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[1] We present a general method for approaching inverse problems for bathymetric
determination under shoaling waves. We run the Korteweg-de Vries (KdV) model for
various bathymetric representations while collecting data in the form of free-surface
imagery and time series. The sensitivity matrix provides information on the range of
influence of data on the parameter space. By minimizing the parameter variances, three
metrics based on the sensitivity matrix are derived that can be systematically used to
make choices of experiment design and model parameterization. This analysis provides
insights that are useful, irrespective of the minimization scheme chosen for inversion.
We identify the characteristics of the data (time series versus snapshots, early time
measurements versus long-duration measurements, nearshore measurements versus
offshore measurements), and model (bathymetry parameterizations) for inversion to be
possible. We show that Bruun/Dean and Exponential bathymetric parameterizations are
preferred over polynomial parameterizations. The former can be used for inversion with
both time series and snapshot data, while the latter is preferably used only with snapshot
data. Also, guidelines for time separation between snapshots and spatial separation
between time series measurements are derived. INDEX TERMS: 4560 Oceanography: Physical:

Surface waves and tides (1255); 4546 Oceanography: Physical: Nearshore processes; 4594 Oceanography:

Physical: Instruments and techniques; 4255 Oceanography: General: Numerical modeling; KEYWORDS:

experimental design, model parameterization, bathymetric inversion
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1. Introduction

[2] Accurate knowledge of nearshore bathymetry and its
evolution in time is critical to the understanding of coastal
processes and its impact on shoreline evolution. Given a
priori knowledge of environmental properties such as ba-
thymetry, sophisticated numerical models can be run to
simulate these coastal processes (the so-called ‘‘forward
modeling’’ approach). However, direct measurement of the
bathymetry is generally difficult and expensive. Hence,
inverse techniques have been postulated to determine the
bathymetry from properties of the ocean free surface. (The
term ‘‘inverse techniques’’ is typically associated with any
methodology that gleans knowledge of physical processes
from observations. In our application of the term in this

paper, however, we limit its use to describing procedures
akin to data assimilation.)
[3] The current state of the forward modeling of ocean

wave propagation, breaking, and the resultant effects on
nearshore hydrodynamics is quite advanced. For example,
Chen et al. [1999, 2000] and Kennedy et al. [2000] have
demonstrated the ability to predict a wide variety of
nearshore processes with good accuracy using a phase-
resolving time domain Boussinesq wave model [Wei et
al., 1996]. These models can determine the free surface
profiles and wave-induced currents for varying bathymetries
if the initial conditions and boundary conditions are known,
essentially providing a comprehensive picture of the near-
shore environment from a single model. It would appear
logical, then, that these physically complete models could
be used to provide the physical realism needed to develop
successful inverse techniques.
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[4] As intimated above, inverse methods include data
assimilation. Assimilative techniques have been used in
meteorology and oceanography for some time [e.g., Ghil,
1989; Bennett, 1992; Moore, 1991]. They have been used to
improve initial/boundary conditions [e.g., Yu and O’Brien,
1992] and to estimate best-fit parameters for modeling [e.g.,
Thacker and Long, 1988; Navon, 1997]. However, their use
in the solution of nearshore wave transformation problems
is quite recent; Feddersen et al. [2004] and Özkan-Haller
and Long [2002] have used adjoint methods to estimate the
friction coefficients for a nearshore circulation model.
[5] There has been some prior work on bathymetric

estimation; these can be broadly classified into two catego-
ries. Some depth inversion methods rely upon an a priori
specified dispersion relationship relating the wave frequency,
wavelength, and water depth. These wave properties are
computed from data (usually remotely sensed). We refer to
these methods as ‘‘a priori’’ methods, since they use an
assumed relationship between wave properties and water
depth. Other depth inversion methods, in contrast, use
numerical models for wave propagation to provide the
physics to the inversion process; these methods have no a
priori knowledge or assumptions concerning the physics of
wave propagation, other than that the forward model used
contains the appropriate physics. We refer to this second set
of methods as ‘‘full’’ inversion methods, since (potentially)
all physical properties represented in the model used can
either be used as input data or can be determined from the
inversion process, with no assumed relationship.
[6] In the a priori inversion approach [e.g., Stockdon and

Holman, 2000; Holland, 2001; Dugan et al., 1996; Bell,
1999], spatially distributed, time registered estimates of
wave phase from remotely sensed measurements are used
with an assumed dispersion relationship to obtain the water
depth. The disadvantage with this approach is that it does
not capture amplitude dispersion effects adequately in
regions of moderate to high wave nonlinearity, especially
near breaking. Model-based a priori approaches have been
posited by Grilli [1998], Kennedy et al. [2000], and Misra
et al. [2000]. Grilli [1998] used a fully nonlinear one-
dimensional wave transformation model to codify the effect
of nonlinearity on the observable properties of the wave
field, then developed (via an empirical relation) two algo-
rithms for determining the water depth. Kennedy et al.
[2000] and Misra et al. [2000] used the fully nonlinear
Boussinesq model of Wei et al. [1996] to reconstruct the
bathymetry. Kennedy et al. [2000] used two snapshots of
water surface elevations as data, calculated the phase speed
at both times and, based on the phase speed mismatch
between the model and data, updated the depth. The overall
depth was predicted quite accurately. In an effort to avoid
using the Boussinesq model inside an iterative loop, how-
ever, they make use of a priori information concerning the
connection between waves properties and water depth to
guide their corrections to their water depth estimates. The
correction was itself empirically derived, thus ostensibly
limiting its scope.
[7] In the full inversion approach, there are no assump-

tions for the relationship between the wave characteristics
and water depth; it is defined implicitly by the governing
equation representing the wave propagation. Once the
appropriate equation is chosen and measurements collected,

a minimization scheme is used, where bathymetry is varied
until the misfit between the observed wave characteristics
and those predicted by the model is minimal. The full
inversion has the advantage of accounting for all observed
surface wave characteristics, the specifics of which depend
on the type of data used. Narayanan and Kaihatu [2000]
and Kaihatu and Narayanan [2001] detailed a full inversion
technique, using a time-dependent Korteweg-de Vries (KdV)
model to provide the wave physics and the Levenberg-
Marquardt numerical optimization method [e.g., Press et
al., 1986] to perform the inversion and estimate the water
depth. The depth profiles were represented by equilibrium
beach profiles, which are analytic functions dependent on
parameters [see, e.g., Dean and Dalrymple, 2001]. These
parameters, while ostensibly functions of wave climate,
sediment size, etc., are usually used in a best-fit sense in
practical situations. The use of equilibrium beach profiles
by Narayanan and Kaihatu [2000] and Kaihatu and
Narayanan [2001] reduced the depth inversion problem to
a parameter estimation problem. However, they also noted
that non-uniqueness and parameter identifiability problems
were clearly present, even in a greatly reduced search. It has
been determined in other disciplines that complex forward
models are often associated with parameter identifiability
difficulties [Beck, 1987] when used as part of inverse
schemes. While the choice of numerical technique for
optimization may be a factor, the nature of the measured
data and parameters to be estimated are as important to the
success of the inversion procedure. In this work, we will
restrict ourselves to the full inversion approach.
[8] One consideration in ascertaining the probable suc-

