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Abstract

A coupled discontinuous–continuous Galerkin (DG–CG) shallow water model is compared to a contin-
uous Galerkin generalized wave-continuity equation (GWCE) based model for the coastal ocean, whereby

local mass imbalance typical of GWCE-based solutions is eliminated using the coupled DG–CG approach.

Two mass imbalance indicators for the GWCE-based model are presented and analyzed. The indicators

motivate discussion on the suitability of using a GWCE-based model versus the locally conservative cou-

pled DG–CG model. Both realistic and idealized test problems for tide, wind, and wave-driven circulation

form the basis of the study. For the problems studied, coupled DG–CG solutions retain the robustness of

well-documented solutions from GWCE-based models and also capture the dynamics driven by small-scale,

highly advective processes which are problematic for GWCE-based models. Issues associated with the cou-
pled DG–CG model are explored, including increased cost due to increased degrees of freedom, the neces-

sary application of slope limiters, as well as the actual coupling process.
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1. Introduction

Since the construct of the wave-continuity equation (Lynch and Gray, 1979) two decades ago,
finite element-based shallow water equation models have generated robust computations of tide
and surge dynamics. These models typically utilize unstructured triangular grids which permit a
large degree of flexibility in representing the complexities of the coastal ocean associated with con-
voluted shorelines and steep gradients in either currents or bathymetry and additionally accom-
modate the need for remote oceanic forcing. The recent availability of massively parallel
computing resources has pushed the application of these models to higher and higher resolutions
(down to meters) while capturing a more diverse array of smaller-scale physical processes present
in the coastal ocean. One manifestation of these high resolution applications has been an in-
creased occurrence of erroneous circulation fields whose errors can be attributed to the lack of
enforcement in local mass conservation.

Mass imbalances in the transient solutions obtained from wave-continuity based finite element
shallow water equation models were observed independently in 1992 by Kolar and Westerink
(2000). A common source for these errors was determined to be the non-linear terms, particularly
the advection terms. Since that time a number of efforts have been directed at removing or min-
imizing the presence of mass error in finite element-based computations. Improvements in the
conservative properties of these models have come by applying a consistent treatment of the
advective terms between the continuity and momentum equations as suggested by Kolar et al.
(1994). A further reduction in mass error was realized by using mass conserving forms of the flux
boundary conditions as proposed by both Lynch (1985) and Kolar et al. (1994). An entirely sep-
arate approach sought to mitigate mass conservation issues by constructing an ‘‘optimal’’ trian-
gular mesh over which mass error is minimally uniform (Zhang and Baptista, 2000).

To date, mass errors still plague the solutions for some applications of finite element-based
shallow water models that utilize the generalized wave continuity equation (GWCE) in place of
the primitive form of the continuity equation. The GWCE (Kinnmark, 1986), a generalization
of the wave-continuity equation formulation introduced by Lynch and Gray (1979), eliminates
spurious oscillations that appeared in early finite element models that were based on the primitive
continuity equation and used the same linear bases for both elevation and velocity. The absence of
spurious spatial oscillations in the GWCE formulation is attributed to the monotonic dispersion
relation that prevents the spurious, zero frequency, oscillations from forming while short wave-
length modes ready propagate through the domain and do not accumulate energy (Walters,
1983). One consequence of using the GWCE has been the removal of the explicit enforcement
of local (element by element) mass conservation.

While continuous Galerkin (CG) finite element-based shallow water equation models formally
require global conservation (Lynch, 1985; Lynch and Holboke, 1997), the lack of local mass con-
servation remains problematic particularly for simulating small scale, highly advective flows and/
or transport dynamics. One example is provided by Oliveira et al. (2000) who report the impact of
flow mass errors on the fidelity of the computed mass transport for a tidally-driven application.
For three-dimensional circulation problems, Luettich et al. (2002) demonstrate that significant
errors in the vertical velocity result when mass errors are present in horizontal current fields. Thus,
GWCE-based models have difficulty accurately capturing the vertical mixing and transport pro-
cesses necessary to simulate flows dominated by density-driven dynamics. Of course, freshwater
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river inflows and thermal mixing, processes that result from variations in the density field, can sig-
nificantly contribute to the overall circulation of the coastal ocean. Though the past twenty years
have seen very robust GWCE-based solutions for a large range of coastal flow problems (see the
thorough review by Kolar and Westerink (2000)), as these models are pushed to represent small-
scale, highly advective flows and transport processes, the GWCE formulation is becoming increas-
ingly problematic. A new methodology is being sought that retains the advantages of unstructured
triangular meshes but addresses the conservation issues associated with GWCE-based shallow
water models.

A very new and promising class of finite element methods, the discontinuous Galerkin (DG)
methods (Cockburn et al., 2000), have seen very rapid development over the last several years.
The earliest applications of DG methods to the shallow water equations have taken the form
of first order finite volume methods (Alcrudo and Garcia-Navarro, 1993; Chippada et al.,
1998). Some applications to date have been limited to one dimension (Schwanenberg and Kon-
geter, 2000). Two-dimensional applications of the shallow water equations discretized using
DG methods are limited in scope; many focus on the attributes of specific numerical schemes
(e.g. Giraldo et al., 2002; Dawson and Proft, 2002) or provide only a cursory analysis of realistic
applications (e.g., Schwanenberg and Kongeter, 2000; Aizinger and Dawson, 2002; Guillot and
Blain, 2003).

The primary advantage of the discontinuous Galerkin methods with respect to mass conserva-
tion is their local (element by element) enforcement of the conservation laws. Other positive
attributes are their ability to capture steep gradients and fronts, and a capability for using non-
conforming unstructured meshes (i.e. elements of the mesh may have dissimilar interpolation
points). The use of non-conforming grids simplifies the development of adaptive meshing strate-
gies. The method has been shown to be second order accurate when applied over linear triangles
(Dawson and Proft, 2002), an order of magnitude greater than finite volume methods and similar
to current GWCE-based models. Furthermore, the local nature of the DG methods make them
well suited for both h (mesh size) and p (approximation degree) adaptive schemes and are highly
parallelizable.

This paper focuses on obtaining mass conserving, robust solutions to the shallow water equa-
tions by applying a coupled DG–CG (Dawson and Proft, 2002) shallow water equation model
wherein the GWCE equation is entirely replaced by a DG primitive continuity equation, while
the momentum equations are left untouched and solved with the usual continuous Galerkin for-
mulation. For several representative coastal problems two non-dimensional quantities, Rmax, the
ratio of the mean maximum bathymetric difference to the element radius and, V, the time-inte-
grated 2-D vorticity, are defined and evaluated for their suitability in predicting the spatial distri-
bution and relative magnitudes of mass error in GWCE-based model solutions. A strong
theoretical basis for these indicators links the mass error and local truncation error in GWCE-
based models. A robust indicator of mass error is desirable to assess the need for a locally
conservative computational algorithm, i.e. as that found within the coupled DG–CG model. Fur-
thermore, such indicators could be used in the future to guide slope limiter application within DG
methods or with so called flexible Galerkin algorithms for which some level of elemental continu-
ity can be maintained (Massey, 2002). Following a demonstration of the viability of the two de-
fined mass error indicators, the local mass error computed for the coupled DG–CG model is
compared to the mass error associated with the GWCE-based model to confirm the conservative
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nature of the coupled DG–CG method for a range of coastal ocean applications. Comparisons
between the GWCE-based and coupled DG–CG solutions for two dynamically extreme coastal
dynamics problems: (1) confirm that the new coupled DG–CG methodology retains the robust-
ness of barotropic GWCE-based solutions for a typical non-linear tidal dynamics application
and a fine-scale nearshore flow problem, and (2) demonstrates the influence of the conservative
elevation solution of the coupled DG–CG implementation, and (3) provides evidence that the
coupled DG–CG model may address limitations of the current GWCE-based finite element shal-
low water models for small-scale, highly advective flows as exemplified by a rip current nearshore
circulation problem.

