the ocean model equations in this study, the model domain need not be an actual ocean basin. However, the results must be representative of actual ocean basins since these are our primary interest. The model simulations are performed using a rectangular-shaped area of the Pacific Ocean, corresponding to the subtropical gyre region, with closed boundaries. It is based on a similar subtropical gyre region, that included a realistic representation of the Japan/East Sea. For this study, the Japan/East Sea has been converted into a plateau. Removing the Japan/East Sea is necessary because the straits are not resolvable on all
the grids used here. Rather than converting Japan to a seamount, it would have been possible to convert the Japan/East Sea to "land". However, realistic simulations of the Pacific subtropical gyre are not possible without the Japan/East Sea [Hogan and Hurlburt, 2000]. Rectangular regions are less expensive to run, and more importantly a rectangular region allows prototyping of new numerical schemes without requiring implementation of general coastline boundary conditions. The disadvantage of a rectangular region is that it may increase the tendency for western boundary currents to "overshoot" the expected separation point from the boundary. However, overshoot is also common in nonrectangular regions.

[7] Here, all simulations use a layered Laplacian diffusion coefficient, which was standard in earlier versions of the model [e.g., Hurlburt et al., 1996], while more recent NLOM simulations of actual ocean basins use stress tensor Laplacian diffusion coefficient [e.g., Kara et al., 2003; Wallcraft et al., 2003; Kara et al., 2004]. In practice, little difference was found between the various Laplacian formulations. In particular, repeating a few simulations from this study with the exact form of Laplacian diffusion showed no change in the model simulations. A layered Laplacian diffusion is used because it is significantly less computationally expensive.

[8] The model simulations are performed using grid resolutions of 1/2°, 1/4°, 1/8°, 1/16° and 1/32°. Corresponding grid spacings in km are given in Table 1. Thirty two simulations are spun up to statistical equilibrium with coefficients of horizontal eddy viscosity, A_H, between 8000 and 30 m2 s$^{-1}$. Each two layer simulation uses identical realistic bottom topography from a modified version of the Earth Topography Five Minute Grid (ETOPO5) [National Oceanic and Atmospheric Administration, 1988] and the wind stress forcing is Hellerman and Rosenstein [1983].

Table 1. Grid Resolutions Used in the Model Simulations of a Rectangular Pacific Region

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Δx (deg)</th>
<th>Δy (deg)</th>
<th>Δx (km)</th>
<th>Δy (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2°</td>
<td>0.703125</td>
<td>0.5</td>
<td>55.3</td>
<td>55.6</td>
</tr>
<tr>
<td>1/4°</td>
<td>0.351569</td>
<td>0.25</td>
<td>27.6</td>
<td>27.8</td>
</tr>
<tr>
<td>1/8°</td>
<td>0.175781</td>
<td>0.125</td>
<td>13.8</td>
<td>13.9</td>
</tr>
<tr>
<td>1/16°</td>
<td>0.087890</td>
<td>0.0625</td>
<td>6.9</td>
<td>6.9</td>
</tr>
<tr>
<td>1/32°</td>
<td>0.043945</td>
<td>0.03125</td>
<td>3.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

3. Convergence of Eddy Viscosity

[9] In the model analysis (see section 4), the model simulations are subjectively divided into three broad categories: (a) converged, (b) converging, and (c) numerical problems. Since simulations are nondeterministic due to flow instabilities, only statistical convergence is sought (i.e., mean and variability). Solutions in the "converged" category do not change statistically with increased grid resolution. They are essentially identical statistically to very high resolution at the same eddy viscosity. Solutions in the "numerical problems" category exhibit distinct differences to the converged result at the same A_H. Solutions in the "converging" category are similar to the converged result, but with quantitative differences. It is possible for the converged solution to change drastically as the eddy viscosity is reduced. This can happen when transitioning from non-eddy-resolving to eddy-resolving eddy viscosities. It can also happen at lower eddy viscosities as new energy pathways become dominant.

[10] Figure 1 summarizes the results on a graph of Laplacian diffusion values with respect to grid resolution. No eddies are present above about $A_H = 1000$ m2 s$^{-1}$, and eddies are always present below about $A_H = 500$ m2 s$^{-1}$. Since the categorization is subjective, the boundaries between converged and converging and between converging and numerical problems are not sharply defined but they appear to be proportional to the square of the grid resolution. The open circles indicate the typical eddy viscosity used, in practice, by actual NLOM simulations at that grid resolution [Hurlburt and Hogan, 2000; Hurlburt et al., 1996]. At 1/2° there is no point in attempting to resolve eddies, and so $A_H = 1500$ m2 s$^{-1}$ is typically used. At 1/4° degree, $A_H = 300$ m2 s$^{-1}$ is very marginally eddy resolving. Marginally eddy resolving ocean models are often termed eddy permitting, but they commonly use biharmonic rather than Laplacian diffusion [Gent et al., 2002; Treguier et al., 2001] and are therefore outside our scope.