cess of an inversion procedure is determining whether the
measured variable is sufficiently sensitive to variations of
the parameters sought. For example, if there are areas in the
domain where the characteristics of the free surface do not
change appreciably as the depth changes, then estimation of
the water depth from the free surface characteristics may be
non-unique in those areas. This evaluation can be performed
prior to inversion. Various forms of sensitivity-based anal-
ysis have been used quite successfully to improve inversion
robustness in a variety of disciplines [Rao, 1996; Xia et al.,
1999; Sun et al., 2001; Brun et al., 2001].
[9] We extend these approaches by framing sensitivity-

based analysis as a consequence of minimizing parameter
variance. We develop three metrics based on sensitivity
analysis that can be systematically used to make choices of
experiment design and model parameterization that reduce
parameter variance. This analysis provides insights that are
physically (and practically) useful, irrespective of the min-
imization scheme chosen for inversion. We identify the
characteristics of the data and model for inversion to be
possible. Specifically, we address the following issues in the
paper: (1) locations of data collection in the domain for
optimal inversion, and the dependence of these locations on
the nature of the data; (2) extent of domain over which
bathymetry can be reliably estimated; (3) establishment
of rational criterion by which representations of the
bathymetry (bathymetric parameterizations) can be ranked;
and (4) convergence characteristics of different parameters
within a selected representation of the depth.
[10] We formulate the forward problem in section 2 and

the inversion framework in section 3. The approach for
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sensitivity analysis is described in section 4. Section 5
provides results and discussion, and section 6 concludes
the study.

2. Wave Propagation Models and Bathymetry
Representations

[11] Because we are not employing any specific a priori
assumptions in our inversion process, the selection of the
appropriate model for representing the physical processes of
wave transformation is very crucial. As mentioned previ-
ously, there are several sophisticated models available for
representing the full kinematic and dynamic character of
transforming waves (that of Wei et al. [1996] as a particular
example). In a general situation, waves transform over two-
dimensional bathymetry and break; the nonlinearity of the
wave at near breaking becomes considerable, well out of the
range of weakly nonlinear models.
[12] However, if the viewpoint is switched toward em-

phasizing the inversion itself (and associated analysis), and
we remain within the validity of our forward model (at least
at this preliminary stage), then the choice of model becomes
less critical. In the spirit of prior works on the development
of data assimilative systems [e.g., de las Heras and Janssen,
1992], our ‘‘data’’ will consist of output from our forward
model, generated using our target bathymetry; this com-
pletely obviates the question of the validity of the model
since both data and model are entirely consistent. (It is
likely that the use of actual measurements will require as
sophisticated a forward model as is practical to operate.)
Thus, in order to maintain simplicity in the development of
the inversion system, we will utilize the same KdV wave
propagation model used by Narayanan and Kaihatu [2000]
and Kaihatu and Narayanan [2001]; the appropriate rea-
soning and caveats will be discussed in a later section.
[13] In addition, to simplify the initial development of the

inversion system, we incorporate data (understood to be
model output for this developmental stage) comprised of the
same physical property as that offered by the model. In this
case, we assume that measurements of the free surface
evolution h(x, t) comprise our data. They may be obtained
either as a free-surface imagery (i.e., snapshots at different
times) h(x, t = t0), or in the form of time series at fixed
locations, h(x = x0, t). The KdV equation relates the
bathymetry or water depth, h(x), to the free-surface eleva-
tions, h(x, t). We defer the practicality and reasoning behind
this selection to a later section.

2.1. Wave Model

[14] As mentioned previously, our forward model is the
KdV model. This equation describes one-dimensional shal-
low water waves with small but finite amplitudes and is the
simplest equation that combines nonlinearity and frequency
dispersion. The KdV equation can predict the wave height
and wave profile skewness quite well as a wave shoals
(C. Narayan, Comparison of different KdV equations with
respect to wave shoaling, submitted to Ocean Modelling,
2004) and can be expressed as

ht þ c0hð Þxþ
3c0h2

4h
� h2hxt

6

� �
x

¼ 0; ð1Þ

where h(x, t) is the free surface elevation of the water
surface, h is water depth, c0(=

ffiffiffiffiffi
gh

p
) is the local phase speed,

g is gravitational acceleration, x is the cross-shore spatial
coordinate, and t is time. Subscripts x and t denote partial
derivatives. It is noted that this model is only adequate for
weakly nonlinear, weakly dispersive waves, and as such
cannot describe the highly nonlinear wave characteristics
near breaking, nor is it capable of accurately propagating
waves (nonlinear or otherwise) in deep water. Additionally,
wave dissipation due to breaking is not included, and wave
reflection cannot be modeled. While this does seem
inappropriate, we wish to re-emphasize that this model will
be used both for generating our requisite data and for the
forward model; thus the included physics of the model
match those of the input data.
[15] For a model such as the KdV equation, we require

both an initial condition of the form h(x, 0) and a boundary
condition h(0, t). This has been extensively discussed by
Bona and Bryant [1973].
[16] The model is initialized by a wave maker (h(0, t)) at

the offshore end of the domain. The waves leave the domain
smoothly at the coast. The KdVequation is modeled using a
second-order, three-level finite difference scheme developed
by Eilbeck and McGuire [1975]. A fourth-order Shapiro
[1970] filter is used to damp the high-frequency waves.
Further, a sponge layer of 1 m is applied to absorb the wave
energy at the shore.