The paper proceeds as follows. Section 2 describes both the continuous Galerkin GWCE-based
shallow water model and the coupled DG–CG formulation of the same model using the primitive
continuity equation instead of the GWCE. Section 3 presents the methodology used for comput-
ing mass error and the evaluation of two indices for mass error. Section 4 presents comparisons of
the mass error in GWCE-based solutions versus that computed for the coupled DG–CG model
solutions as well as model-model comparisons of computed elevations and currents for two
dynamically extreme coastal flow problems. Section 5 presents a discussion of issues associated
with the use of slope limiting in a DG-based model and an analysis of the computational costs
associated with the coupled DG–CG model. The paper ends in Section 6 with some concluding
remarks about the use of the mass error indicators presented and the suitability of the coupled
DG–CG model for application to coastal regions.
2. Shallow water models

A variety of coastal flow problems of considerable importance including tidal flows, storm
surges, seiches, and pollutant dispersion can be described by the shallow water equations. Assum-
ing density variations are small such that the fluid is incompressible and vertical accelerations of
the fluid negligible, the shallow water equations can be derived by integrating the mass and
momentum conservation laws over the water depth and assuming a hydrostatic pressure distribu-
tion. Note that for the formulation here the horizontal gradients of density are also neglected. The
shallow water equations can then be written using the notation of Kolar et al. (1994). The prim-
itive form of the conservation of mass equation is given by
L � of
ot

þr � ðHvÞ ¼ 0; ð1Þ
and the conservative form of the momentum conservation equation is written:
Mc � oðHvÞ
ot

þr � ðHvvÞ þ sHvþ H f � vþ H
q
rpa þ Hgrðf� agÞ � A� 1

q
r � ðHTÞ ¼ 0;

ð2Þ

where f is the surface water elevation, H is the total water depth, v is the depth-averaged velocity
vector, s is the bottom friction coefficient, f = k(2XEsin/) is the Coriolis parameter with XE as the
angular velocity of the earth and / degrees latitude, pa is the atmospheric pressure, q is the density
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of seawater, g is the gravitational acceleration, a is the effective Earth elasticity factor (0.69), g is
the Newtonian equilibrium tide potential, A is the surface stress vector, and T is the Reynolds
stress tensor. For this paper, the shallow water Eqs. (1) and (2) serve as the point of departure
for the presented analyses.
2.1. A continuous Galerkin finite element model, ADCIRC

One widely-used continuous Galerkin finite element model is ADCIRC (the ADvanced CIR-
Culation model for Shelves, Coasts and Estuaries, developed by Luettich and Westerink (Luettich
et al., 1992; Luettich and Westerink, 2003). A successful history of accurate ADCIRC model sim-
ulations for tides (Westerink et al., 1994; Fortunato et al., 1998; Luettich et al., 1999) and storm
surge (Blain et al., 1994, 1998) is well-documented. Most recently ADCIRC has been shown to
reasonably capture the primary features associated with wave-driven flows such as alongshore
currents (Blain and Cobb, 2003) and rip currents (Cobb and Blain, 2003).

Reviews by Navon (1988) and Westerink and Gray (1991) and more recently the discussion by
LeRoux et al. (1998) highlight issues associated with solving the shallow water Eqs. (1) and (2)
using finite element methods. These issues stem from the presence of spurious modes in solutions
obtained using linear basis functions for both elevation and velocity within the primitive form of
the continuity Eq. (1). As mentioned in the introduction, the use of a generalized wave continuity
equation is one approach developed to eliminate this problem. The generalized wave continuity
equation (GWCE) is expressed as
W G � oL
ot

þ GL�r � ðMcÞ ¼ 0; ð3Þ
where G is a numerical parameter that determines the balance between the primitive and wave
forms of the continuity equation, e.g. for G! 1,WG ! L. The pure wave continuity equation
as presented by Lynch and Gray (1979) is obtained for G = s. The substitution of Eqs. (1) and
(2) into Eq. (3) results in the GWCE:
W G � o2f
ot2

þ G
of
ot

þ ðG� sÞr � ðHvÞ þ r

� r � ðHvvÞ þ H f � vþ H
q
rpa þ Hgrðf� agÞ � A� 1

q
r � ðHTÞ

� �
� Hv � rs ¼ 0:

ð4Þ
Furthermore, a non-conservative form of the momentum equation can be defined as,
Mnc � 1

H
ðMc � vLÞ ¼ 0: ð5aÞ
After substituting Eqs. (1) and (2) into Eq. (5a), the non-conservative momentum equation reads:
Mnc � ov

ot
þ v � rvþ svþ f � vþ 1

q
rpa þ grðf� agÞ � A

H
� 1

qH
r � ðHTÞ ¼ 0: ð5bÞ



288 C.A. Blain, T.C. Massey / Ocean Modelling 10 (2005) 283–315
The ADCIRC model solves the generalized wave continuity Eq. (4) and the non-conservative
momentum Eq. (5b). The advective terms in the GWCE (4) are reformulated to be consistent with
the advection terms in Eq. (5b) (see Kolar et al., 1994 for specific details). The ADCIRC model is
discretized using continuous Galerkin finite elements. The method of weighted residuals is applied
to discretize Eqs. (4) and (5b). For this approach the approximate solution to Eqs. (4) and (5b),
written in terms of basis functions, is substituted into the discrete equations. These equations are
then multiplied by a weighting function and integrated over the entire domain. The objective is to
generate a set of algebraic equations that allow for the solution of the unknowns introduced by
the approximate solution through a minimization of the residual. The error between the approx-
imate and exact solution is projected (or made zero) with respect to the weighting functions. The
domain is divided into subdomains defined by triangular elements. The integrals then can be re-
cast as a summation over the discrete elements.

For the Galerkin method the basis and weighting functions are identical and for the ADCIRC
model are defined for linear triangles. The linear basis functions have a value of unity at one ver-
tex of the triangle (identified as a node) and zero at the remaining two vertices of each triangle.
For the continuous method, each basis function is selected to have C0 (functional) continuity
at the nodes. Thus the basis function defined at a given node has support over all of the triangular
elements that share that node. This definition of the basis functions is an important distinction
between the GWCE model and the coupled DG–CG that is to be described subsequently.

To reduce the order of the derivatives within the integrals of the residual, integration by parts is
undertaken. The result is two integral terms, one of which is a boundary integral where the bound-
ary is defined to enclose the entire domain; the boundary integral terms at shared element inter-
faces identically cancel for the continuous Galerkin method leaving only the boundary integral
around the domain as a whole.

The semi-implicit time discretization of the GWCE uses a three-time-level approximation in
which non-linear terms are treated explicitly while the time discretization of the momentum equa-
tion uses a lumped, two-time-level approximation. In a similar way to the GWCE, the non-linear
terms within the momentum equation are linearized by formulating non-linear terms explicitly.
From these time discretized equations, a time splitting procedure has been adopted wherein the
GWCE is first solved for sea surface elevation and the momentum equation is then solved for
the depth-averaged velocities.

2.2. A coupled continuous–discontinuous Galerkin finite element model

DG methods which are locally conservative by their definition were first introduced in the early
1970�s by Reed and Hill (1973) for the transport of neutrons. The DG method applied here can be
seen as a higher-order generalization of the popular finite volume (FV) methods and offers even
more accuracy and flexibility than FV methods. Very recent advancements in higher-order DG
methods, for example the so called Runge–Kutta discontinuous Galerkin (RKDG) method of
Cockburn et al. (1990) and Cockburn and Shu (1998), have resulted in both accurate and conver-
gent properties of the computed solution. Their RKDG method consists of three main parts: (i) a
DG discretization in space with polynomials of order p, (ii) an explicit total variation bounded,
TVB, Runge–Kutta time stepping scheme of order p + 1, and (iii) a generalized slope limiter to
minimize overshoots and undershoots.
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The coupled DG–CG model applied is a modified version of ADCIRC in which the GWCE
formulation for elevation, Eq. (4), has been replaced with a RKDG formulation of the continuity
equation in primitive form (1), while the solution of the momentum Eq. (5b) is left unchanged.
This new version of the code, referred to as DG-ADCIRC, was written by Clint Dawson who
has documented the methodology in Dawson et al. (2004). For completeness, a brief summary
of this method is included here in Fig. 1.

Development of the DG discrete form of the primitive mass continuity Eq. (1) follows the same
method of weighted residual procedure as outlined for the continuous Galerkin model. A primary
difference lies in the definition of the basis functions. Linear basis functions are defined over
a single element only; the basis functions for each element are in the polynomial space
V1 ¼ f1; x� xe; y � yeg, where (xe,ye) is the coordinate of the barycenter of the element.
Thus the DG solution for elevation on each element is a linear two dimensional function ex-
pressed as,
fðx; y; tÞjDe
¼ c1;eðtÞ þ c2;eðtÞðx� xeÞ þ c3;eðtÞðy � yeÞ: ð6Þ
The basis functions and the elevation solution between adjacent elements have no continuity re-
straints imposed. Following integration by parts of the weighted residual statement, the integral
terms that remain include boundary integral terms at every element edge. These terms do not can-
cel one another since no solution continuity between elements is imposed. The result is a flux term,
F ðv; feþ; f

e
�Þ � ne, containing the unique solution of the DG equation from the left, fe�, and right, feþ,
Fig. 1. A simplified flowchart for the coupled DG–CG model.



