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ABSTRACT

The National Ice Center relies upon a coupled ice–ocean model called the Polar Ice Prediction System (PIPS)
to provide guidance for its 24–120-h sea ice forecasts. Here forecast skill assessments of the sea ice concentration
(C ) fields from PIPS for the period 1 May 2000–31 May 2002 are presented. Methods of measuring the sea ice
forecast skill are adapted from the meteorological literature and applied to locations where the forecast or analysis
sea ice fields changed by at least 65%. The forecast skill referenced to climatology was high (.0.85, relative
to a maximum score of 1.0) for all months examined. This is because interannual variability in the climatology,
which is used as a reference field, is much greater than the day-to-day variability in the forecast field. The PIPS
forecasts were also evaluated against persistence and combined climatological–persistence forecasts. Compared
to persistence, the 24-h forecast was found to be skillful (.0.2) for all months studied except during the freeze-
up months of December 2000 and January 2001. Relative to the combined reference field, the 24-h forecast
was also positive for the non-freeze-up months; however, the skill scores were lower (;0.1). During the poorly
performing freeze-up months, a linear combination of persistence (;95% weight) and climatology (;5% weight)
appears to provide the best available sea ice forecast.

To examine the less restrictive question of whether PIPS can forecast sea ice concentration changes, independent
of the magnitude of the changes, ‘‘threat indexes’’ patterned after methods developed for tornado forecasting
were established. Two specific questions were addressed with this technique. The first question is: What is the
skill of forecasting locations at which a decrease in sea ice concentration has occurred? The second question
is: Does PIPS correctly forecast melt-out regions? Using the more relaxed criterion of a threat index for defining
correct forecasts, it was found that PIPS correctly made 24-h forecasts of decreasing sea ice concentration
;10%–15% of the time (it also correctly forecast increasing sea ice concentration an additional ;10%–15%
of the time). However, PIPS correctly forecast melt-out conditions ,5% of the time, suggesting that there may
be deficiencies in the PIPS parameterization of marginal ice zone processes and/or uncertainties in the atmo-
spheric–oceanic fields that force PIPS.

1. Introduction

The meteorological community has a long-standing
history of environmental forecasting. In concert with
developing new forecast systems, that community has

* Naval Research Laboratory Contribution Number NRL/JA/7320/
03/122.

1 Additional affiliation: National Ice Center, Suitland, Maryland.
# Current affiliation: National Snow and Ice Data Center, Boulder,

Colorado.

put considerable energy into developing methods for
assessing changes in forecast skill. Operational ocean
forecasting systems are in their infancy, but there is
considerable interest in developing robust, skillful fore-
cast systems for that environment (e.g., Koblinsky and
Smith 2001; Pinardi and Woods 2002).
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Sea ice gained recognition by the U.S. Navy as a
hazard to navigation when it caused severe damage to
a convoy of ships navigating along the west coast of
Greenland during the establishment of a distant early
warning station and Thule Air Force Base, Greenland.
In response to this situation, the navy established the
Naval Ice Center with a mandate to chart and forecast
global sea ice conditions. During the 1970s the National
Oceanic and Atmospheric Administration (NOAA) was
formed and joined forces with the navy, establishing the
Joint Ice Center (JIC). In 1995 the U.S. Coast Guard
pooled its resources with the navy and NOAA personnel
to establish the National/Naval Ice Center (NIC), the
sole U.S. center for operational sea ice analysis and
forecasting.

Currently the NIC uses the Polar Ice Prediction Sys-
tem (PIPS) version 2.0 as the basis for its ‘‘operational’’
short-term (24–120 h) sea ice forecasts. These forecasts
are evaluated daily and amended by skilled analysts
using reconnaissance data (if available), the most recent
weather charts and data, and historical knowledge of
the conditions in the area to provide the highest quality
forecasts possible out to 120 h. Special emphasis in
these forecasts is placed on the location of the ice edge
and the conditions in the marginal ice zone (MIZ), as
these are the most critical operational areas for marine
transportation and safety.

Here we focus attention on evaluating the sea ice
concentration (C) forecast fields from PIPS for the 25-
month period 1 May 2000–31 May 2002. The goal of
this study is not to denigrate PIPS, as it is one of the
few examples of an ocean forecast system that is ac-
tually used operationally. Rather, the broader goal is to
illustrate the importance and some of the basic issues
involved in assessing the skill of ocean forecast systems.
Methods of assessing the sea ice forecast skill are adapt-
ed from well-established methodologies developed by
the meteorological community. In the next section an
overview of PIPS is provided. Section 3 introduces the
methodologies used for assessing forecast skill and dis-
cusses differences adopted for the sea ice forecasting
problem. Section 4 describes the results of this study
and section 5 concludes with a discussion and summary
of the results.