2.2. Bathymetry Parameterizations

[17] On the basis of the dissipation rate of spilling break-
ers and the distance over which the dissipation occurs,
Bruun [1954] and Dean [1977] developed the equilibrium
beach profile, a parameterization of the cross-shore bathym-
etry profile which collapses the description of the water
depth into a shape modified by adjustable parameters. Many
different profile parameterizations have been advanced
since. In general, these parameterizations take the form

h ¼ h m; xð Þ; ð2Þ

wherem are the model parameters associated with a specific
parameterization. The different parameterizations attempted
are described below. Please refer to Table 1 for the different
parameters used.
2.2.1. Discrete Depths as Parameters
[18] The simplest bathymetric parameterization involves

treating each individual water depth in a bathymetric profile
as a distinct, discrete parameter. In this case, the bathymetry
can be represented as h1, h2, h3,. . ., hM where there are M
points in the domain. In this case, the M different param-
eters that need to be estimated are

m ¼ h1; h2; h3; . . . ; hMf gT : ð3Þ

This representation of the depth is obviously the most
faithful. However, problems associated with non-uniqueness

Table 1. Best-Fit Parameters to the Duck, North Carolina, Profile

Parameterization Values

Bruun/Dean B = 0.660, b = 0.400
Exponential E = 0.147, e = 0.500
Polynomial p0 = �0.678, p1 = 0.540, p2 = �0.815, p3 = 0.836,
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arise with a large number of parameters [Narayanan and
Kaihatu, 2000].
2.2.2. Bruun/Dean Profile
[19] The best-known and most commonly used beach

profile is the Bruun/Dean profile. In the classical parame-
terization development, energy dissipation arguments were
used to derive the supposition that the water depth increased
offshore in proportion to x2/3 [Bruun, 1954; Dean, 1977].
However, we choose to frame the exponent as another free
parameter to be estimated; thus the water depth is param-
eterized as

h xð Þ ¼ �Bxb: ð4Þ

Only two unknown quantities, B and b, need to be
estimated. A shortcoming of this equation is that it has
infinite slope at the shoreline, though later work [Larson,
1995] has eliminated this difficulty. In this paper, we also
use an alternate representation of equation (4), which results
from normalizing the offshore coordinate x by the domain
length L (hereinafter ‘‘x-normalized’’):,

h xð Þ ¼ �B 1� x

L

� �b
: ð5Þ

It is felt that in several instances, the normalized version of
the depth parameterization offers more robustness.
2.2.3. Exponential Profile
[20] Bodge [1992] used an exponential profile of the form

h xð Þ ¼ �E 1� e�ex½ 
; ð6Þ

where E and � are the unknown coefficients. Bodge [1992]
demonstrated that this exponential profile more closely
approximates the 504 measured profiles of Hayden et al.
[1975] than the Bruun/Dean profile. We use an x-normalized
version of the exponential profile,

h xð Þ ¼ �E 1� e�e 1�x
Lð Þ

h i
: ð7Þ

2.2.4. Polynomial Profile
[21] The bathymetry can also be represented as a

(M � 1)th-order polynomial, with M unknowns, of the form

h xð Þ ¼ pMx
M�1 þ pM�1x

M�2 þ . . .þ p1; ð8Þ

Here, the model parameters are

m ¼ p1; p2; p3 . . . ; pMf gT : ð9Þ

Often a fourth- or fifth-order equation will suffice to
adequately represent the bathymetry. Komar and McDougal
[1994] show that a fifth-order polynomial is able to fit the
equilibrium beach profile from the Nile Delta, Egypt.
Alternately, an x-normalized version,

h xð Þ ¼ pM
x

L

� �M�1

þpM�1

x

L

� �M�2

þ . . .þ p1; ð10Þ

can also be used.

[22] Note that there are many other bathymetric
parameterizations possible. However, the focus of this
paper is to distinguish between the most commonly used
parameterizations.

2.3. Data

[23] Our goal is to describe the bathymetric character-
istics given an estimate of the relevant physics (the
model) and measurements of the observable manifesta-
tions of the physics (data). The nature of the data is thus
of relevance. In general, the data can consist of measure-
ments of any observable characteristic of the evolving
wave field, whether deterministic (free surface elevation,
phase speed) or statistical (directional spectra, significant
wave height, peak period, etc.). For the purposes of this
discussion, we will assume that data consist of various
records of free surface elevations. This comprises an
exact connection between the dependent variable in the
KdV model and the measured data, and eliminates
potential error in the conversion between different wave
field properties (e.g., surface velocity to surface elevation)
or in the interpretation of imagery in the representation of
wave variables (e.g., correlating brightness intensity from
video imagery to wave dissipation). We note that there is
nothing in our ensuing development that precludes the
incorporation of different types of data from various
sources.
[24] Direct measurement of the free surface elevation is

possible in two forms: temporally sparse, spatially dense
snapshots of the free surface, or spatially sparse, tempo-
rally dense time series. The latter can be gotten from
wave riders or wave gauge measurements, while the
former is obtainable from airborne terrain mapping
(ATM) lidar measurements. This measurement platform
is capable of high spatial resolution (on the order of
1.5 m [Hwang et al., 2001]). Furthermore, forward and
backward scans of the instrument can be separated;
however, these offer no more than 2 s of additional
temporal information.

3. Inverse Problem of Bathymetry Estimation

[25] The inverse problem, as mentioned earlier, consists
of estimating bathymetric parameters given realizations of
the evolving wave field (in terms of free surface elevations).
In this section we discuss our methodology for performing
this inversion.
[26] Let the wave surface elevation snapshot data vector

be �h(x, t = t0), where

�h x; t ¼ t0ð Þ ¼ �h1; �h2; �h3; . . . ; �hNf gT ð11Þ

are measured at locations x = {x1, x2, x3,. . ., xN}. We are
interested in estimating M parameters. It is assumed that
N > M, ensuring an overdetermined problem. Let the model
be defined as

h ¼ h h mð Þ; x; tð Þ: ð12Þ

Evaluating the model at the discrete locations x, and at a
specific time t0 for a specified bathymetry h(m), we obtain
the surface elevation snapshot at the measurement locations,
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as predicted by the forward model. Then the objective
function to be minimized, E, can be expressed as

