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ABSTRACT

In many data assimilation applications, adding an error to represent forcing to certain dynamical equations
may be physically unrealistic. Four-dimensional variational methods assume either an error in the dynamical
equations of motion (weak constraint) or no error (strong constraint). The weak-constraint methodology proposes
the errors to represent uncertainties in either forcing of the dynamical equations or parameterizations of dynamics.
Dynamical equations that represent conservation of quantities (mass, entropy, momentum, etc.) may be cast in
an analytical or control volume flux form containing minimal errors. The largest errors arise in determining the
fluxes through control volume surfaces. Application of forcing errors to conservation formulas produces non-
physical results (generation or destruction of mass or other properties), whereas application of corrections to
the fluxes that contribute to the conservation formulas maintains the physically realistic conservation property
while providing an ability to account for uncertainties in flux parameterizations. The results suggest that advanced
assimilation systems must not be liberal in applying errors to conservative equations. Rather systems must
carefully consider the points at which the errors exist and account for them correctly. Though careful accounting
of error sources is certainly not an entirely new idea, this paper provides a focused examination of the problem
and examines one possible solution within the 4D variational framework.

1. Introduction

The purpose of data assimilation systems is to make
an estimate of the state of the world given the knowledge
at hand and expectations of errors in that knowledge
(Talagrand 1997). Knowledge at hand includes the many
observations returned in near real time in addition to
prior research that has developed dynamical equations
built on the fundamental concept of conservation of
quantities and representation of these equations within
a numerical computer framework. It is usual to begin
the optimization problem by minimizing a cost function,
which expresses the total weighted sum of errors to
available knowledge. Let the dynamical equations be
given as

A x 5 b ,D bg D (1)

where AD is the dynamical operator, and bD is a forcing
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to the dynamical equations. Similarly, the boundary
conditions may be written as

A x 5 b ,B bg B (2)

initial conditions may be written as

A x 5 b .I bg I (3)

Let

  A bD D  
A 5 A and b 5 b , (4)  N B B   A bI I   

Assume that the matrix AN is invertible (i.e., the forward
problem is well posed and has a unique solution) and
let xbg be the solution to the forward problem

A x 5 b.N bg (5)

A correction x to the background solution xbg is con-
structed so that it minimizes the expected error to dy-
namical equations as well as measurements. First, let
the matrix A be the tangent linearization of the nonlinear
dynamical operator AN about the background solution
xbg. The cost function to minimize is then written as
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T TJ(x) 5 (Ax) W(Ax) 1 [A (x 1 x ) 2 b ]M bg M

3 W [A (x 1 x ) 2 b ] (6)MM bg M

with

 W 0 0D 
W 5 0 W 0 , (7) B 

0 0 WI 

where the weights WD, WB, WI, and WM are the in-
verses of the cross covariances of the dynamical equa-
tions, boundary conditions, initial conditions, and mea-
surements. The error cross covariances between these
quantities are assumed to be zero. The operator AM pro-
vides measurements of the solution [which is (x 1 xbg)],
and the observations are included in bM.

The minimizing solution of the cost function may be
constructed through a variety of techniques. As a con-
crete example, consider the oceans. An excellent over-
view of many of the methods applied to ocean envi-
ronment estimation has been provided by Robinson et
al. (1998). The most general of these is the four-di-
mensional variational data assimilation (4DVAR) so-
lution. In the derivation of 4D variational techniques, a
set of control variables is proposed. These usually in-
clude initial conditions and boundary conditions. In
weak-constraint inverse problems (Sasaki 1970), an ad-
ditional forcing error is proposed as a control variable
for each dynamical equation. The unknown forcing (or
correction or residual) varies in time and space, and the
assimilation system computes an optimal estimate of the
unknown forcing. The nonconservation of properties oc-
curs when this forcing error is applied to conservative
dynamical equations. In these cases, quantities such as
mass, momentum, heat, or salt may be created or de-
stroyed.

Sequential techniques such as the Kalman filter or its
many variants such as the ensemble Kalman filter or
suboptimal methods such as data insertion or nudging
may be derived as special cases of the general 4DVAR
solution by applying certain assumptions to the error
covariances in the cost function. All these methods have
been applied to the ocean estimation problem, and the
particular aspect considered within this examination is
the conservation of properties on which the original
dynamical equations are founded. For example, con-
servation of momentum and mass lead to analytic equa-
tions that describe the relationship between velocity and
sea level height in the ocean. Builders of numerical
ocean models often go to great lengths to ensure that
quantities are conserved, and this has led to flux-con-
servative numerical models that maintain the conser-
vation relation even within the numerical representation
of the analytic equations. If the ocean model is initial-
ized with a given mass, and there are no fluxes into or
out of the model, the model maintains the mass through
time to the precision of numerical round-off errors.