2. The Polar Ice Prediction System

PIPS was developed at the Naval Research Labora-
tory’s (NRL) Stennis Space Center (Preller 1992, 1999;
Cheng and Preller 1996; Preller and Posey 1989) and
runs operationally at the U.S. Fleet Numerical Meteo-
rology and Oceanography Center (FNMOC) in Mon-
terey, California. PIPS is a fully coupled ice–ocean mod-
el forced by atmospheric forecast products. The oceanic
model is a variant of the Cox (1984) model (Cheng and
Preller 1996) with the ETOP05 bottom bathymetry
(Heirtzler 1985). It is constrained to the Levitus (1982)
climatology using a time constant of 250 days. The

ocean model is coupled to a dynamic–thermodynamic
sea ice model, which incorporates a viscous–plastic con-
stitutive law (Hibler 1979, 1980). It uses a two-level ice
thickness scheme, with the ‘‘thick ice’’ further subdi-
vided into seven subcategories (Walsh et al. 1985). At-
mospheric forcing is provided by the Navy Operational
Global Atmospheric Prediction System (NOGAPS),
which provides weather forecasts out to 120 h (Hogan
and Rosmond 1991). The grid resolution of PIPS is
0.288, which varies from 17 to 33 km depending upon
the location of the grid square within the spherical co-
ordinate system. The final output is converted to a fixed
18 km 3 18 km grid (Fig. 1). To facilitate comparison
with other published products, all PIPS forecast and
observed fields have been interpolated to the 25-km-
resolution National Snow and Ice Data Center polar
stereographic projection tangent at 708 (Weaver et al.
1987).

With the exception of sea ice concentration and thick-
ness, all other variables are initialized from the previous
day’s 24-h forecast. The sea ice concentration field in
the PIPS forecast system is initialized daily (T 5 0 h)
using the Cal/Val algorithm (Hollinger 1991), which is
based on Special Sensor Microwave Imager (SSM/I)
data (Posey and Preller 1994; see also Preller et al.
1992). In the initialization scheme, PIPS ice concentra-
tions at locations where the observed Cal/Val ice con-
centrations are ,50% or .80% and where the differ-
ences between the PIPS and Cal/Val concentrations are
.5% and .10%, respectively, are replaced with the
Cal/Val values. Since the PIPS ice concentrations are
;95% or greater in most places and the Cal/Val values
typically saturate to 100% except near the ice edge (Par-
tington 2000; Meier et al. 2001), the model uses the
Cal/Val data mostly near the ice edge. Moreover, as
discussed more completely below, neither PIPS nor the
Cal/Val algorithm easily differentiates between open-
water areas and thin ice concentrations; thus, the 15%
ice concentration isopleth is taken as the ice edge.

Sea ice thickness is initialized from the previous fore-
cast, but the ice edge is modified in the following way:
if the SSM/I concentration indicates that no ice is pres-
ent at a location where the model predicted ice, the ice
is removed and the temperature of the mixed layer is
raised to 18C above freezing. In contrast, if the SSM/I
concentration indicates that ice is present, but the model
did not predict ice, the mixed layer temperature is set
to freezing and an ice-concentration-dependent ice
thickness is added. In particular, if the ice concentration
is less than 50%, the ice thickness is set to 0.5 m and
if it is greater than 50%, it is set to 1 m. In the event
that the model must be reinitialized, it is restarted from
climatology as described by Preller and Posey (1989).

Regions with missing data, such as near the pole, are
estimated by optimal interpolation from nearby points,
thus providing complete, daily, hemispheric analyses.
The valid range for both the initialization and forecast
fields is 0%–100% representing the range from ice-free
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FIG. 1. Spatial domain of PIPS. The latitude spacing is 108 and the longitude spacing is 308.

conditions to complete ice cover. (Note: ice concentra-
tion, or fractional ice cover, and the statistics that are
derived from it are unitless.)

3. Methods of forecast skill assessment

a. Skill scores

Forecasting sea ice drift and the ice edge are analo-
gous to the problem of forecasting wind velocity and
the location of weather fronts in atmospheric models.
Similarly, sea ice thickness and concentration are scalar
fields analogous to atmospheric temperature in weather
models. Some work has been done to verify ice drift
models (Flato and Hibler 1992; Grumbine 1998) and
ice edge prediction (Pritchard et al. 1990), but with the
exception of the studies by Preller and Posey (1996)
and Van Woert et al. (2001), little work has been done
to evaluate operational sea ice concentration forecasts.

To assess the forecast skill of PIPS, the forecast ice
concentration changes were compared to ‘‘truth,’’
which, for consistency, is taken to be the PIPS sea ice
concentration analysis at the valid time of the forecast.

This satellite-derived sea ice analysis is less than perfect.
However, by using a common analysis to both initialize
the model and serve as truth, skill scores allow the mod-
el performance to be evaluated in a mode that is rela-
tively insensitive to observational errors and deficien-
cies in the structure of the observing system.

Forecast skill is typically defined in terms of a generic
measure of accuracy, A, as follows:

A 2 Af rSS 5 , (1)
A 2 Ap r

where A f , Ap, and Ar denote the accuracy of the forecast
system, the accuracy of a perfect forecast, and the ac-
curacy of a reference forecast, respectively (Brier and
Allen 1951; Murphy and Daan 1985). In this formu-
lation the skill score represents the improvement in ac-
curacy of a forecast with respect to an as yet to be
defined reference forecast, relative to the total improve-
ment in accuracy.