E ¼ �h x; t0ð Þ � h x; t0ð Þð ÞT �h x; t0ð Þ � h x; t0ð Þð Þ: ð13Þ

The objective function can be defined analogously for time
series data. This minimization can be accomplished by
global search methods or nonlinear least squares. If using
the latter, an initial guess m1 is made and the following
equation is solved iteratively:

miþ1 ¼ mi þ ATAþ d
� 	�1

AT �h� hi
� 	

; ð14Þ

until successive estimates of the model parameters change
minimally. The superscripts refer to the iteration in which
the parameters and model are estimated and d is a diagonal
matrix of damping values. The damping can be varied using
the Levenberg-Marquardt algorithm. The matrix A is the
Jacobian matrix or the sensitivity matrix, and its columns
are the derivative of h with respect to the model parameters.
[27] Given the complexity of typical wave shoaling for-

ward models, and the number of forward model evaluations
that will be required to obtain a solution, the full inversion
will be computationally intensive. Further, inverse problems
with complex forward models often result in meaningless
solutions due to parameter identifiability issues [Beck, 1987].
The sensitivity-based approach detailed here addresses the
latter, so that the full inversion can be performed robustly.
[28] Parameter identifiability in the least squares sense is

dependent on the uniqueness and stability of the inverse
solution and on the observational data characteristics [Sun et
al., 2001; Chavent, 1987; Kitamura and Nakirigi, 1977,
etc.]. If the solution has multiple discrete minima or a
continuous range of minima in a given parameter region,
we are solving a non-unique problem. The latter is typical of
models where two or more parameters are strongly corre-
lated, producing a ‘‘valley’’ in error space along which all
combinations of these parameters lead to comparable min-
imizations. If the least squares solution is continuously
dependent on measurement errors, the solution is stable.
This ensures that small perturbations due to measurement or
computational noise do not produce large variations in the
computed inverse solution. Stability and uniqueness are
related effects, with some forms of non-uniqueness causing
instability. Finally, choices in when and where data are
observed govern how sensitive the measurements are to the
unknown parameters. Parameters will be poorly identified if
the data have little or no sensitivity to the parameters.

4. Sensitivity Analysis

[29] The parameter covariance matrix is defined as

V ¼ s2d ATA
� 	�1

; ð15Þ

where sd
2 is the data variance, equal to (�h � h)T (�h � h)/

(N � M). The diagonal elements of this matrix specify the
variance of the parameters, while the off-diagonals specify
the pairwise covariances between the parameters. The
determinant of the covariance matrix is a measure of
the volume of parameter uncertainty at a given location in

the parameter space and is also termed as the generalized
variance. Minimizing this volume amounts to reducing the
uncertainty associated with all parameter estimates, and this
is our criterion for experiment design and for comparing
different bathymetry parameterizations.

min det Vð Þ ¼ s2d min det ATA
� 	�1

� �
: ð16Þ

However, for a given level of parameter uncertainties or
variances along the diagonal, the presence of cross correla-
tions between the parameters reduces the determinant value.
Even with parameters of high uncertainty, strong correlations
can lead to small determinant values. In fact, in the limit of
two or more parameters being equal except for a multi-
plicative constant, the determinant becomes identically zero.
Thus, blind minimization of the determinant does not
necessarily lead to parameter estimates of low uncertainty.
Hencewe decompose the covariancematrix as follows so that
the parameter variance and cross correlations can be
minimized simultaneously:

min det Vð Þ ¼ s2d max det ATA
� 	

; ð17Þ

/ max det W�1WATAWW�1
� 	

: ð18Þ

W is a diagonal matrix defined as

Wkk ¼ ATA
� 	

kk

� ��1=2
; ð19Þ

with the notation that subscripts in (ATA)kk refer to the kth
diagonal element.WATAW has ones along its diagonal and is
identical to the correlation matrix. Thus

min det Vð Þ / max det W�2
� 	

max det WATAW
� 	

; ð20Þ

/ max
YM
k¼1

ATA
� 	

kk
min C WATAW

� 	
; ð21Þ

where the first term is the product of the diagonal elements of
the (ATA), and is maximized when each element is
maximized. Minimizing the condition number, defined as
the ratio of the largest eigenvalue to the smallest, is equivalent
to maximizing the determinant. In the limit of uncorrelated
parameters the largest and smallest eigenvalue are 1, and the
condition number is also 1. In all other cases, the condition
number is greater than 1. In the limit of two or more
parameters being equal except for a multiplicative constant,
the condition number tends to infinity. Therefore parameter
variances are minimized if the sensitivity of the data to the
unknown parameter values is maximized while the correla-
tion among the parameters is maintained at its lowest possible
level. This is the basis for our experiment design and
parameter selection guidelines.
[30] We relate the above two goals in terms of properties

of the sensitivity matrix, A.

ATA
� 	

kk
¼ 2� norm of kth column of Að Þ2; ð22Þ

C WATAW
� 	

¼ k Að Þð Þ2; ð23Þ

C08006 NARAYANAN ET AL.: EXPERIMENTAL DESIGN AND PARAMETERIZATION

5 of 18

C08006



where k (A) is the scaled condition number of A [Belsley,
1991]. Hence, with snapshot data, for example, computing
the 2-norm of the columns of A, at different times, identifies
temporal locations where the M columns attain a maximum,
which are the preferred times for snapshots. However, the
spatial ranges over which the snapshot is best acquired
cannot be deduced from this. The column magnitudes of A
at a given time provides this information. Thus with space-
time data, examining the magnitude and the 2-norm of the
columns of A helps identify the spatial and temporal ranges
where sensitivity is maximized and data are best acquired.
[31] Thus we propose three metrics that can be examined

to minimize parameter variance: column magnitude of A,
2-norm of the columns of A, and scaled condition number of
A. Preferred ranges of data acquisition are those locations
where the first two metrics attain a maximum while the third
metric is a minimum (close to 1), for all parameters. Simi-
larly, model parameterizations are ranked based on all three
metrics being close to the preferred values (see Table 2).
Large sensitivity magnitudes imply parameters that are well
constrained by the data, while uncorrelated parameters are
necessary for numerically stability. Thus conclusions on
experiment design and model parameterization should be
drawn by interpreting the three metrics collectively. Cases of
large sensitivity with strongly correlated parameters or poor
sensitivity with uncorrelated parameters are to be avoided.
[32] Since the goal is to gain insights into experiment

design and model parameterization, the sensitivity analysis
proposed here is to be performed before data have been
acquired. To proceed, approximate representative bathymetry
profiles are identified. These can be created based on a priori
information on the expected bathymetry profiles in the region
where the data are to be acquired.
[33] The first step is to evaluate the derivative of the

model or surface elevation (h) with respect to the parame-
ters defining the bathymetry. Given N values of a surface
elevation snapshot h(x, t = t0), and M model parameters m,
a N � M Jacobian or sensitivity matrix A, can be defined as

Ajp ¼
@hj
@mp

; j ¼ 1; 2; 3; . . . ;N ; p ¼ 1; 2; 3; . . . ;M : ð24Þ

Since the true parameter values are not known, the
sensitivity matrix is evaluated at multiple locations in its
expected neighborhood or for a range of representative
bathymetries.
[34] Alternatively, As is the normalized sensitivity matrix,

or the nondimensional Jacobian matrix and is defined as

As jpð Þ ¼
@ ln hj
� �

@ lnmp

� 	 ¼ mp

hj

@hj
@mp

: ð25Þ

The three metrics are defined for the normalized sensitivity
matrix, but replacingAwithAs. In general applications of this

technique, analytical derivatives are not possible to evaluate;
we use a finite difference approximation to the derivative.