Fig. 2. Two elements, along with the values of fe to the left and right of the common edge, determined by the normal

vector ne.
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side of a shared element edge, see Fig. 2. This flux term is numerically approximated using a
Roe flux (see Dawson et al., 2004) which incorporates upwinding. Although the solution is
discontinuous across an edge, the flux is unique and hence continuous. The resulting discrete
DG form of the primitive continuity equation is given for t > 0 as
Z

Xe

ofe

ot
we dXe �

Z
Xe

vHrwe dXe þ
Z
oXe

F ðv; feþ; f
e
�Þ � newedðoXeÞ ¼ 0; 8we 2 V1: ð7Þ
An explicit second order Runge–Kutta scheme for the time discretization of the discrete form of
Eq. (1) yields a RKDG formulation for Eq. (7) that is solved element by element at each time step.
After each intermediate time step of the Runge–Kutta scheme a conservative slope limiter is ap-
plied. Slope limiters are used in the RKDG and indeed most DG methods in order to ensure sta-
bility of the solution. The main function of the slope limiter is to minimize so called overshoots
and undershoots of solutions, i.e. to control spurious oscillations. For non-linear problems and
higher order methods, the use of slope limiters is a virtual must. A variety of slope limiters can
be employed, yet to ensure the method stays locally conservative, one criterion of slope limiters
that must be enforced is that the action of the slope limiter leave the average value of the solution
over an element unchanged. The coupled DG–CG model currently uses a very simple yet conser-
vative limiter based on a linear reconstruction scheme, the details of the slope limiter are provided
in Appendix A.2. For the sake of convenience, in the remainder of this work whenever we refer to
a DG method, it is to be understood that we mean a Runge–Kutta discontinuous Galerkin
method, RKDG.

In order to solve the continuous Galerkin formulation of the momentum equation as originally
formulated in ADCIRC, a continuous elevation solution must be passed to the momentum equa-
tion. To accomplish this, the elevation at a node is solved for by considering the DG elevations,
defined over a single element, at all elements connected to a given node. The procedure basically
leads to a L2 weighted averaging of the DG solution back onto the nodes. The notation DG-Avg
is used to indicate the continuous elevation and velocity solutions produced by the coupled DG–
CG model. To be consistent with the ADCIRC formulation, mass lumping is used while deter-
mining the mass accumulation term. Furthermore on elevation specified boundary nodes, the
specified elevation is enforced through the boundary flux term, a weak condition. The continuous
nodal values for elevation, DG-Avg, are then used to solve the momentum Eq. (3) at the current
time step in the same manner as described in Section 2.1. The nodal averaging could be eliminated
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by changing the momentum equation implementation in ADCIRC, via integration by parts, so
that either an element averaged elevation or edge flux, both of which are readily available, would
be required. This is the subject of a possible future change to the implementation of the DG–CG
formulation in ADCIRC.

Though a rigorous analysis of 2Dx wave formation and propagation within coupled DG–CG
model solutions is not undertaken here, Cockburn and Shu (1998) have shown under certain grid
requirements and through the use of appropriate slope limiters that the RKDG method when ap-
plied to hyperbolic conservation laws, like Eq. (1), is a stable, convergent method and thereby
controls spurious oscillations. The wave propagation characteristics and convergence properties
of a GWCE and a coupled DG–CG shallow water model are compared in Dawson et al.
(2004). They apply both models to the weakly non-linear quarter annular harbor test case (Lynch
and Officer, 1985) that has been accepted and used historically as a rigorous benchmark of model
accuracy. Dawson et al. (2004) find small node-to-node oscillations in the direction of wave prop-
agation for both the GWCE and the coupled DG–CG model solutions with oscillations for the
coupled DG–CG model being slightly larger as expected. However, the second order accuracy
and stability of the coupled DG–CG is retained through appropriate application of slope limiters
(Dawson and Proft, 2002). Furthermore, the localized nature of the method means that node-to-
node oscillations remain local to the individual element and do not propagate throughout the
domain.
3. Characterization of the mass error in GWCE-based models

For the analyses contained herein, mass error is computed locally using an integral form of the
mass conservation law shown by Eq. (1):
Z t

t0

Z
Xe

of
ot

þr � ðHvÞ
� �

dXe dt ¼ 0; ð8Þ
where Xe is an element. Time integration of the first term of Eq. (8) and an application of the
divergence theorem to the second term in Eq. (8) gives:
Z

Xe

ðft � ft0ÞdXe þ
Z t

t0

Z
oXe

Hv � ne dðoXeÞ
� �

dt ¼ 0: ð9Þ
A discrete form of Eq. (9) is obtained by approximating the dependent variables by their discrete
counterparts following the procedure outlined by Kolar et al. (1994). The first term of Eq. (9) is
evaluated exactly and expressed:
Z

Xe

ðft � ft0ÞdXe ¼ ðfet � fet0ÞAe; ð10Þ
where Ae is the area of element Xe and fet is the elemental value of fet . The boundary integral in Eq.
(9) represents the net flux into the element when ne is taken as the unit outward normal. For the
second term in Eq. (9), expansion of H and v in terms of their basis functions (linear triangles)
leads to an exact expression for the net flux, Qnet:
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Qnet �
Z
oXe

Hv � nedðoXeÞ ¼
X
eb

Le

6
2H 1vn1 þ H 1vn2 þ H 2vn1 þ 2H 2vn2½ �; ð11Þ
where Le is the length of an edge of the element Xe, vn = v Æ ne, the sum is over all edges of the
element and subscripts 1 and 2 refer to the nodes (numbered locally) at the end of the element
edge. The time integral of Qnet from Eq. (9) is approximated using the trapezoid rule. The result,
Emass ¼ fet � fet0

� �
Ae þ

X
k

1

2
Qnet

t þ Qnet
tþDt

� �
Dt; ð12Þ
is a discrete expression for the elemental mass error, Emass. The first term represents the accumu-
lation of mass over the element, Xe, from initial time, t0, to a time, t. The second term in Eq. (12) is
the net flux of mass into the element over the time interval [tk, tk + Dt], summed over all time incre-
ments, k, contained in the time interval [t0, t]. For perfect mass conservation, Emass is equal to
zero. A normalized elemental mass error is obtained by dividing the elemental mass error by
the elemental volume,
Emv ¼
Emass

Vole
; ð13Þ
where Vole is the discrete volume of the water column defined by element, Xe, integrated approx-
imately in time over each time interval [tk, tk + Dt] via the trapezoid rule, then summed over all
time increments, k, contained in the time interval [t0, t]. Throughout the remainder of the text
the mass error, Emass, is computed as a dimensionless quantity, Emv and reported as mass error
in dimensionless units. More insight into the generation of mass error is provided using this tech-
nique over a simple examination of the global boundary fluxes, e.g. Aizinger and Dawson (2002).

Some may argue that the discrete mass flux should be computed in a way that is consistent with
the finite element discretization within the numerical model (e.g. Berger and Howington, 2001).
For a GWCE-based shallow water model, a consistent discrete numerical flux does not corre-
spond to the physical flux (Massey and Blain, 2004) so that meaningful interpretation of the
numerical flux is not readily apparent. Alternatively, the approach adopted here for computing
mass error is consistent not only with a physical interpretation of Eq. (1) but also with the flux
quantities that are relevant to transport processes.