Murphy (1988) and Murphy and Epstein (1989) ad-
vocate the use of the mean-square error (MSE), de-
fined as
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21 2MSE(a, b) 5 N (a 2 b ) (i 5 1, . . . , N ),O i i
i

(2)

as the measure of accuracy. Substitution of (2) into (1)
gives

MSE( f, O) 2 MSE(R, O)
SS 5 , (3)

MSE(P, O) 2 MSE(R, O)

where f and P represent the system forecast and perfect
forecast fields, respectively, and O and R represent the
analyzed (observed) and reference fields at the valid
forecast time. Since the MSE for a perfect forecast,
MSE(P, O), is zero, Eq. (3) can be written as

MSE( f, O)
SS 5 1 2 . (4)

MSE(R, O)

From (4) it is seen that SS is positive (negative) when
the MSE for the reference field is greater (less) than the
MSE for the forecast field. Moreover, for a perfect fore-
cast [MSE( f, O) 5 0] SS 5 1, and for no forecast skill
[MSE( f, O) $ MSE(R, O)] SS # 0.

Murphy (1988) showed that the square of the cor-
relation coefficient [also commonly referred to as the
anomaly correlation coefficient (Brier and Allen 1951)],
another widely used measure of forecast skill (Arpe et
al. 1985), can be viewed as the potential forecast skill
(i.e., the maximum attainable SS when all biases are
eliminated). For weather forecasting a correlation co-
efficient greater than an arbitrary value of 0.6 is nor-
mally considered to be a ‘‘skillful’’ forecast (Hollings-
worth et al. 1980). This corresponds to a skill score of
;0.36. It is clear from (4), however, that any skill score
that is greater than zero represents an improvement over
the reference forecast.

A critical element of forecast verification is the se-
lection of the reference value, or the zero point on the
scale on which skill is measured. In weather forecasting,
persistence is often taken as the appropriate reference
for measuring the skill of short-range forecasts and cli-
matology is frequently used for medium- and long-range
forecasts. The skill score relative to climatology, SSc,
based on (4) is given by

MSE( f , O )n nSS (n) 5 1 2 (5)c MSE(C , O )n n

(Murphy and Epstein 1989; Murphy 1988), where f n is
the n-h forecast field (n 5 24, 48, 72, and 120 h), and
On and Cn are the analyzed and climatological fields at
the valid time for the forecast, respectively.

Murphy (1988) discusses the nuances of using various
definitions of climatology. In particular he showed that,
by virtue of its improvement in defining the reference
state, in most cases the use of a multiple-valued cli-
matology (e.g., daily climatology) should give a lower
skill score than a single-valued climatology (e.g., annual
climatology). In this study a daily sea ice concentration
climatology was developed by averaging the daily out-

put from the Cal/Val sea ice concentration algorithm for
the period 1 June 1995–31 May 2002.

For short-term forecasts it is customary in the mete-
orological field to use persistence as the reference field.
(A persistence forecast is obtained by assuming that the
analyzed sea ice conditions on a given day are the forecast
conditions, i.e., conditions will stay the same.) PIPS is
initialized daily with observed sea ice fields and over
time scales of a few days or more is observed to move
predominately in response to the imposed wind forcing.
Thus, it is reasonable to consider persistence as a ref-
erence state for short-term sea ice forecast evaluation.
Under this assumption, (4) becomes

MSE( f , O )n nSS (n) 5 1 2 , (6)p MSE(O , O )0 n

where SSp(n) represents the skill score relative to per-
sistence, O0 is the analyzed field at the time the forecast
was made, and all other parameters have previously
been defined.

Under the normally reasonable assumptions that the
means and variances at T 5 0 and T 5 n (n 5 24, 48,
72, and 120 h) are equal, respectively, Murphy (1992)
showed that the best choice for the reference field, Rn,
is a linear combination of climatology and persistence
(CLIPER), given by

R 5 r(n)O 1 [1 2 r(n)]C ,n 0 n (7)

where r(n) is the first-order autocorrelation coefficient
between the observed values at T 5 0 and at T 5 n (n
5 24, 48, 72, and 120 h) given by

(O 2 O )(O 2 O )O 0 0 n n
r(n) 5 . (8)

2 2Î (O 2 O ) (O 2 O )O O0 0 n n

For the monthly statistics discussed in this study, the
sums in (8) are taken over all available space and time
points for the month. For r(n) ù 1 (i.e., the observations
on any given day are highly correlated with future con-
ditions on time scales of a few days), the persistence
term dominates Rn. In contrast, when r(n) ù 0, Rn is
dominated almost exclusively by climatology. Given
this definition of Rn, the skill score relative to CLIPER,
SScp(n), is defined as