4.1. Column Magnitude of Sensitivity Matrix A

[35] The first metric is the magnitude of the columns (or
‘‘column magnitude’’) of A defined as jAjkj, where j = 1, 2,
3,. . ., N for the kth column.
[36] Large values in the kth column of the sensitivity

matrix identify the spatial or temporal domain over which
the surface elevation is most sensitive to change in the
bathymetry parameter mk. The preferred domain for data
acquisition is where this metric is at or close to its
maximum. Assuming that data consisted of snapshots, data
in the spatial region near the column magnitude maximum
exhibit the greatest sensitivity to changes in the parameters
sought, and thus have a greater effect on the subsequent
parameter estimation than data outside this domain. Second,
because one has as many columns as parameters, compar-
ison of column magnitude maxima across the columns
offers information on the relative ease of estimation of
different parameters. Parameter convergence rates during
inversion tend to be proportional to sensitivity magnitudes,
since by definition the latter quantifies the change in
parameter values for a given perturbation in the data.
Parameters with larger sensitivities are likely to converge
faster and are associated with smaller variances.
[37] For a given data acquisition domain, comparing the

magnitudes of the columns corresponding to different
bathymetry parameterizations is a means to rank them.
Parameterizations that lead to large sensitivity for all its
parameters are preferred. However, when comparing differ-
ent parameterizations, As, whose columns are nondimen-
sional, is used. This allows a rational comparison of data
sensitivity to parameters that can have different physical
meanings, and potentially different magnitude scales [e.g.,
Kokotovich, 1964; Kreindler, 1968; Sun et al., 2001]. When
the unknown bathymetry is two-dimensional, sensitivity
magnitudes can be analogously defined.

4.2. The 2-Norm of the Columns of A

[38] With snapshot data (say), evaluating this metric at
different times will illustrate the preferred times when
snapshots are best acquired for inverting for the kth param-
eter. If using the normalized sensitivity matrix As, this
metric is defined analogously. Time ranges where the
2-norm of A is large (at or close to its maximum) for all
the parameters of a given parameterization identify the
domain over which snapshot data are most sensitive to all
parameters and are most conducive for inversion. As before,
the normalized sensitivity matrix is used when comparing
different parameterizations. In two-dimensional bathymetry
estimation, the column norms can still be interpreted
analogously.

4.3. Scaled Condition Number of A

[39] If there is approximate or complete linear depen-
dence in the columns of A, it means that a misfit in surface
elevation can be compensated approximately or exactly by a
change in more than one combination of the parameters.
This means that all parameters are not uniquely identifiable,
even if their sensitivities are high. If nonlinear least squares
inversion is used in the presence of such colinearity, it

Table 2. Sensitivity Metrics and Their Preferred Conditions

Metric Preferred Conditions

Magnitude of the columns of A at or close to a maximum
2-norm of columns of A at or close to a maximum
Scaled condition number of A Small (1–100)
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would lead to poor convergence or even divergence. If
global search methods are used, this underlying correlation
between parameters would manifest in the form of jointly
uncertain parameters. It must be noted that while correla-
tions are driven by the chosen parameterization, this metric
provides information about whether its effects can be
mitigated with an appropriate choice of data ranges, or,
given two parameterizations, this metric can identify the
relative merits of each for a given data range. Often,
singular value decomposition or similar methods are
employed to obtain orthogonal parameterizations. This
metric can be used in conjunction with those approaches
with the same interpretation.
[40] The scaled condition number of a matrix is insensi-

tive to matrix scaling, and its magnitude can be interpreted
meaningfully. When the columns of a matrix are orthogonal,
the scaled condition number is 1, while for any other
situation, it is greater than 1. Scaled condition numbers
much greater than 100, on the order of 104–106 are
typically associated with strong colinearity-related problems
and are ill conditioned [Belsley, 1991; Noble, 1969]. Large
values of condition number also indicate strong sensitivity
of the inversion to measurement or numerical noise [Strang,
1980]. In this case, the inverted solution is not stable and
can be strongly perturbed by even small perturbations in the
data due to noise or computational round-off. For snapshot
data (say), the sensitivity matrix and its condition number
are evaluated at different time instants. Ideal locations for
data acquisition and preferred parameterizations are charac-
terized by low values of scaled condition number, prefera-
bly close to 1.

5. Results and Discussion

[41] To demonstrate the sensitivity analysis, we use a
bathymetric profile measured at the Field Research Facility
at Duck, North Carolina, during the DELILAH experiment
[Birkemeier et al., 1997]. The morphological characteristics
of the area include frequent sandbar formation, which lends
the profile a non-monotonic shape. We readily aver that
there are no bathymetric parameterizations at our disposal
that admit barred profiles, and thus we are unable to obtain
bars with our present formulation. However, there is some
promising work on adding random bars to equilibrium
beach profiles [Pruszak and Róyski, 1997], and subsequent
parameterizations of barred profiles can easily be accom-
modated by the technique described herein.
[42] Our domain is shown in Figure 1. It consists of a

bathymetric profile from Duck, North Carolina, in which the
bar is not pronounced. The length of the domain in the
DELILAH experiment is 1125 m over which the depth
changes by 12.86 m. Hence the ratio of the length to depth
of the domain is 87.5. The computational domain is the
scaled version of the DELILAH experiment. The length of
the numerical domain is 35 m, reaching an offshore depth
h0 = 0.4 m. The wave maker forcing consists of time series of
random waves taken from the Texel- Marsden-Arsloe
(TMA) spectrum [—it Hughes, 1984] with a peak frequency
of 0.2/s and with a narrowness coefficient g = 3.3, redolent
of a fairly broad spectrum. The maximum wave height at the
wave maker (H) is 0.065 m. Therefore two representative
nondimensional numbers, the relative wave height (d =H/h0)

and the relative water depth (m = kh0) at the offshore edge of
the domain, are 0.16 and 0.24, respectively. Hence they are
consistent with the long wave assumptions of the KdV
equations. Wave and grid parameters are listed in Table 3.
[43] Waves from a random wave spectrum populate the