3.1. Indicators of mass error

Proper representation of the circulation dynamics requires enough grid points to resolve sharp
changes in the bathymetric gradient as demonstrated by Luettich and Westerink (1995) and Ha-
gen et al. (2001). However it is not sufficient to remove all errors in the computed fields, i.e. (Han-
nah and Wright, 1995). This residual error may be attributed to mass imbalance. The location of
maximum local mass error commonly is thought to be coincident with steep bathymetric gradients
and/or complex coastal geometry. This characterization of local mass error is incomplete since
these features are prevalent throughout most coastal and estuarine waters and robust solutions
for a range of barotropic dynamics in these situations are known to be produced by GWCE-based
models. Furthermore, Oliveira et al. (2000) note the correlations between bottom slopes and ele-
mental mass error proved inconclusive in their estuarine application.
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In order to better predict the occurrence of mass error in computed solutions, two quantities are
defined here that parameterize either the local geometry considering both bathymetry and grid
resolution or the dynamics of the flow field as represented by velocity gradients in the form of vor-
ticity. The first non-dimensional quantity, Rmax, is defined at each element as a ratio of the mean
maximum bathymetric difference to the element radius. The mean maximum bathymetric differ-
ence is determined by first finding the maximum change in bathymetry between an element node
and its neighbor nodes, then averaging those maximum changes to obtain a mean maximum
bathymetric difference for the element. The element radius is defined to be the radius of the circle
that circumscribes the element and is denoted by Dxe. The combination of large bathymetry
changes and/or fine mesh resolution yields the largest values of Rmax. The Rmax tracks not only
bathymetric gradients but also the steepness of the gradient in relation to its resolution, particu-
larly for uniform meshes. Note that Rmax is a static value dependent only upon the computational
mesh and the bathymetry and does not account for the dynamical solution in any way. As a result,
extreme Rmax values will identify regions in the mesh where local mass imbalance is likely to occur
consistently, irrespective of the flow dynamics. Such a measure is convenient in that no computed
solution is required to assess mass error given a mesh, its associated resolution and bathymetry
gradients.

The second non-dimensional quantity defined, V, is simply the two-dimensional vorticity of the
flow integrated in time over the interval [tk, tk + Dt] via the trapezoid rule, and summed over all
time increments, k, contained in the time interval [t0, t],
V ¼ ov
ox

� ou
oy

	 

tk

þ ov
ox

� ou
oy

	 

tkþDt

" #
Dt
2
; ð14Þ
where u and v are the horizontal velocity components in the x and y coordinate directions. The
time integration is performed to non-dimensionalize the quantity, V, and is consistent with the
time integration involved in the computation of local mass imbalance, Emv. The vorticity provides
a visual indicator for the significance of velocity shear and advection since intuitively one�s eye is
drawn to regions showing extreme changes in the vorticity (i.e. vorticity gradients). As one exam-
ple for wave-driven flows, high vorticity is an indicator of wave-breaking which is associated with
strong velocity shear Buhler and Jacobson (2001) and is a common feature associated with near-
shore dynamics. The discrete vorticity is well defined on each element and is easily computed from
the readily available velocity solution, even after a relatively short duration simulation. The selec-
tion of vorticity as an indicator for mass error derives its theoretical basis from the analysis of
Hagen et al. (2000). In their analyses the leading term of the local truncation error for the momen-
tum equations in the GWCE-based model over structured grids is determined to be second order
with respect to velocity and elevation gradients (see Appendix A.3 for the full expression of the
local truncation error, LTEA, Eq. (A.3.1)). If one computes the gradient of the vorticity in Eq.
(14) assuming uniform grid spacing, the four velocity gradient terms that arise are nearly identical
to those expressed in the first term of the LTEA (LTEA1, Eq. (A.3.2)). Therefore, the spatial
derivatives of vorticity are expected to yield a similar pattern of error as the leading truncation
error term of Hagen et al. (2000). In our analysis of vorticity as a visual indicator of mass error
we will demonstrate a positive relationship between mass error, the LTEA and LTEA1, and the
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vorticity gradients. In order to proceed, a vorticity gradient represented as a discrete dimension-
less term on each element Xe, is defined as,
kDðV Þek¼
: X

k

Z tkþDt
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where k Æ k is the regular Euclidean norm of the time-integrated gradient of vorticity and Dxe is the
element radius. The time integration is approximated by the trapezoid rule. Since the discrete
velocity components u and v are linear functions in space and vorticity is a constant on each ele-
ment, Xe, we therefore must approximate its spatial derivatives. To do this for an element Xe, the
reconstruction scheme given in Appendix A.1 is applied using the constant element values of vor-
ticity for the element Xe and those of its three edge element neighbors. The planar function from
the reconstruction step with the maximum magnitude gradient is chosen and the derivatives of
that function are used as approximations to the spatial derivatives of vorticity. For all element
edges that lie on a physical boundary option two of the reconstruction scheme applies with the
Ci value specified equal to zero (see Appendix A.1). Given the cumbersome nature of computing
a vorticity gradient, we are able to justify vorticity, V, as a more efficient and practical visual indi-
cator of high mass error based on the flow dynamics.

So it is proposed that vorticity, V, in combination with the geometric parameter, Rmax, may
provide further insight into the occurrence of mass error within these GWCE-based barotropic
model applications. Such indicators may be useful in developing a systematic means of evaluating
whether or not a GWCE-based model is appropriate for particular types of coastal dynamics
applications. Furthermore, the indicators Rmax and kD(v)ek may be applied as criteria for an
adaptive meshing strategy or in the application of selective slope limiting when using a DG-based
model for example. The two quantities, Rmax and V, are now analyzed for several barotropic cir-
culation problems that represent examples of wave-generated rip currents, wind-driven flows, and
non-linear tidal dynamics to determine their suitability as indicators of mass imbalance in solu-
tions computed using a GWCE-based circulation model.

3.2. Wave and wind—driven circulation

Two scenarios in which the driving force for coastal circulation is a surface stress are now
considered. The first test problem describes a barred, sloping beach that has a channel cut
through the bar (Fig. 3a). This bathymetric configuration is typically associated with the gener-
ation of offshore directed rip currents in the channel due to wave breaking along the bar. The
beach is 750m cross-shore (x-direction) by 1500m alongshore (y-direction) with a bathymetric
slope of 0.009. The bar, with a cross-shore width of 200m, is located nearly 350m offshore.
A single channel, with a maximum alongshore width of 255m, divides the bar at a position that
is 7.5m below the centerline of the domain. Note the asymmetry in this rip channel location. The
finite element mesh for this domain resolves the bathymetry at 7.5m using a uniform distribution
of 20301 nodes and 40000 elements. The basin is closed by maintaining no-flow boundary
conditions; the dimensions of the beach are selected to minimize lateral boundary interaction
and allow realistic seaward flow of the rip current. The surface wave stress is computed as a
radiation stress gradient derived from a wave height field generated by normally incident waves



Fig. 3. For the barred beach with a rip channel, upon reaching steady-state after 14.4h of simulation: (a) bathymetry

(m), (b) Rmax, (c) V, time-integrated vorticity of the currents, and (d) Emv, mass error/volume (scales adjusted to bring

out details).
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of 10s periods and initial height of 1.0m. (See Cobb and Blain (2003) for details on generation
of the surface wave field.) A time step of 0.0625s is used and the lateral eddy viscosity is set to
1.0m2/s. The GWCE weighting parameter, G, is specified as 0.01. Steady-state circulation is ob-
tained after a simulation of 14.4h and is described in detail by Cobb and Blain (2003). Since the
mesh is uniform, differences in the value Rmax, shown in Fig. 3b, are due to bathymetry gradi-
ents. Notice that the largest values of Rmax occur in the region of the bar and that Rmax is zero
near the shore.

The computed vorticity, V, integrated in time over the 75s interval leading up to hour 14.4,
(Fig. 3c) reflects the position of the offshore directed rip current and the location of secondary
breaking shoreward of the bar. In this shoreward region, circulation eddies constitute the return
flow for the rip current and are a response to complex alongshore and cross-shore pressure
gradients. Comparing the vorticity to the distribution of the mass error, Emv, (Fig. 3d), a



Fig. 4. For the barred beach with a rip channel, comparison of locations of statistically significant computed values for