MSE( f , O )n nSS (n) 5 1 2 . (9)cp MSE(R , O )n n

In principle, this methodology can be applied directly
to the ice forecasting problem presented here. However,
in practice, much of the ice concentration field (in par-
ticular the high Arctic and open-ocean regions) remains
persistently unchanged. Since the model correctly pre-
dicts these large unchanged regions, the resulting skill
scores would be impressively high (Van Woert et al.
2001). The goal of a skill score, however, is to evaluate
a model’s ability to forecast significant geophysical
change. The accuracy of the SSM/I-derived ice con-
centrations is poorly characterized in the marginal ice
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FIG. 2. Contingency diagram for threat indexes: F and O represent
the forecast and observed values, respectively; hit, miss, FA, CR, and
UNC represent hits, misses, false alarms, correct rejections, and un-
changed, respectively. All are defined in the text. Here, 6c represents
the positive and negative cutoff values (65% or 615%) used in this
study.

zone, but is believed to be ;5%–10% (Steffen et al.
1992). Thus, to accurately assess the ability of PIPS to
forecast sea ice concentration change, only grid nodes
for which the forecast or observed fields changed by a
specified amount relative to the previous day’s estimates
are included in the estimation of the skill scores.

Based on the results of the Steffen et al. (1992) study,
65% was selected as the primary threshold for change.
However, the CLIPER skill scores were also computed
using a 615% cutoff to examine the sensitivity of the
results to the specific choice of threshold. For the 65%
threshold ;2500 grid nodes per day out of the available
;16 000 ice-covered grid nodes were included in the
analysis. All totaled, ;75 000 grid nodes per month
were used to compute these statistics. Ninety-five per-
cent confidence limits on the skill scores were estimated
using the nonparametric, bootstrap technique (Efron
1979a,b, Press et al. 1992). The bootstrap method makes
no assumptions about the probability distribution func-
tion. Uncertainties are estimated by selecting N data
values with replacement from the N original data points
and computing the desired parameter. This process is
repeated many times (in this case 1000 times). The best
estimate of the parameter is the median of the 1000
parameter estimates. The upper and lower 95% confi-
dence limits are obtained from the upper and lower 2.5
percentiles of the distribution.

b. Threat indexes

An important function of a forecast system is to warn
users of substantial changes in an environmental param-
eter. For sea ice, these ‘‘warnings’’ are particularly im-
portant, because the impact of slow changes can often
be mitigated while large sudden changes can be ex-
tremely dangerous, putting life and property at risk. One
method of assessing a model’s ability to forecast rare,
but sudden, large changes is through the use of a ‘‘threat
index’’ (Ghil et al. 1979; Atlas et al. 1981; Murphy and
Daan 1985). These statistics have been used previously
for evaluating the forecast accuracy of severe weather
events such as tornadoes (Stephenson 2000) and for
validating cloud parameterizations of numerical weather
prediction models (Mace et al. 1998; Beesley et al.
2000). In this methodology, the model forecasts an event
to ‘‘occur’’ or ‘‘not occur’’ and the outcome is either
‘‘correct’’ or ‘‘incorrect.’’ The results of this test are
represented by a 2 3 2 contingency table. When a fore-
cast correctly predicts an event to occur, it is termed a
hit. When a forecast correctly predicts an event to not
occur, it is termed a correct rejection. Hits and correct
rejections are both correct forecasts. When an event oc-
curs but the forecast fails to predict its occurrence, it is
termed a miss, and finally, when an event does not occur,
but the forecast predicts that it should, it is termed a
false alarm. Misses and false alarms are both incorrect
forecasts.

In the context of sea ice forecasting, the threat index
is used here to address two specific questions. The first
is: What is the skill of forecasting locations at which a
geophysically meaningful decrease in ice concentration
has occurred? This is a useful question for ship navi-
gation, because it provides an indication of whether the
ice is opening, which for a ship beset by ice, might
mean the difference between needing to mobilize or
cancel a rescue attempt. As was the case for the skill
scores, a threshold of 65% was applied to the data to
determine locations where ‘‘significant’’ change oc-
curred. The exclusion of data that falls into the un-
changed category (Fig. 2) represents a departure from
the typical usage of a threat index, but again, it is nec-
essary to avoid biasing the results with large open-water
and ice-covered areas. These ‘‘unchanged’’ data are de-
noted for clarity in the contingency table (Fig. 2) but
are not used in any subsequent statistical calculations.

In this formulation a model forecast of a $5% de-
crease in ice concentration when a $5% decrease ac-
tually occurs is considered a hit. It is important to note,
however, that this skill score is only testing for sub-
stantial decrease in the ice cover (with a threshold of
65%). It does not assess how accurate the decrease is.
For example, a forecast decrease in ice cover of 6%
when the actual decrease was 90% is still counted as a
correct forecast. In addition, when a $5% increase in
sea ice concentration is both predicted and observed, it
is again a correct forecast (correct rejection), but may
not be of operational significance (except perhaps to
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FIG. 3. Skill scores relative to (a) climatology, (b) persistence, and
(c) CLIPER for the period May 2000–May 2002 based on a 65%
cutoff value. The bold solid and dashed lines with circles denote the
24- and 48-h skill scores, respectively. The solid and dashed lines
with triangles denote the 72- and 120-h skill scores, respectively. The
95% confidence limits are roughly equal to the size of the dots.

expedite the rescue effort). Similarly, when a $5% de-
crease in sea ice concentration is predicted, but not ob-
served, the forecast is considered a false alarm and if
the model fails to predict an observed $5% decrease
in ice cover it is termed a miss.