domain prior to the primary wave spectrum arriving; this is
equivalent to the arrival of swell from a distant storm.We run
the model using five different initial conditions. Our standard
case is a short wave with peak frequency of 1 s�1 and
maximum wave height of 0.02 m. This corresponds to a
relative water depth (m) of 1.6 and relative wave height (d) of
0.05. Hence these waves are indeed of a short wavelength.
We use the short-wave case for data involving snapshots. A
different initial condition is used for the inversion involving
time series data. This is a no-wave initial condition (d = 0).
The other initial conditions are discussed in section 5.4. The
irregular short waves are run for 24 s each before the long
waves are introduced into the domain. The time is initialized
from the introduction of the irregular long waves. Hence
‘‘early times’’ and ‘‘late times’’ are with reference to the
introduction of irregular long waves.
[44] By performing a least squares minimization, we

obtained the results for parameters that best fit the Duck
profile for the different parameterizations. Overlaid on the
actual Duck bathymetry in Figure 2 are the best fit bathym-
etries resulting from this parameter search.
[45] We describe the results for the three metrics: column

magnitudes of the sensitivity matrix A, 2-norm of the
columns of A, and scaled condition number of A in three
subsections. For each of the metrics, we introduce the
results for data collected as snapshots and time series.
Within these results, we describe the results for the different
parameterizations. We will also compare results for the
different initial conditions for one representative parameter-
ization at the end of the section.
[46] Phase-resolving models such as the KdV model

restrict the type of data that may be used for the inversion.
When inverting with snapshots, we need two (or more)
snapshots and one time series ((h(0, t)) for this type of full
inversion approach. In case of periodic or random waves
entering the domain, a boundary forcing ((h(0, t)) is
essential. This is akin to having access to an offshore wave
gauge that collects time series data.
[47] In contrast, when inverting with time series data, we

need two (or more) time series and one snapshot (h(x, 0))
for inversion to be possible. The snapshot serves as the

Figure 1. Model domain.
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initial condition to the model and is necessary for the phase-
resolving type models.

5.1. Column Magnitudes of the Sensitivity Matrix, A

5.1.1. Snapshots
[48] The columns of the sensitivity matrix A, for the

discrete depth parameters are plotted in Figure 3. There are
100 unknown depth parameters distributed evenly between
0 and 35 m, and there are 3500 surface elevation measure-

ment locations, leading to an A matrix that is 3500 � 100.
A single snapshot at 8 s is used. This corresponds to a
nondimensional time t0 (= t/T) of 1.6. The magnitudes of the
elements in two of the 100 columns are shown in Figure 3.
We arbitrarily select the 25th parameter (x = 8.75 m) and the
40th parameter (x = 14 m).
[49] First, if the bathymetry at a location of interest is

perturbed, the surface elevation perturbation is a maximum
at that location. Second, these surface elevation perturba-
tions are nontrivial only in its immediate neighborhood.
This indicates that the influence of bathymetry on wave
surface elevation is very localized for bathymetry defined
by individual discrete depths. Thus a surface measurement
at a particular location is sensitive only to bathymetry
immediately beneath it (or near by), and individual water
depths estimated in this particular manner should either use
closely spaced data or rely on interpolation techniques to
construct the bathymetry between inversion locations.
[50] In the Bruun/Dean parameterization, the two col-

umns of the sensitivity matrix corresponding to the two
parameters are plotted in Figure 4 for snapshots at t0 = 1.6
and 3.2. The x-coordinate is nondimensionalized by the
maximum offshore water depth h0 such that x

0 = x/h0. Hence
x0 varies from 0 at the source to 87.5 at the coast. At t0 = 1.6
(top figure), the wave has propagated up to x0 = 45. Unlike
the discrete depth parameters, influence of Bruun/Dean
parameters on sensitivity magnitudes is not localized,
meaning that surface elevation measurements over the entire
domain (0–87.5) are not necessary for estimation of B or b.
This tendency makes physical sense, since the Bruun/Dean
parameterization defines the entire cross-shore profile rather
than a single point in space.

Table 3. Flow Parameters

Parameter Symbol Value

Model Flow Parameters
Maximum wave height hmax 0.065 m
Maximum water depth h0 0.4 m
Input wave number k 0.6 m�1

Length of domain L 35 m

Equivalent Duck Parameters
Maximum wave height hmax 2.09 m
Maximum water-depth h0 12.86 m
Input wave number k 0.6 m�1

Length of domain L 1125 m

Computational Grid Parameters
Time step Dt 0.01 s
Grid spacing Dx 0.01 m
Number of points M 3500
Time period T 5 s

Nondimensional Parameters
Relative water depth kh0 0.25
Wave steepness hmax/h0 0.16
Ratio of length to depth L/h0 87.5

Figure 2. Initial wave surface elevation is plotted for different wave steepnesses.
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[51] Further, sensitivity magnitude of B is greater than
that of b at all locations, indicating that the former is
better constrained by the data. Thus, if data were limited
to the offshore side of the domain, B will be better
estimated, with lower parameter variance, compared to b.
This is logical from a physical point of view; the degree
of curvature in the profile is most pronounced nearest the
shoreline, and this curvature is dictated by the exponent
b. Conversely, the parameter B dictates the profile mean
slope; the profile most resembles a linear slope nearest
the offshore boundary.
5.1.2. Time Series
[52] The elements of column magnitude of the sensitivity

matrix for discrete depth parameterization is plotted in
Figure 5 for time series data collected at t0 = 40. All
100 columns are plotted, and this shows that the maximum
sensitivity is at the same location as the time series. Thus,
with time series data and discrete depth parameterization,
bathymetry is most reliably estimated only immediately
beneath the measurement location, a conclusion similar to
that with snapshot data.

5.2. The 2-Norm of the Columns of A

[53] The norm of the columns are computed at different
times for snapshots and at different locations for time series.
The scaled version of this metric is illustrated here.
5.2.1. Snapshots
[54] The norms for Bruun/Dean, Exponential, and Poly-

nomial parameterizations are presented in Figure 6. In the

three parameterizations, multiple curves corresponding to
the number of unknown parameters are plotted as a
function of the snapshot time.
[55] Overall, sensitivity, as quantified by the 2-norm,

increases with time for all parameterizations. This is
because as time increases, the waves from the source
traverse over greater sections of the bathymetry between
the source and shore. Hence a snapshot of wave elevation at
a later time has more information about the underlying
bathymetry, and this is manifest as increased sensitivity.
However, sensitivity levels off at or close to t0 = 3.5, for all
parameters. This is the time it takes for the leading wave to
propagate from source to the shore, and snapshots at times
beyond 3.5 do not provide any new information. Thus
snapshots are best acquired at times corresponding to when
the leading wave has propagated over most or all of the
spatial domain of interest. With real data, there is no concept
of a zero time, and with two snapshots, the first is used as an
initial condition and the inversion adjusts bathymetry until
the predictions match the second snapshot. The above
results indicate that the time difference between these two
snapshots must be comparable to the time it takes for the
waves to reach the shore, to invert for the bathymetry up to
the shore.
[56] The 2-norm of different parameters levels off at

different times. Consider Bruun/Dean, where it is about
t0 = 2.6 for B while it is t0 = 3.6 for b. For the former,
propagation of the wave in the nearshore does not provide
any additional sensitivity.