(a) Emv versus Rmax, (b) Emv versus kD(V)ek, (c) Emv versus LTEA, (d) Emv versus LTEA1, (e) LTEA1 versus LTEA2,

and (f) kD(V)ek versus LTEA1.
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correspondence between the magnitude of the mass error and spatial changes of vorticity, V, is
seen in the region of secondary breaking and in the offshore flowing rip current. The strongest
location of mass error is in the region of primary wave breaking on the bar as identified by higher
Rmax values over the bar; together spatial changes of vorticity, V, and Rmax identify the regions of
notable mass error associated with the rip current circulation. To quantify what is observed visu-
ally, Fig. 4 presents a series of overlays showing the locations of non-dimensional statistically sig-
nificant values of the mass error, Emv, versus Rmax, the vorticity gradient, kD(V)ek, LTEA, and
LTEA1. Overlays of LTEA1 versus LTEA2 and kD(V)ek versus LTEA1 are also included. By sta-
tistically significant we mean the extreme values, ones located away from the mean value taken
over the entire mesh. Specifically in the applications of Section 3.2 (rip current and rotating gyres)
for Emv, kD(V)ek, LTEA, LTEA1 and LTEA2, we find all elements that have values that are more
than 0.5 standard deviations above or below the respective mean value; for Rmax all elements that
have values more than 1.5 standard deviations above the mean value are labeled statistically sig-
nificant. In the tidal application of Section 3.3, the upper and lower 5% of the extrema are labeled
as statistically significant for all quantities considered; this criterion better represents the extreme
values for a compressed range of very small mass error values. In Fig. 4a, the statistically signi-
ficant values of Rmax are confined to a region surrounding the bathymetric bar and extend the
length of the bar in the alongshore direction. These locations nearly encompass all of the statis-
tically significant mass error also occurring on and around the bar. Yet as is clear from Fig. 4a,
Rmax does not describe all the statistically significant mass error in the domain. By considering the
locations of the statistically significant values of the vorticity gradient, shown in Fig. 4b, many of
the high mass error locations not coincident with Rmax are coincident with kD(V)ek. The statisti-
cally significant values of the vorticity gradient, expressed as kD(V)ek are used here to quantify the
spatial changes in vorticity that our eyes naturally detect in the visual interpretation of the vor-
ticity field (Fig. 3c). The majority of the locations of extreme kD(V)ek shown in Fig. 4b are in
the same region shoreward of the bar where secondary wave breaking is occurring with notable
wave refraction and diffraction. The remaining locations of large vorticity gradients trace the off-
shore flowing rip current. In comparing the representation of extreme mass error locations by the
indices Rmax and kD(V)ek, they clearly separate the occurrence of mass error by geometric prop-
erties, i.e. bathymetry gradients, and flow dynamics, respectively. Further analyses showing the
locations of extreme mass error versus the locations of statistically significant values of LTEA
and LTEA1, Fig. 4c and d, respectively, demonstrate a close correspondence between the LTEA1

and the occurrence of extreme vorticity gradients, kD(V)ek shown in Fig. 4b. The exception is the
large values of LTEA1 located on the bar. Of course these locations have already been identified
by the index, Rmax. Notice that although the entire LTEA captures many of the same locations of
mass error along the bar and in the shoreward wave breaking region, the offshore directed rip cur-
rent is not represented. Recall that the LTEA is composed of two local truncation error terms (Eq.
(A.3.1)); the first term is primarily constructed of velocity gradients while the second term involves
essentially only elevation gradients. The different locations that each of these two terms of the
LTEA identify are shown in Fig. 4e. The major difference between the two terms is that the second
term (LTEA2) does not identify the location of the offshore directed rip current and captures few-
er locations in the region of secondary breaking. Lastly by comparing the locations of statistically
significant values of the vorticity gradient and the first term of the LTEA, i.e. LTEA1 in Fig. 4f,
excepting locations on the bar in which truncation error is caused the steep change in bathymetry,



298 C.A. Blain, T.C. Massey / Ocean Modelling 10 (2005) 283–315
the extreme values of the LTEA1 and kD(V)ek are coincident. Together the results in Fig. 4d and f
lend strong support to the validity of vorticity and in particular its gradients as an indicator of
mass error. From the presented analyses, the quantity V, is presented as a theoretically based
visual indicator of extreme mass error locations. The primary advantage of the vorticity, V, over
its gradients kD(V)ek is that the computation of higher derivative terms are not required. Truly the
combination of both Rmax and V capture all locations of statistically significant mass error as is
shown in Fig. 4a and b.

A second wind-driven problem is investigated in order to further examine the integrity of Rmax

and V as indicators of extreme mass error locations. Consider now a closed basin within which
two closed gyres of rotating winds are propagated in a crossing pattern over a plane sloping
bathymetry. The rectangular basin of dimension 450m by 600m is discretized using a structured
triangular mesh containing 3691 nodes and 7200 elements. Elements are obtained by first dividing
the basin into rectangles 15m by 10m and then creating four triangles per rectangle using the
diagonals of the rectangle with the result being a maximum and minimum resolution of
8.125m and 5.416m, respectively. The bathymetry slopes linearly from an offshore maximum
of 3.604m to 0.01m at the shoreline. The time step is set to 0.25s, a lateral eddy viscosity coeffi-
cient is specified equal to 1.0m2/s and the GWCE weighting parameter has a value of 0.01. Zero
elevation at the offshore boundary enforces a closed basin. Each rotating surface stress wind gyre
varies linearly with the radius of the gyre; magnitude of the surface stress is zero at the center and
reaches a maximum of 10N/m2 at a distance of 50m from the center. The simulation is for 14.4h
with a ramp of 12h. The center of each gyre (100m, 150m) and (100m, 450m) is fixed in space for
13.2h after which they begin to move linearly at an approximate speed of 0.0787m/s. Both wind
gyres rotate counter-clockwise and move in directions that are diagonally opposite such that they
cross at (250m, 300m) near the center of the domain, with the resulting wind speeds being the
vector sum of each gyre. The distribution of Rmax is constant due to the plane sloping bathymetry
and the uniform mesh spacing. Since the geometry of this problem does not pose any particular
computational challenges, Rmax is not expected to be a good indicator of mass error in the com-
puted solution. Rather the vorticity of the flow field should serve as an appropriate mass error
indicator. The vorticity of the circulation at 13.7h, prior to the intersection of the rotating gyres,
and the corresponding computed mass error are shown in Fig. 5a and b, respectively. Higher mass
errors are located at the perimeter of the circulation gyres with the highest mass error values lo-
cated at points where the vorticity gradient is most pronounced. This would correspond concep-
tually to regions of high velocity shear and advection which are thought to be a primary source of
mass error in GWCE-based shallow water models. Similar to the rip current application examined
previously, the statistically significant values of the mass error are overlaid by statistically signif-
icant values of the vorticity gradient, kD(V)ek, LTEA, and LTEA1 in Fig. 5c–e. Nearly all occur-
rences of extreme mass error are captured by the locations of statistically significant values of
kD(V)ek in Fig. 5c. Comparing the correspondence between the LTEA and LTEA1 with the loca-
tions of extreme mass error (Fig. 5d and e), values of LTEA1 appear to represent more of the loca-
tions identified by Emv than values for the entire LTEA. The correlation between kD(V)ek and
LTEA1 is reinforced by the coincident overlay of locations in Fig. 5f. For this wind-driven prob-
lem, the vorticity of the flow field and its gradients best represent the locations of extreme mass
error in the computed solution.



Fig. 5. For the wind-driven basin, 13.7h into the simulation, computed (a) V, time-integrated vorticity, (b) Emv mass

error/volume, along with locations of statistically significant values of (c) Emv versus kD(V)ek, (d) Emv versus LTEA,

(e) Emv versus LTEA1, and (f) kD(V)ek versus LTEA1.
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Fig. 6. For the Bight of Abaco: (a) bathymetry, (b) Rmax, mean maximum bathymetric difference per element radius,

(c) V, time-integrated vorticity of the currents (adjusted scales), and (d) Emv, mass error/volume (adjusted scales).
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3.3. Tidal dynamics

Lastly we consider a realistic tidal dynamics problem having variable bathymetry for which
unstructured triangular meshes are applied. The application is a model of the tidal circulation
in the Bight of Abaco, Bahamas, which lies between the islands of Great Abaco to the east, Little
Abaco to the north, and Grand Bahama to the west. The basin, roughly 40km by 100km, is de-
fined by a finite element mesh comprised of 1696 elements and 926 nodes resulting in a maximum
and minimum resolution of 1750m and 454m, respectively. The time step is specified as 30s, the
GWCE weighting parameter, G, is set to 0.01, and lateral mixing effects are not considered. The
tidal simulation undertaken extends for 12 days including a 5-day ramp period. Tidal forcing ap-
plied at the open ocean boundary and used to drive the simulation consists of five primary con-
stituents (K1, O1, M2, S2, and N2). The bathymetry varies from 1.0m to 9.0m (Fig. 6a). The Bight
of Abaco is a site of significant non-linear tidal generation due to its isolation from deep offshore
waters (1000–2000m) and its own very shallow depths. Tides propagate from open waters and are



Fig. 7. For the Bight of Abaco: Comparisons of locations of statistically significant values of (a) Emv versus Rmax,

(b) Emv versus kD(V)ek, (c) Emv versus LTEA1, and (d) Emv versus kD(V)ek around the island.
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largely modified by frictional dissipation and non-linear tidal interactions within the Bight. The
Bight of Abaco has been extensively observed (Filloux and Snyder, 1979) and modeled (Westerink
et al., 1989; Grenier et al., 1995) making it a well-suited field test case. This test problem is, how-
ever, typically well-represented using a GWCE-based model so mass errors overall are several
orders of magnitude smaller than those computed for the two previous test problems.