The second question is: Does PIPS correctly forecast
regions of melt out (a hit) or conversely freeze up (a
correct rejection)? Highly accurate forecasts of this na-
ture are particularly useful to ships operating at the ice
edge or in the MIZ that need to know whether there
will be a sudden appearance of sea ice that could en-
danger a ship. These situations are well suited to a threat
index analysis, because the surface in these regions can
generally be viewed as either being ice covered or ice
free at any given time. However, application of this
methodology to MIZ forecast assessment, while
straightforward, requires some modification from the
standard meteorological treatment because neither the
model nor the remotely sensed ice concentration prod-
ucts precisely discriminate the ice edge.

In particular, for the SSM/I data, the relatively low
spatial resolution of the channels used in the algorithms
(;25 km) limits the precision of the ice edge detection.
Moreover, the ice concentration algorithms often have
difficulty discriminating thin ice from open water be-
cause they are usually ‘‘tuned’’ for higher-concentration
pack ice. Generally, the 15% ice concentration isopleth
is taken to be the threshold between ice-covered and
ice-free areas (Steffen et al. 1992). Similarly, PIPS does
not discriminate well between ice-covered and ice-free
regions at very low concentrations. Therefore, a similar
threshold must be set to differentiate between model
forecasts of ice-free and ice-covered areas. Cognizant
of these data limitations, the threat index is established
in this study by testing whether the model correctly
forecasts regions of ‘‘melt out’’ (O0 . 15% and O24 ,
15%) and ‘‘freeze up’’ (O0 , 15% and O24 . 15%). In
contrast with the skill score analysis, only grid locations
for which the forecast or observed fields changed by
615% relative to the previous day’s values are included
in the statistics.

4. Results

a. Skill scores

The monthly and spatially averaged skill scores rel-
ative to climatology [Eq. (4)] at T 5 24, 48, 72, and
120 h are shown in Fig. 3a. The skill scores relative to
climatology at T 5 24 h are ;0.85. Examination of the
MSE statistics that compose SSc(24) indicates that the
exceptionally high skill scores at T 5 24 h are due to the
highly variable nature of climatology [MSE(C24, O24) ;
900] relative to forecast variability [MSE( f 24, O24) ;
150]. That is, the year-to-year variability at a given lo-
cation greatly exceeds the forecasted day-to-day vari-
ability. In contrast, at T 5 120 h, SSc(120) has dropped
to ;0.4 with considerable variability on monthly time
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FIG. 4. Persistent correlation coefficient for the period May 2000–
May 2002 based on a 65% cutoff value. The bold solid and dashed
lines with circles denote the 24- and 48-h skill scores, respectively.
The solid and dashed lines with triangles denote the 72- and 120-h
skill scores, respectively. The 95% confidence limits are roughly
equal to the size of the dots.

scales. This value is roughly equivalent to a correlation
coefficient of 0.6, which is consistent with the com-
monly accepted minimum correlation associated with a
good weather forecast (Hollingsworth et al. 1980). On
the basis of these statistics, it can be concluded that out
to T 5 120 h, PIPS performs substantially better than
a climatological forecast.

The monthly and spatially averaged skill scores rel-
ative to persistence [Eq. (5)] at T 5 24, 48, 72, and 120
h are shown in Fig. 3b. In contrast with SSc(n), SSp(n)
hovers around 0.2 (equivalent to a correlation of ;0.45).
The skill scores exhibit considerable variability on
monthly time scales. Skill scores at T 5 24 h are gen-
erally highest during spring, summer, and fall and lowest
during the winter months of December and January. In
particular, during December 2000 and January 2001, the
skill scores turn negative indicating nonskillful 24-h
forecasts. Skill scores at T 5 48, 72, and 120 h exhibit
the same general structure as the 24-h skill scores, but,
at T 5 72 and 120 h, other isolated occurrences of
nonskillful forecasts also occur. It is also noteworthy
that the T 5 24 and T 5 48 h skill scores for May 2000
are slightly greater than zero, consistent with the finding
of Van Woert et al. (2001) who showed that PIPS per-
formed better than persistence during that month. It is
concluded, therefore, that, when referenced against per-
sistence, PIPS provides a small, but significant, im-
provement during most months of the year.

The monthly and spatially averaged first-order au-
tocorrelation values, r(n), for lags of 24, 48, 72, and
120 h are shown in Fig 4. It is seen that r(24) hovers
near 0.95 for all months with little variability on month-
ly time scales. The only months with any detectable
change in r(24) were the fall months of October 2000
and 2001 with values of r(24) of ;90%. This finding

is also observed at the other forecast times and is noted
most strongly in the T 5 120 h value. The consistently
high r(24) values indicate that ‘‘persistence’’ dominates
the reference field for the 24-h forecast. However, by T
5 120 h, r(120) has dropped to ;0.80 giving an ;20%
weight to the climatological term in (7).