Figure 3. Snapshot data showing magnitude of the columns of the sensitivity matrix, for discrete depth
parameters. As noted in the text, the distance from the source to the shore (35 m) is described by 100
discrete depth parameters. The 25th and 40th columns corresponding to depths at 8.75 m and 14 m are
plotted for a snapshot at nondimensional time t0 = 1.6. A change in bathymetry at these locations perturbs
the surface elevation only immediately above it.
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Figure 4. Snapshot data showing magnitude of the columns of the sensitivity matrix, for Bruun/Dean
parameterization. Note that the time and distance are represented in the nondimensional form as t0 = t/T
and x0 = x/h0, respectively.

Figure 5. Time series data showing magnitude of the columns of the sensitivity matrix, for discrete
depth parameterization. Note that the time and distance are represented in the nondimensional form as
t0 = t/T and x0 = x/h0, respectively.
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[57] These differences between parameters can be
explored further as follows. The plot of the derivative of
bathymetry, h, with respect to parameters of Bruun/Dean,
Exponential, and Polynomial profiles is shown in Figure 7.
The curves for the Bruun/Dean profile show that influence
of B on h is a maximum offshore and it decreases to zero at
the shore, while b’s influence on h is a maximum close to
the shore and decreases in the offshore direction. Therefore
changes in B mainly alters the offshore bathymetry, while
the nearshore bathymetry (x0 is 80–87.5 from source) is
defined by b. This is the reason why the 2-norm levels off at
a later time for b compared to B. Therefore, to obtain a good
estimate of nearshore bathymetry, b needs to be estimated
accurately, which implies that nearshore data is critical (see
Figure 6). In the Exponential parameterization, both param-
eters have the greatest influence on offshore bathymetry,
and in the Polynomial parameterization, with the exception
of the constant term, the remaining parameters have their
greatest influence near the shore.
[58] In Bruun/Dean, the sensitivity of b is less than B at

all times. Hence, being a parameter that is better defined by
the data, B will converge earlier and would be associated
with a smaller parameter variance. Likewise, E will be
easier to estimate compared to � in the Exponential model.
For the Polynomial, the constant term would be the first to
be estimated, with the higher-order terms following in
sequence.

5.2.2. Time Series
[59] The 2-norms of As are plotted for the Bruun/Dean

and Polynomial parameterizations, in Figure 8. The Expo-
nential model has been omitted since it is qualitatively
similar to Bruun/Dean.
[60] The time series at any location incorporates infor-

mation about the bathymetry between the source and the
measurement location. If reflections from the shore can
be measured, information about the remaining bathymetry
is also present in the time series data. However, in most
real situations, including the simulation here, reflections
from the shore are negligible. Thus time series need to be
collected close to the shore, to be able to invert for
bathymetry up to the shore. This is reflected in the
Bruun/Dean curves, where sensitivity increases for both
parameters as time series are collected closer to the shore.
With two measured time series, the offshore measurement
is treated as a source and the inversion attempts to match
the nearshore measurement by adjusting the bathymetry.
On the basis of the above analysis, the latter measure-
ment is best done as close to the shore as possible, to
maximize the domain over which bathymetry can be
inverted.
[61] Sensitivity of B is greater than that of b and similar to

the snapshot case. It is expected that B would converge
earlier and would be associated with lesser uncertainty
compared to b.

Figure 6. Snapshot data showing 2-norm of the columns of sensitivity matrix, for (a) Bruun/Dean,
(b) Exponential, and (c) Polynomial parameterizations. Solid vertical line identifies time when the leading
edge of the wave reaches shore. Later times, when the wave is close to the shore, are preferred, as this
metric is at/close to its maximum. Note that the time is represented in the nondimensional form as t0 = t/T.
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Figure 7. Influence of parameters on bathymetry. Note that the distance is represented in the
nondimensional form as x0 = x/h0.

Figure 8. Time series data showing 2-norm of the columns of sensitivity matrix, for (a) Bruun/Dean and
(b) Polynomial parameterizations. Note that the distance is represented in the nondimensional form as
x0 = x/h0.
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[62] For the Polynomial, sensitivity of all parameters are
comparable and are large. There is no obvious trend with
distance in the sensitivity, and the curves suggest that time
series at almost any location are associated with sensitivity
that is very large relative to unity.

5.3. Scaled Condition Number of As

[63] The condition number of the sensitivity matrix is
estimated for different times for snapshot data and at
different locations for time series data. The scaled version
of this metric is illustrated here.
5.3.1. Snapshots
[64] The scaled condition numbers of As corresponding to

the three parameterizations are plotted in Figure 9. Ideal
parameterizations are those that are well conditioned
according to this metric, at times when the wave is close
to the shore. This allows for a robust inversion with data
that is most informative. From Figure 9, Bruun/Dean and
Exponential parameterizations are better conditioned rela-
tive to the Polynomial at all times, especially at later times
when the leading wave is close to the shore. Bruun/Dean is
well conditioned even at early times in contrast with the
Exponential. The Polynomial is comparatively poorer, with
potential for numerical instability.
[65] An obvious extension to the above analysis is to

evaluate variations of the above parameterizations. The
scaled condition number for Bruun/Dean and Polynomial
parameterizations along with their x-normalized versions

are shown in Figure 10 (see section 2.2). For Bruun/Dean,
x-normalizing improves the condition number at early
times, whereas, for the Polynomial, x-normalization does
not have any impact on its conditioning. It can be easily
shown that for the Polynomial, x-normalization only
results in scaling the sensitivity matrix and hence does
not impact its conditioning. All three metrics are close to
their preferred values when time separations between the
first and last snapshots are comparable to the time to
traverse the snapshot domain for the Bruun/Dean or
Exponential parameterizations.
5.3.2. Time Series
[66] The scaled condition numbers corresponding to

Bruun/Dean and Polynomial parameterizations for time
series are plotted in Figure 11. The Polynomial parameter-
ization,which had favorable 2-norm sensitivity (see Figure 8),
has poor conditioning indicated by scaled condition
numbers that are very large. This ill conditioning makes it a
poor choice with time series data. For example, if nonlinear
least squares minimization is used, this would most likely
lead to severe numerical problems and divergence. This
clearly illustrates the need for interpreting the three metrics
collectively.
[67] In contrast, Bruun/Dean parameterization is well

conditioned at all spatial locations, indicating that time
series measurement locations that span the domain of
interest can be inverted with this parameterization. It is
worth noting that the scaled condition number for Bruun/

Figure 9. Snapshot data showing scaled condition number k(As), according to which Bruun/Dean is
better than Exponential which is better than Polynomial parameterization. Minimum possible (best) value
of scaled condition number is 1. The solid vertical line represents the time at which the leading edge of
the wave reaches the shore. Note that the time is represented in the nondimensional form as t0 = t/T.
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Dean is larger with time series data than snapshots, indi-
cating a preference for the latter type of data.