For the Bight of Abaco application, the spatial variation in the parameter Rmax is depicted in
Fig. 6b. Larger values are found primarily at the transitions from very shallow depths to deeper
ones around the perimeter of the basin and at transitions between the shallow sill at the entrance
to the Bight and the deeper basin of the Bight. The computed vorticity and corresponding mass
error after 11.6354days of simulation are shown in Fig. 6c and d, respectively. In comparison to
the distribution of mass error, both Rmax and V identify regions of relatively larger mass error as
identified in Fig. 6d. Mass error locations captured by significant values of Rmax, shown in Fig. 7a,
are located in the shallowest water near the open ocean boundary. The remaining significant Rmax

values shown are positioned at the shelf-slope transition in the southern Bight and identify the
steepest bathymetry gradient with respect to the resolution of the mesh. The relation between
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locations of statistically significant mass error and statistically significant vorticity gradients are
shown in Fig. 7b. As has been shown in the prior applications, many of the locations of relatively
significant mass error correspond to locations of significant vorticity gradients. These same loca-
tions are also indicative of statistically significant values of the LTEA1 (Fig. 7c). Upon examina-
tion of an enlarged view surrounding the island presented in Fig. 7d, the overall correspondence
between kD(V)ek and mass error is somewhat weaker than has been seen in the previous applica-
tions. A major difference for this particular application is the overall low (i.e. 10�3) values of the
mass error occurring throughout the domain (Fig. 6d). Though distributions of Rmax and V
shown in Figs. 6 and 7 are less dramatic in predicting locations of mass error than the previous
flow cases, this is a direct result of the insignificant occurrence of mass error for this application.
These low mass error values are not surprising since the tidal dynamics for this application are
well-represented by GWCE-based models.

To summarize, while the parameter Rmax may indicate fixed regions of mass loss for realistic
applications it is not sufficient to identify all locations of mass error, whereby we see that the vor-
ticity of the flow field is also revealing. The spatial variation of vorticity is demonstrated as a reli-
able indicator of high mass error regions in GWCE-based model solutions for tide and surface
stress-driven coastal dynamics. This may not be surprising considering that vorticity is defined
in terms of velocity gradients and it is advection dominated flows that are particularly problematic
for GWCE-based shallow water models. As an indicator of mass error, the vorticity field may
become a useful criterion in defining the need for a DG-based model and in the context of DG
models, may indicate the locations for selective slope limiting.
4. Comparisons of GWCE and coupled DG–CG modeled solutions

Comparisons are made between solutions computed using the GWCE-based shallow water
model ADCIRC and DG-ADCIRC, the model formulated using a coupled DG–CG approach.
Water elevations within the DG-ADCIRC model are computed at the element center and denoted
‘‘DG’’. A node-based elevation is determined through an averaging procedure using elevation
values at the neighboring elements and is labeled ‘‘DG-Avg’’. This nodally-averaged elevation
is required for solution of the CG momentum equation; consequently, currents obtained from
the momentum equation in DG-ADCIRC are nodal quantities, a consequence of the coupled
DG–CG approach. For the DG–CG model solutions, mass is exactly conserved in the computa-
tion of elevation as expected from solution of the primitive continuity equation; mass imbalance
computed using the conservative elevations is on the order of machine precision for all test prob-
lems. Some non-zero mass error is reintroduced into the momentum equation of the coupled DG–
CG model through the averaging procedure by which elemental elevation values are assigned at
nodal points (DG-Avg). This approach follows that of Dawson et al. (2004). In the future, more
elegant approaches will be investigated that eliminate the reintroduction of mass error into the
momentum equation.

Both the coupled DG–CG model and the GWCE-based model have been applied to several
realistic and idealized test problems forced by winds, waves and tides. Presented here are two
of the realistic test problems that represent extrema with respect to the influence of mass error
on the computed solution. The two cases, Bight of Abaco, Bahamas and a barred beach with a
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rip channel, are selected to demonstrate the capability of the coupled DG–CG model to produce
robust solutions for both a traditional GWCE-based model application as well as a coastal
dynamics problem described by highly advective, small scale flows.

4.1. Tidal dynamics—Bight of Abaco, Bahamas

Tidal dynamics within the Bight of Abaco (as described by the test problem in Section 3.3) are
highly non-linear and their propagation is modified by the complex two dimensional variability of
the region�s bathymetry. Spatially solutions computed by the two models are seemingly identical
(not shown) so to further investigate the impact of solving a DG primitive continuity equation,
the elevation and velocity time series is examined at two elements, each selected from either a com-
paratively high or low mass error location. The differences between the two model solutions for
elevation at the location of high mass error (element 1436) are shown in Fig. 8a. The CG–DG
curve compares GWCE-computed elevations to elevations computed by the DG primitive conti-
nuity equation; CG–DG Avg indicates that differences are between GWCE-computed elevations
and DG elevations averaged to the nodes. As discussed previously, the nodally averaged DG ele-
vations are used for solution of the momentum equation. Comparisons of the water level differ-
ences (CG–DG) is manifest as a steeper slope in the tidal oscillation following each flood and ebb
peak in Fig. 8a. This feature results in a slight phase lead by the DG-computed elevations as com-
pared to the GWCE-computed elevations. The sign of the difference magnitude at peak flood and
ebb convey that the amplitude of the DG-computed elevation is less than that computed by the
GWCE-based model. Maximum elevation differences are on the order of 5cm. By comparison,
the nodally-averaged DG elevations are quite similar to the GWCE-computed elevations in terms
of both phase and amplitude; a slight reduction in amplitude results in magnitude differences on
the order of 0.5cm. Clearly, some advantages of using the DG primitive continuity equation are
Fig. 8. For the Bight of Abaco, Bahamas, difference comparisons between elevations computed by the GWCE-based

and coupled DG–CG models (m) at elements of comparatively (a) high mass error and (b) low mass error.



Fig. 9. For the Bight of Abaco, Bahamas, difference comparisons between the (a) u-component (m/s) and (b) v-

component (m/s) of the current computed by the GWCE-based and coupled DG–CG models at an element of

comparatively high mass error.
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lost when converting to the nodal elevation values required for the CG momentum equation in the
coupled DG–CG model. For this same high mass error element, the differences for each u- and v-
component of the velocity field are small in comparing both models (Fig. 9a and b); differences for
the primary flow direction (u) are no more than 0.8cm/s and 0.1cm/s differences are typical for the
remaining flow direction (v). A cyclical pattern in the velocity differences is evident with negative
differences in the u-component indicating that the coupled CG–DG model currents are greater
than the GWCE-based currents particularly at peak ebb. Differences between the v-component
velocities are more symmetric; positive values reveal that the coupled DG–CG model currents
are slightly less in magnitude than the GWCE-based model currents. All differences in the
current components are of comparable magnitude to the CG–DG Avg differences reported for
elevation.

In contrasting elevation solutions at the high mass error element with those at an element of
low mass error (element 335), as shown in Fig. 8b, one finds differences between the DG versus
DG-Avg elevations far less significant when compared to GWCE-computed elevations; further-
more maximum elevations differences for either DG-based solution are no greater than 0.5cm.
Differences between the GWCE and coupled DG–CG solutions are less than 0.5cm in elevation
(Fig. 8b) and 0.1cm/s in velocity (Fig. 10). In the primary flow direction (u-component, Fig. 10a),
the differences are very small, i.e. hundredths of a cm, and oscillate at frequencies that are approx-
imately 1/5 of dominant semi-diurnal tidal cycle.

To summarize, we observe that the coupled DG–CG solutions for this tidal flow problem are
nearly identical to the GWCE-based solutions at locations where mass imbalance is comparatively
small. At a location of comparatively high mass error, differences between the two model solu-
tions are manifest primarily in the computed elevations, leading to phase differences on the order
of 30–40min and a nearly 20% reduction in the amplitude at peak flood and ebb. Adjustments of
the ebb flow in the primary flow direction also result from the coupled DG–CG model. The
behavior described is exactly what is desired of the new algorithm, to preserve the typically robust
GWCE-based solutions where mass imbalance is not an issue and improve the solution in loca-



Fig. 10. For the Bight of Abaco, Bahamas, difference comparisons between the (a) u-component (m/s) and (b) v-

component (m/s) of the current computed by the GWCE-based and coupled DG–CG models at an element of

comparatively low mass error.
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tions where mass error may lead to erroneous solutions. The differences reported here for the ele-
vation and velocity fields are consistent with the magnitudes and types of error consistently re-
ported for GWCE-based tidal solutions, (e.g. Edwards and Blain, 2001; Blain and Rogers,
1998). Furthermore, despite the reintroduction of some mass error via the nodally-averaged ele-
vations (required for the continuous Galerkin momentum equation in the coupled DG–CG
model), the effect of a conservative elevation solution is still evident in the magnitude of peak
ebb currents in the primary flow direction for the Bight of Abaco. This result indicates potential
benefits in using a coupled DG–CG method.