The monthly and spatially averaged CLIPER skill
scores [Eq. (9)] at T 5 24, 48, 72, and 120 h are shown
in Fig. 3c. Like SSp(n), SScp(n) is mostly positive but
is in general less than SSp. The close correspondence
between SSp(n) and SScp(n) and the reduction in SScp(n)
relative to SSp(n) are both consistent with the analysis
of Murphy (1992) who showed that when r(n) is O(1),
CLIPER is dominated by the persistence term but gives
an overall reduction in forecast skill relative to either
climatology or persistence alone. It is important to note
that as small as these improvements in the reference
forecast are, they are large enough to expand slightly
the period of nonskillful forecasts to include the months
of November 2000, November–December 2001, and
January 2002. Skill scores at the other forecast times
generally track the T 5 24 h results but are smaller.

To better understand the nature of the negative fore-
cast skill scores observed during the winter months, the
logarithmic, normalized histogram of the absolute dif-
ferences between f 24 and O0 for December 2000, May
and December 2001, and May 2002 were estimated (Fig.
5). It is clearly seen that during December 2000 there
was a greater fraction of ‘‘poor’’ forecasts than during
December 2001 [defined here as the number of points
in bins with ABS( f 24 2 O0) . 30%; Fig. 5a]. In ad-
dition, there was also a much greater fraction of ‘‘bust’’
forecasts [defined here as ABS( f 24 2 O0) ; 100%, the
maximum possible difference]. By virtue of the squaring
process used to compute it, the MSE is particularly sen-
sitive to extreme departures from the mean. Thus, it is
likely that it is the large number of bust forecasts that
is responsible for the negative SScp(24) values observed
during December 2000.

Further support for this hypothesis is provided by a
comparison of the May and December histograms.
Overall there were many fewer bust forecasts during
May than during December, consistent with the overall
higher skill scores observed during May (Fig. 3c). In
addition, for May 2001 there were slightly more forecast
differences in the range 20 , ABS( f 24 2 O0) , 70
than during May 2002. However, there was a slight in-
crease in the number of large forecast differences
[ABS( f 24 2 O0) . 70] during May 2002. Since SScp(24)
(May 2002) , SScp(24) (May 2001), we conclude again
that it must be the large number of bust forecasts that
is responsible for the observed reduction in forecast skill
during some months.

None of the analysis to this point provides any in-
formation on the locations where the differences occur.
To better understand the spatial distribution of the fore-
cast skill, the monthly, T 5 24 h CLIPER skill scores,
SScp(x, y), were estimated from (9) for each month and
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FIG. 5. Logarithmic frequency of occurrence normalized by the
total number of points (N) vs the absolute difference between the 24-
h forecast and observed values for (a) Dec 2000/2001 and (b) May
2001/2002. Both Dec 2000 and May 2001 are shown in gray; Dec
2001 and May 2002 are shown in black. The bins are 4% wide and
the listed abscissa values denote the centers of the bins.

FIG. 6. Cumulative frequency of occurrence normalized by the total
number of points (N ) vs the skill score relative to CLIPER for (a)
Dec 2000/2001 and (b) May 2001/2002. Both Dec 2000 and May
2001 are shown in gray; Dec 2001 and May 2002 are shown in black.
With the exception of the first bin, the bins are 0.04 wide and the
listed abscissa values denote the centers of the bins. All skill scores
,0 are included in the first bin.

x, y location of the PIPS coverage. Given the monthly
granularity in this statistic, the maximum possible num-
ber of points in any x, y calculation is 31. In this study
we have chosen to consider only locations where chang-
es occurred on 5 or more days to provide stability to
the calculations. The threat index (next section) ad-
dresses the issue of forecast skill for isolated changes
(i.e., N , 5).

Based on cumulative histograms of SScp(x, y) (Fig.
6), it is seen that approximately 40% of all forecasted
locations during December 2000 were nonskillful [de-
fined here as SScp(x, y) , 0.04]. Forecast skill was
slightly better during December 2001 (;35% nonskill-
ful forecasts), consistent with Figs. 3c and 5a. However,
during both Decembers studied, ;70% of all skill scores
were less than 0.4. In contrast, May 2001 and 2002 had
fewer (;25%) nonskillful forecasts and only ;60% of
the forecasts had a skill of less than 0.4. The large
number of locations with nonskillful forecasts, partic-
ularly during the winter months, suggests that the large
differences observed between the forecast and observed

fields (Fig. 5) affect a significant fraction of the fore-
casted locations at some time during the month.

The spatial distributions of SScp(x, y) for December
2000, May and December 2001, and May 2002 are
shown in Fig. 7. During May and December, and in fact
all other months of study, the MIZ was the most active
region of change in the PIPS domain. From the figure
it is clearly seen that the MIZ undergoes a strong sea-
sonal migration in location as well as expanding from
;3000 locations during May to ;6000 locations during
December. Interannual differences also exist in the spa-
tial distribution of poor forecasts [SScp(x, y) , 0.1; de-
noted by red]. As shown before, differences in SScp(n)
are strongly modulated by changes in the relative num-
ber of bust forecasts (Fig. 5). Thus, it is most likely that
the poor forecast skill is driven by uncertainties in the
MIZ parameterization of the model and/or inadequacies
in the MIZ forcing.