[11] Each further doubling of the model resolution decreases the typical eddy viscosity by a factor of three (Figure 1). All the typical viscosities are in the "converging" zone, because we are attempting to "converge" on the actual behavior of the ocean rather than the continuum limit of the finite difference model equations. As grid resolution increases, the typical viscosity value used in the NLOM gets closer to the converged zone.

[12] In practice, for regions similar to that used in this paper, a A_H value would be typically chosen in the converging category.

4. Eddy Viscosity Variations With Grid Resolution

[13] To illustrate the results given in Figure 1, we examine mean sea surface height (SSH), a good indicator of mean flow, and eddy kinetic energy (EKE) from the first model layer, a good indicator of flow instabilities. The
means of SSH and EKE are calculated over three years. At least a three-year mean was needed because the finer resolution NLOM simulations (e.g., finer than 1/2°) are nondeterministic and flow instabilities have a major impact on the results. The simulated SSH and EKE fields are then compared with those from the highest grid resolution available at the same eddy viscosity.

Figure 2 shows EKE and SSH at three different model grid resolutions when \(\AH = 2000 \text{ m}^2 \text{s}^{-1} \). The 1/4° and 1/8° results are virtually identical, demonstrating convergence at 1/4°. The 1/2° result is similar, but not identical, to those at higher resolution; indicating that this is in the converging category. The very low values for EKE are typical of non-eddy-resolving simulations. When \(\AH = 500 \text{ m}^2 \text{s}^{-1} \) is used in the simulations at four grid resolutions (Figure 3a), the results from the 1/8° and 1/16° model are nearly same, indicating an almost converged solution at 1/8°. Although comparison with the 1/8° simulation indicates that the 1/4° simulation has serious numerical problems near the western boundary, we place it in the converging category for the same reason as the 1/4° simulation with \(\AH = 500 \text{ m}^2 \text{s}^{-1} \) [see Hurlburt et al., 1996, Figure 7 and Plate 8]. The 1/4° result is completely different again, showing almost no penetration of the primary jet into the basin and a western boundary overshoot that continues along the northern boundary and part of the eastern boundary. It is clearly in the numerical problems category.

Comparing the last panels from Figures 2, 3a, and 3b demonstrates the large impact that changing the eddy viscosity can have on the solution. Suppose the 1/32° \(\AH = 50 \text{ m}^2 \text{s}^{-1} \) solution represents the real state of an actual ocean region. If we insist on running simulations that are fully converged, then at 1/8° the best we can do is \(\AH = 500 \text{ m}^2 \text{s}^{-1} \) which is very far from an accurate representation. If simulations are allowed in the converging category, then the 1/8° \(\AH = 50 \text{ m}^2 \text{s}^{-1} \) is one possibility which is significantly closer than \(\AH = 500 \text{ m}^2 \text{s}^{-1} \) to the desired result. In practice, we would typically use \(\AH = 100 \text{ m}^2 \text{s}^{-1} \) at 1/8° (not shown), because it is a safer distance from the numerical problem zone.

5. Conclusions

The most significant results from this paper are:

1. the ocean model resolution required for convergence

Figure 3. The same as Figure 2 but the ocean model uses (a) 500 m² s⁻¹ and (b) 50 m² s⁻¹ at grid resolutions ranging from 1/2° to 1/32°.
of Laplacian diffusion is proportional to the square of the grid spacing; (2) it is not safe to use the lowest possible eddy viscosity because there is high risk for grossly inaccurate solutions; (3) for a given horizontal model resolution the most realistic ocean simulations are obtained when the eddy viscosity is smaller than required for convergence to the continuum limit but large enough to avoid gross finite difference truncation error effects (the usual practice of ocean modelers), and (4) the typical eddy viscosity gets closer to the converged value as resolution is increased (because the practical eddy viscosity is reduced by a factor of three, not four, for each doubling of grid resolution).

[18] This study is for a particular model in a particular idealized region. However, our experience with the ocean model used in this paper suggests that although the actual values of A_H used can be region dependent (based on maximum current speeds), the results are insensitive to vertical resolution, and that the same general patterns illustrated here apply to all ocean regions. NLOM has fewer sources of diffusion than some other ocean models, but these results are robust enough to suggest that they may apply to most if not all ocean models that combine Laplacian diffusion with second order finite differences in space.

[19] Acknowledgments. This work is a contribution of the projects, Kuroshio Extension Regional Experiment and Global Remote Littoral Forcing via Deep Water Pathways. Projects were funded by the Office of Naval Research (ONR) under program element 601153N. This is contribution NRL/JA/7320/05/5105 and has been approved for public release. Authors would like to thank two anonymous reviewers for their helpful suggestions.

References

H. E. Hurlburt, A. B. Kara, and A. J. Wallcraft, Naval Research Laboratory, Oceanography Division, Code 7320, Bldg. 1009, Stennis Space Center, MS 38929, USA, (hurlburt@nrlssc.navy.mil; kara@nrlssc.navy.mil; wallcraft@nrlssc.navy.mil)