5.4. Effect of Different Initial Conditions

[68] We evaluate the effect of using different initial
conditions on the model sensitivity for the Bruun/Dean
parameterization: three short-wave initial conditions, one
long-wave, and a no-wave initial condition. We choose the
Bruun/Dean parameterization with snapshot data to illus-
trate this effect.
5.4.1. Short Waves
[69] Waves from a random, high-frequency wave spec-

trum populate the domain prior to the primary wave
spectrum arriving; this is equivalent to the arrival of swell
from a distant storm. We run the model using three different
initial conditions with d of 0.05 (standard), 0.1, and 0.15.
The peak frequency in all the cases is 1/s, and the model is
run for 24 s before the long waves enter the domain.
[70] Figure 12 shows the free wave surface elevation

condition for the three different short-wave conditions. In
all the three cases, waves are present all over the domain at
this time. Since the waves are short, they do not ‘‘feel’’ the
bottom. We plot the 2-norm for snapshot data collected at
every time (Figure 13). The figure shows that the three
initial conditions produce very similar results. Further, we
plot the scaled condition number (k(As)) for all the three
cases (see Figure 15 in section 5.4.2). Two other cases are
presented that will be discussed in the next sections. All

three cases are very well conditioned. Therefore the results
are relatively insensitive to the changes in initial short-wave
conditions and have little impact on the sensitivity analysis.
5.4.2. No Waves
[71] For the initial condition with no waves initially in the

domain (h(x, 0) = 0.), the 2-Norm is shown in Figure 14 and
the scaled condition number (k(As)) is shown in Figure 15.
The d = 0 case shows much poorer conditioning compared
to the three shortwave conditions.
5.4.3. Long Waves
[72] We ran the model for 100 s and collect the snapshot

at that time. We use this as the initial condition for the
model. Spectrally, the initial condition is now similar to
the incoming waves. We perform the same analysis and plot
the 2-Norm and scaled condition number in Figures 14
and 15. Again, the sensitivity results show very similar
behavior to the case of no waves and short waves.
[73] The initial conditions have very little effect on the

sensitivity analysis. Hence the sensitivity analysis can be
conducted with the simplest initial condition: no waves
inside the domain.

6. Conclusion

[74] We present a general method for approaching full
inversion of bathymetry parameters from surface wave data.
Before a computationally intensive full inversion is con-
ducted, it is important that the appropriate data and model

Figure 10. Snapshot data. X-normalizing the Bruun/Dean parameterization improves its conditioning,
while it does not have any impact on the Polynomial (both curves coincide). Minimum possible (best)
value of scaled condition number is 1. Note that the time is represented in the nondimensional form as
t0 = t/T.
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Figure 11. Time series data showing scaled condition number k(As), according to which Bruun/Dean
parameterization can be used with time series data, while the Polynomial parameterization will likely be
associated with numerical instability. Note that the distance is represented in the nondimensional form as
x0 = x/h0.

Figure 12. Free wave surface elevation condition for the three different short wave conditions: d = 0.05
(standard), 0.1, and 0.15 at t = 24 s is shown. Note that this represents the initial condition before the long
waves are introduced. Note that the distance is represented in the nondimensional form as x0 = x/h0.
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Figure 13. Snapshot data showing the 2-norm of the columns of sensitivity matrix, for Bruun/Dean
parameterization for the three short wave d cases: 0.05, 0.1, and 0.15. All three cases show similar results.
Note that the time is represented in the nondimensional form as t0 = t/T.

Figure 14. Snapshot data showing the 2-norm of the columns of sensitivity matrix, for Bruun/Dean
parameterization for the no-waves and long-waves cases are shown. Note that the time is represented in
the nondimensional form as t0 = t/T.
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structure be selected in a manner that mitigates complica-
tions related to parameter identifiability and yields robust
bathymetry estimates.
[75] We illustrate how guidelines for experiment design

and bathymetry parameterization can be derived by mini-
mizing the parameter variances. The results indicate that the
choices for both are interlinked; that is, the available data
guides the parameterizations that can be used or the chosen
parameterization (depending on the a priori bathymetry
information) drives data acquisition choices. This analysis
is independent of the inversion technique itself and would
be performed before the performing the inversion.

6.1. Model Parameterization

[76] Among the parameterizations investigated here,
Bruun/Dean and Exponential bathymetric parameterizations
are the most conducive for inversion with both time series
and snapshot data. Bathymetric inversion using Polynomial
representation may work with snapshot data, while it will
likely encounter severe numerical difficulties with time
series data.
[77] The choice of bathymetry parameterization impacts

the success of inversion and is to be driven by valid prior
knowledge. Arbitrary parameterizations may not necessar-
ily be well conditioned, while very general parameter-
izations like discrete water depths introduce large
numbers of unknown parameters. Further, assumed param-
eterizations allow for estimation of bathymetry outside the
domain of observation, but whose estimates are only as
good as the underlying assumption. For example, with

Bruun/Dean or Exponential type bathymetry assumption,
snapshot observations over which waves have not reached
the shore may allow the estimation of bathymetry up to the
shore. In contrast, with discrete depths, an arbitrary ba-
thymetry can be reliably inverted, but only within the
domain of observations.

6.2. Experimental Design

[78] Ideally, data of two or more snapshots are acquired
so that the time separation between the first and last
snapshot is comparable to the time it takes for waves to
traverse the measurement domain. Similarly, with two or
more time series, the spatial range of the measurements
spans the domain of interest. If Polynomial parameterization
is chosen, nearshore snapshot data are critical for reliable
estimation of bathymetry up to the shore, whereas with
Bruun/Dean and Exponential parameterizations the same
may be accomplished with snapshot or time series data that
are acquired farther offshore.

[79] Acknowledgments. This work was supported under PE 62435N
by the Office of Naval Research through the 6.2 NRL Core project
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