4.2. Wave-driven currents—barred beach with rip channel

The second realistic example presented is that of the barred sloping beach containing a rip
channel discussed in Section 3.2. The coastal circulation typical of this scenario is described by
small-scale (on the order of meters), highly advective flow processes. The anticipation is that
the coupled DG–CG model will result in solutions that differ more significantly from those based
on GWCE-type models which are known to produce errors for such problems. Water levels com-
puted over the barred beach by the GWCE-based ADCIRC and the coupled DG–CG model are
shown in Fig. 11a and b, respectively. Conceptually the two model solutions are quite similar,
waves break first on the bar (x = 350m) and then later in the rip channel (x > 350m,
y = 750m) creating locations of set-down in elevation; the complex pattern in elevation nearest
the shoreline (x � 600m) is the signature of wave refraction and diffraction in the rip channel. Off-
shore, elevation set-down approaching the bar and a region of depressed elevation associated with
the position of the rip current are evident in both model solutions. Though the general features
of the two elevation solutions are similar, the differences in their detail are rather striking.
Generally, the elevation features and, in particular, the elevation gradients are much sharper
for the coupled DG–CG model solution. This is a direct consequence of the capability of the
DG formulation to capture sharp discontinuities.



Fig. 11. For the barred beach with a rip channel, steady-state water levels (m) computed by the (a) GWCE-based and

(b) coupled DG–CG models.
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The corresponding steady-state circulation computed by the GWCE-based and coupled DG–
CG models is shown in Fig. 12a and b, respectively. As was for elevation, the current pattern
is conceptually similar but the details are quite different with respect to the position of the rip cur-
rent and the asymmetries in the feeder current and alongshore currents between the bar (350m)
and the shoreline (750m). The change in magnitude of the currents along the bar for the
GWCE-based solution (Fig. 12a) which is absent in the coupled DG–CG solution (Fig. 12b) is
directly correlated to the high mass error computed along the bar (Fig. 3d). Nearshore circulation
associated with rip current generation is largely driven by complex along-shore and cross-shore
pressure gradients that are initiated by wave breaking as the wave steepens moving over shallower
depths such as a bar. A bar with a channel cut leads to alongshore variations in the wave steep-
ening and breaking. These resulting alongshore variations in the elevation field are the primary
driving force for the rip current generation. Thus accurate portrayal of the water elevation gradi-
Fig. 12. For the barred beach with a rip channel, steady-state circulation (m/s) computed by the (a) GWCE-based and

(b) coupled DG–CG models. Magnitude is shown in color; arrows indicate direction.
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ents and the location of wave breaking are critical to capturing the rip current and its associated
nearshore circulation. Nearshore circulation patterns and rip current generation in particular are
the result of highly advective processes. Furthermore they are known to be quite sensitive to small
changes in the bottom stress and/or lateral mixing, both very non-linear processes in this applica-
tion. Consequently, differences between currents computed by the GWCE-based and coupled
DG–CG models are not unexpected. One can surmise that the conservative elevation and sharp
gradients computed by the coupled DG–CG model will likely lead to a more realistic representa-
tion of the steady-state nearshore circulation field. As such the coupled DG–CG model applica-
tion to the barred beach with a rip channel indicates promise when considering replacement of a
GWCE-based solution with that from the coupled DG–CG model.
5. Considerations for coupled DG–CG model applications

5.1. The application of slope limiters

The current slope limiter used in the coupled DG–CG model results in a somewhat heavy-
handed limiter that tries to restrict local extrema of smooth solutions as well as spurious over-
shoots and undershoots. This behavior is clearly shown by considering a channel that is 36km
long, 2km wide and 10m deep resolved to 250m spacing. The open boundary is forced with an
8 Dx wave of amplitude 0.1m. The computed elevation for the coupled DG–CG model with lim-
iting is examined after 3267s (Fig. 13a), a period which is long enough for 16 full waves to be in
Fig. 13. For 8Dx waves in a channel, computed elevation solutions from the coupled DG–CG model (a) with slope

limiting and (b) without slope limiting, and from the GWCE-based model for G values of (c) 0.1, (d) 0.01, and (e) 0.001.
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the channel, yet none have reached the shoreline. Since this wave pattern is so short with respect
to the grid resolution, the limiter will have a tendency to limit the crest and troughs in such a way
as to decrease their amplitudes. Furthermore, this limiter aims to flatten out leading waves since
the water elevation ahead of the wave is zero. The need for a slope limiter is clearly demonstrated
by the nearly doubled elevation amplitudes in Fig. 13b that result from a coupled DG–CG solu-
tion in which slope limiters were not applied. Also included in Fig. 13 are three GWCE-based
solutions with varying G values (Fig. 13c–e). Recall that the larger the value of G the more the
GWCE approaches the primitive form of the continuity equation. One can view solution of the
GWCE as a forced spring-oscillator with damping. The damping values correspond to the spec-
ification of G so that as G approaches zero, no damping is prescribed. The role of G is clearly dem-
onstrated with the three GWCE-based solutions using G values of 0.1, 0.01, and 0.001 and
presented in Fig. 13c–e, respectively. Note that although the unlimited DG solution (Fig. 13b)
has larger predicted amplitudes its dissipation pattern is comparable to the GWCE-based solu-
tions with high and moderate G values (Fig. 13c and d).

Further evidence that this coupled DG–CG method requires a slope limiter can be seen in Fig.
14 which depicts elevation solutions after 11.6354days for the Bight of Abaco, Bahamas test prob-
lem. In Fig. 14a elevations are obtained from the coupled DG–CG solution using limiting and in
Fig. 14b large oscillations in the elevation solution are occurring when slope limiting is not applied
in the same model.

5.2. Computational cost for coupled DG–CG model applications

One of the major drawbacks to DG methods is that they require more degrees of freedom
(DOF) because there are no continuity restrictions between elements. For two of the test problems
considered, the total DOF required for solution of the elevation and velocities using the GWCE
and coupled DG–CG formulations is compared in Table 1. Notice that the DOF for the GWCE
model is 3N where N is the number of nodes (elevation and velocity), while the DOF for the cou-
pled DG–CG model is computed as three times the number of elements (elevation) plus 2N (veloc-
Fig. 14. For the Bight of Abaco, Bahamas, computed coupled DG–CG elevation solutions at 11.6354days for (a) slope

limiting active, and (b) no slope limiting.



Table 2

A comparison of computational times for the GWCE-based and coupled DG–CG solutions for the Bight of Abaco and

the Rotating Gyres test problems

Test problem No. time steps GWCE (s) DG–CG (s) Ratio of CPU increase

Bight of Abaco 34560 142 391 2.75

Rotating Gyres 207360 3413 9728 2.85

Table 1

A comparison of the total degrees of freedom (DOF) required by the GWCE-based and coupled DG–CG solutions for

the Bight of Abaco and the Rotating Gyres test problems

Test problem No. elements No. nodes DOF GWCE DOF DG–CG DOF ratio

Bight of Abaco 1696 926 2778 6940 2.49

Rotating Gyres 7200 3691 11073 28982 2.62
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ity). The DOF for the coupled DG–CG model can be approximated as 8N using a nodal connec-
tivity estimate of 6 elements/node. The theoretical increase in the DOF for the coupled DG–CG
model over the GWCE-based model is a factor of approximately 2.6.

Table 2 details the computational cost of these extra DOF by comparing single processor com-
putational times for both the GWCE-based and coupled DG–CG elevation solutions for the two
problems in Table 1. All computations are performed on a machine with dual 32bit 2.4GHz Intel
Xeon processors with 4GB of memory using Red Hat Linux 8.0 as the operating system; code
compilation is achieved using Portland Group FORTRAN 90.

Though the coupled DG–CG model does have additional costs associated with the projection
of the DG elevation solution back into a continuous (nodal) space in order to compute the CG
components of the momentum equation, these costs are not significant. Rather the increase in
DOF is the cause of the additional expense associated with the coupled DG–CG method as seen
by comparing the DOF ratio in Table 1 with the ratio of CPU increase in Table 2. To summarize,
when compared to the GWCE-based formulation of ADCIRC, the coupled DG–CG code
requires roughly three times more computational time per time step.