The preceding statistics were based on forecasts in
which the observed or forecasted fields changed by
65%. To examine the skill of forecasting larger chang-
es, statistics were computed based on a 615% threshold.
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FIG. 7. Spatial distributions of for (a) Dec 2000, (b) Dec 2001, (c) May 2001, and (d) May 2002. SkillfulxySScp

forecasts ( . 0.1) are denoted by blue and nonskillful forecasts ( , 0.1) are denoted by red. Regions withxy xySS SScp cp

unchanged sea ice or ocean conditions are denoted by white.
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FIG. 8. Skill scores relative to CLIPER for the period May 2000–
May 2002 based on a 615% cutoff value. The bold solid and dashed
lines with circles denote the 24- and 48-h skill scores, respectively.
The solid and dashed lines with triangles denote the 72- and 120-h
skill scores, respectively.

The skill scores relative to CLIPER (Fig. 8) based on
a 615% threshold are comparable to the skill scores
based on a 65% threshold (Fig. 3c) during spring and
summer. However, the 615% threshold skill scores
show a marked decrease in skill at all time lags during
the winter months. This suggests that PIPS has particular
difficulties in predicting large changes in sea ice con-
centration during the freeze-up months.

b. Threat index

1) THREAT INDEX FOR A 5% DECREASE IN ICE

CONCENTRATION

For the T 5 24 h forecast, the number of correct
forecasts of decreased ice concentration (hits; Fig. 9a)
shows a strong annual progression in both years with
the number of hits peaking during the summer months
of May, June, and July. In contrast, the number or cor-
rect rejections reaches its maximum value during the
winter months. The seasonal changes in these statistics
merely reflect the way in which the problem was posed;
namely, that a 5% decrease in sea ice concentration is
termed a hit, which most frequently occurs during the
spring/summer. Conversely, the correct rejection cor-
responds to a 5% or greater increase in sea ice concen-
tration, which most frequently occurs during the winter.
The total correct forecasts (hits 1 correct rejections;
Fig. 10) vary between 20% and 30% and generally in-
dicate better performance during the winter months. The
breakdowns by category for the T 5 48, 72, and 120 h
forecasts are shown in Figs. 9b–d. These forecasts show
the same general seasonal structure as the T 5 24 h
forecasts, but the number of correct forecasts decreases
to ;13% at T 5 120 h (Fig. 10). At each forecast time
the misses and false alarms complete the contingency
table and account for the remaining 70%–90% of the

possible forecast outcomes. It is worth noting that the
relative frequencies of hits and correct rejections for
May 2000 are substantially less than the values reported
by Van Woert et al. (2001). The reason for this dis-
crepancy is that Van Woert et al. (2001) did not cate-
gorize the miss and false alarm forecasts falling within
the strips denoted by 6c along the O and F axes in Fig.
2. These points are included in this study’s statistics,
resulting in a significant increase in the total number of
points considered and a corresponding decrease in the
fraction of hits and correct rejections observed.

The misses and false alarms show substantially less
seasonal variability than the correct forecasts. However,
at all forecast times and months, except during the fall,
there is a slight tendency for more false alarms than
misses. This gives rise to a slight bias in the forecast
(Fig. 11) [forecasted frequency of decreasing ice cover
(hits 1 false alarms) greater than the observed fre-
quency of decreasing ice cover (hits 1 misses); see Fig.
2 for the definition of the quadrants]. That is, the model
predicts more large decreases than actually occur except
during the freeze-up months. Alternatively, during the
fall months, there is a slight tendency for the forecasted
frequency of increasing ice cover (correct rejections 1
misses) to be greater than the observed increase in ice
cover (correct rejections 1 false alarms) (figure not
shown). Thus, the model also tends to predict slightly
more large increases in ice cover than actually occur
during the freeze-up months.

2) THREAT INDEX FOR MELT-OUT CONDITIONS

The melt out (hits) for the T 5 24 h forecast ranges
between 2% and 8%, with the largest scores observed
during the summer months and the lowest scores ob-
served during the winter months (Fig. 12a). As was the
case for the previous example of predicting 5% changes,
this result is in accord with the anticipated seasonal
freeze/melt cycle. Combined melt-out and freeze-up val-
ues (hits 1 correct rejections) vary between 8% and
10% (Fig. 12b) with misses and false alarms being
roughly equally represented in the distribution (Fig.
12a). As such the freeze/melt forecasts appear to be
relatively unbiased. Finally, similar to results of the oth-
er statistics, the forecast skill decreases with increasing
time lag. In particular, for T 5 120 h the skill barely
exceeds 3%. It is concluded therefore that beyond 24 h
PIPS has difficulty predicting concentration changes in
the MIZ.

5. Summary and discussion

In this study we have assessed the forecast skill of
the Polar Ice Prediction System sea ice concentration
fields for the 25-month period May 2000–May 2002
using climatology, persistence, and combined climatol-
ogy–persistence fields as the reference states. Measures
of forecast skill were adapted from the meteorological
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FIG. 9. Threat indexes for a forecasted .5% decrease in sea ice concentration at (a) 24-, (b) 48-, (c) 72-, and (d) 120-h lags. Hits are
denoted by a bold line with solid circles, correct rejections by a line with solid triangles, misses by a bold dashed line with open circles,
and false alarms by a dashed line with open triangles.

literature with the mean-square error being used as the
measure of accuracy. Scores in the range 0.0–1.0 in-
dicate the positive impact of the model relative to the
reference fields. When referenced to climatology, the T
5 24 h skill score was ;0.85 indicating that PIPS pro-
vides a significantly better forecast than climatology
during all months examined. The high skill score is most
likely due to the daily reinitialization of PIPS with SSM/
I data, which generally gives a more accurate represen-
tation of current sea ice conditions than is obtainable
from climatology.

Persistence and combined climatology–persistence
are two other common reference states for forecast eval-
uation. PIPS exceeds a persistence forecast during the
non-freeze-up months of March–October with peak T
5 24 h skill scores of ;0.2, corresponding to a cor-
relation coefficient of ;0.45. In contrast, using a ref-
erence field comprising ;95% persistence and ;5%

climatology, peak T 5 24 h forecasts are ;0.1. This
reduction in skill score referenced to a combination of
persistence and climatology is consistent with meteo-
rological studies, which have shown that a linear com-
bination of the persistence and climatological fields pro-
vides the best possible reference state for model eval-
uation. One curious finding of this analysis is that the
120-h forecast skill is actually better than the 24-h fore-
cast relative to a persistence forecast during many
months of the year. One possible explanation for this
result is that the model is attempting, over time, to cor-
rect deficiencies in the initialization field, which is based
on the direct insertion of SSM/I-derived ice concentra-
tion data into the model. This suggests that additional
work is needed to develop dynamically sound initiali-
zation fields for ice forecast models. Finally, this anal-
ysis suggests that during the winter months when PIPS
performs poorly, a linear combination of climatological
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FIG. 10. Total correct (hits 1 correct rejections) forecasts at 24
(bold line with solid circles), 48 (bold dashed line with open circles),
72 (line with solid triangles), and 120 h (dashed line with open tri-
angles).

FIG. 12. (a) Threat indexes for forecasted melt of sea ice at 24-h
lag. Hits are denoted by a bold line and solid circles, correct rejections
by a line and solid triangles, misses by a bold dashed line with open
circles, and false alarms by a thin line with open triangles. (b) Total
correct forecasts at 24 (bold line with solid circles), 48 (bold dashed
line with open circles), 72 (line with solid triangles), and 120 h
(dashed line with open triangles).

FIG. 11. Forecast bias at 24 (bold line with solid circles), 48 (bold
dashed line with open circles), 72 (line with solid triangles), and 120
h (dashed line with open triangles).

and the current ice conditions provides the current best
possible short-term forecast.

The previously discussed parametric statistics give a
rigorous assessment of PIPS’s ability to forecast specific
ice concentration values. At times, however, simply
knowing whether ice conditions are likely to change
significantly at some future date could provide useful
planning information, independent of whether the model
correctly forecasts the specific concentration value. For
example, a forecast of decreasing ice concentration in
the vicinity of a ship beset in ice might indicate that it
could be released from the ice. In contrast, if the ice
concentration is predicted to increase, one might logi-
cally begin to plan some form of a rescue operation. A
‘‘threat index’’ is ideally suited to assessing the skill of
binary yes–no questions such as these. Using this cri-
terion for forecast success, it was found that PIPS cor-

rectly forecasts sea ice conditions ;25% of the time,
with the best forecasts occurring during the winter
months.

The threat index methodology is also well suited to
assessing the ability of PIPS to forecast melt and freeze
conditions along the ice edge. Not surprisingly, most of
the sea ice variability within PIPS is located at the MIZ.
In this study it was found that PIPS correctly forecasted
melt–freeze changes at the MIZ ,10% of the time for
all forecasts studied. Preller and Posey (1996) noted
regional discrepancies in PIPS that they attributed to
deficiencies in the parameterization of shelf processes,
the treatment of sea ice as a continuum rather than sep-
arate floes, and inaccuracies in the atmospheric forcing.
Van Woert et al. (2001) support these general conclu-
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sions, suggesting that deficiencies in the atmospheric
model driving PIPS and/or uncertainties in the Arctic
Ocean model that forms the basis of PIPS are significant
sources of error. This study suggests further that PIPS
probably does not properly parameterize processes oc-
curring at the MIZ.

This study has focused on the evaluation of the PIPS.
However, the skill score formulations discussed here are
broadly applicable to a wide range of ocean and ice
forecast models. As the international community moves
forward to establish ‘‘operational oceanography’’ pro-
grams, increased effort will need to be placed on eval-
uating these systems. This study highlights some of the
difficulties that one might expect to encounter in trying
to develop a forecast system that has positive impact
when the geophysical fields are highly persistent.
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