Though the lack of continuity required by the coupled DG–CG formulation increases the
DOF, it is also what makes it a local method, meaning that intra-element interactions occur only
between an element and its immediate edge neighbors through the flux terms, i.e. each element
communicates with only three element neighbors, whereas in the CG formulation, each element
communicates with on average 12 other elements. This compact communication structure for
the DG method gives rise to the possibility of very efficient and simple parallelization strategies.
Furthermore, as Flaherty et al. (2002) suggest, when a DG code is written for efficient paralleliza-
tion, the extra computational time due to the additional degrees of freedom may be overcome by
the efficiency of the parallelization. Thus large scale problems may still realistically be solved.
Additionally, when compared with the GWCE-based formulation, the DG method can easily
achieve a higher order of accuracy, without increasing the intra-element communication pattern.
This allows a potential decrease in the number of elements and thereby a reduction in the com-
putational cost while maintaining the same overall order of accuracy as a GWCE-based model.
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6. Concluding remarks

Mass imbalances present in the water levels and circulation computed by GWCE-based contin-
uous Galerkin finite element coastal ocean models have been meticulously documented herein for
representative coastal applications driven by tide, wind and wave dynamics. The locations of sta-
tistically significant mass error exhibit a direct correspondence to either the vorticity gradients of
the circulation or the ratio of the mean maximum bathymetric difference to the element radius for
nearly all dynamical cases considered. Locations of statistically significant extrema of the vorticity
gradients are shown to be coincident with the first term of the local truncation error (LTEA1) for
the momentum equation in GWCE-based models. Both the LTEA1 and the vorticity gradients are
coincident with high mass error locations. A robust indicator of mass error such as the vorticity as
observed here can be used to assess the necessity for a locally conservative scheme in the compu-
tational algorithm or validate the application of a GWCE-based model. Such indicators may also
be used in the future with so called flexible Galerkin algorithms for which some level of continuity
in space can be maintained (Massey, 2002).

Despite the existence of mass error, many tide and wind-driven applications simulated using
GWCE-based models are quite robust and yield excellent solutions of the coastal ocean state
under barotropic conditions. As shown herein, as advection and small scale processes become
more important to the overall circulation, such as for the rip current generation, mass errors
can become significant within GWCE-based calculations with the result being a solution that devi-
ates notably from that derived using a conservative coupled DG–CG method.

The need to move towards a locally conservative formulation for finite-element based coastal
models is clear. DG methods are locally conservative by their definition and higher-order DG
methods offer even more accuracy and flexibility than more common FV methods. In comparing
the GWCE-based and coupled DG–CG model solutions for the dynamically extreme cases of tide
and wave-driven scenarios, the coupled DG–CG formulation is able to retain the robustness of
the GWCE-based solutions for the typical tide-driven application explored here while at the same
time computing sharper gradients in the solution of elevation and currents. Resolution of these
small-scale features have a notable effect on the highly advective non-linear flow fields associated
with nearshore flows such as the generation of a rip current on a barred beach examined within.

Of course, no method is perfect and there are several considerations associated with the appli-
cation of coupled DG–CG methods that are being currently addressed. The need for a slope lim-
iting procedure in DG-based models is understood but how the limiting procedure influences the
final solution requires more investigation. Care must be taken in formulating a slope limiter that
minimizes overshoots and undershoots but does not diminish smooth local extrema. This is an
area of intense research. Lastly, DG methods with nearly three times the number of degrees of
freedom associated with CG methods are comparatively three times more expensive in head-to-
head serial comparisons. However, the local and highly parallelizable nature of the method is ex-
pected to overcome these extra computations. In addition, the higher order DG methods can use
less resolved grids and achieve the same overall order of accuracy as CG methods with an addi-
tional reduction in the degrees of freedom, without complicating intra-element communication
patterns. Certainly, the coupled DG–CG model eliminates the mass imbalance associated with
current GWCE-based CG coastal ocean models and leads to robust realistic representations of
coastal ocean dynamics suitable for use with transport models.
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Appendix A

A.1. A simple linear reconstruction scheme

In order to approximate the spatial derivatives of an element averaged constant function Ce, we
first consider an interior element Xe along with its edge neighboring elements, Xi, i = 1,2,3, as
shown in Fig. A.1.1. We partially construct three interpolating planar functions, see Zwillinger
(1996) for reference, using the element averaged constant values, {Ci}, i = e, 1,2,3 and the bary-
center coordinates (xi,yi) of the elements given,
ð1Þ X1 Xe X2;

ð2Þ X2 Xe X3;

ð3Þ X3 Xe X1;
and then find their gradients. For example, to find the spatial derivatives of the first planar func-
tion, C1, passing through the points, (x1,y1,C1), (xe,ye,Ce), and (x2,y2,C2), we first take the cross
product,
x1 � xe
y1 � ye
C1 � Ce

2
64

3
75�

x1 � xe
y2 � ye
C2 � Ce

2
64

3
75 ¼

i j k

ðx1 � xeÞ ðy1 � yeÞ ðC1 � CeÞ
ðx1 � xeÞ ðy2 � yeÞ ðC2 � CeÞ

2
64

3
75¼: d1iþ d2jþ d3k;

ðA:1:1Þ
Fig. A.1.1. An interior element with its edge neighbors.



312 C.A. Blain, T.C. Massey / Ocean Modelling 10 (2005) 283–315
which is normal to the plane. Then the derivatives of the first planar function, C1, are simply
dC1

dx
¼ � d1

d3

; and
dC1

dy
¼ � d2

d3

:

Note that if one of the edges of Xe lies on a boundary then we can choose one of two options,
first, we can reflect element Xe across that edge and use the resulting reflection as the neighbor
element and value in the reconstruction step. The second option is to use a specified value for
Ci and the midpoint of that edge in the reconstruction step.

A.2. A slope limiter

The current slope limiter implemented in the coupled DG–CG model is based on the recon-
struction scheme outlined in Section A.1.1. Given an element Xe and its DG elevation solution
from Eq. (7), we compute the approximate interpolated derivatives associated with this element
and its edge neighbors using the reconstruction scheme. We then compare the magnitude of
the gradient of all three interpolated functions with that of the DG elevation solution itself on
element Xe. The slopes for the DG solution, from Eq. (7), on element Xe are then set based on
the minimum magnitude gradient of all four possible planes. For edges that lie on a land bound-
ary, option one in the reconstruction scheme is used for the neighbor value. If the edge is an open
sea boundary, option two of the reconstruction scheme is used with the value of the specified ele-
vation at the midpoint of that edge as the neighbor element average.

A.3. Local truncation error

Hagen et al. (2001) presented for GWCE-based models, an estimate to the leading term of the
truncation error (LTEA) associated with the discrete form of the linear, harmonic, non-conserva-
tive momentum equations on the interior nodes of an equilateral triangular mesh. We present that
error here without development. A harmonic form of the non-conservative momentum equation
is determined by letting, u ¼ ûeîwt, v ¼ v̂eîwt, and, f ¼ f̂eîwt where, û, v̂, and f̂ are the complex ampli-
tudes of u, v, and f, î ¼

ffiffiffiffiffiffiffi
�1

p
and x = the response frequency. The result, following Hagen et al.

(2001) is an expression for the LTEA:
LTEA ¼ Dx2e
îxþ s

2

	 

o2ûk
ox2

þ o2v̂k
ox2

þ o2ûk
oy2

þ o2v̂k
oy2

	 


þ Dx2e
g
2

o3f̂k
ox3

þ o3f̂k
ox2oy

þ o3f̂k
oxoy2

þ o3f̂k
oy3

 !
þ OðDx4eÞ: ðA:3:1Þ
Each term in the LTEA can be written separately, namely the first terms,
LTEA1 ¼ Dx2e
îxþ s

2

 !
o2ûk
ox2

þ o2v̂k
ox2

þ o2ûk
oy2

þ o2v̂k
oy2

	 

; ðA:3:2Þ
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and the second terms,
LTEA2 ¼ Dx2e
g
2

o3f̂k
ox3

þ o3f̂k
ox2oy

þ o3f̂k
oxoy2

þ o3f̂k
oy3

 !
: ðA:3:3Þ
These quantities are then made non-dimensional by an integration in time over all subintervals
[tk, tk + Dt] in the time interval [t0, t], then multiplication by Dt and division by Dxe.
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