It is often the case that the assimilation problem is

set up in such a manner that it does not maintain con-
servation. For example, within the tide estimation work
of Kantha (1995), a nudging technique is used in which
the assimilation innovation at the analysis time is pro-
portional to the difference between the observed sea
level and the model forecast state. If the observed sea
level is higher than the model forecast then the analysis
model sea level is increased. This implies a creation of
mass as the sea level is raised. The data insertion tech-
nique employed by Smedstad et al. (1997) ensures that
at the analysis time, the sea level integrated globally
does not change. Given one sea level measurement high-
er than the model sea level at the same point, the model
sea level at the point is raised and simultaneously the
sea level throughout the globe is lowered. Thus, while
no mass is created or destroyed globally, mass is created
and destroyed locally. Another way to view this is that
mass is transferred throughout the globe instantaneously
in violation of conservation of momentum. The 4DVAR
implementation used by Ngodock et al. (2000) to ex-
amine the equatorial Pacific Ocean includes a correction
to the sea level. Since the sea level in the model at each
time step is determined through conservation of mass,
any correction to the equation results in the noncon-
servation of properties.

There are many examples of optimal estimation ex-
periments within which the authors have worked to en-
sure conservation. The ensemble Kalman filter scheme
employed by Evensen and van Leeuwen (1996) con-
structs a set of ocean states each of which is determined
through the application of a randomly perturbed wind
field. Because the wind forcing is external to the con-
servation equations, the numerical model conserves all
the internal properties. The tide inversion work of Eg-
bert and Ray (2001) enforces mass conservation and
provides evidence that such a strong constraint results
in a more realistic solution. The work assumes that all
the errors occur in the momentum conservation equa-
tions. Thus, while mass is maintained, momentum is
not.

Note that these assimilation problems are often quite
different from the usual atmospheric prediction problem
in which the initial state contains the major errors and
the dynamics are assumed to be exact strong constraints.
In the strong-constraint case, the assimilation system
generates corrections only to the initial state, and the
dynamics conserve all properties.

The examination presented here uses a 4DVAR ap-
proach since the many methods for assimilation may be
derived as special cases from this. In particular, the ad-
joint solution to the cost function provides a flexible
system to examine alterations in the dynamics as well
as weak and strong constraints within the system. In
order to clearly illuminate the problem, a very simple
problem is set up (section 2). This problem is rather
unrealistic and contrived, but it does allow a clear dem-
onstration of the nonconservative properties that occur
when applying weak constraints to conservative equa-
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tions (section 3). One possibility to solve the conser-
vation problem has been suggested by A. Bennett. This
approach prescribes the conservation equations as
strong constraints, but the fluxes used within the con-
servation equations are prescribed as weak constraints
(section 4). A proof is then provided to demonstrate that
a weak-constraint conservation equation cannot con-
serve properties (section 5). The examination of the
simple problem leads to the discussion of the momentum
equation and errors within its terms (section 6).

2. A simple dynamical system

For the sake of clarity, this discussion makes several
simplifying assumptions. These assumptions could be
relaxed without altering the fundamental point. Assume
that the ocean density is constant and uniform, variations
occur only along one coordinate axis, advection and
diffusion of momentum are negligible, and there is no
external input of momentum from surface or bottom
stress. The equations describing the simplified 1D bar-
otropic ocean circulation are

]h ]Hu
5 2 (8)

]t ]x

]u ]h
5 2g , (9)

]t ]x

where h is the sea level deviation from its rest state, u
is the vertically averaged ocean velocity, H is the spa-
tially varying ocean depth (the depth if the ocean were
at rest), and g is the gravitational acceleration constant.
Equation (8) is a result of the conservation of mass. The
equation is linearized by ignoring the contribution of h
to the total depth so that only H appears in the equation
instead of (H 1 h). Equation (9) represents conservation
of momentum. This equation ignores the effects of non-
linear advection, horizontal diffusion, bottom friction,
and momentum input by wind stress through the ocean
surface. In certain situations, the effects not included in
these equations are small. Let conditions be such that
the following assumptions are met. Assume Eqs. (8) and
(9) accurately represent the conservation of mass and
momentum and that a numerical representation is made
that accurately models the differential equations (a flux-
conservative formulation). Assume the major source of
uncertainty in the dynamical equations is the ocean rest
depth H(x). This is often the case in shallow ocean areas
where bathymetry is poorly known or sediments are
resuspended and deposited causing a temporally chang-
ing ocean depth. Certainly additional terms could be
included in both these equations to more accurately rep-
resent the conservation of quantities. However, includ-
ing these extra terms at the moment would cloud the
main issue, which is the effects of taking the conser-
vative equations as weak constraints.

The situation at hand implies that the inverse solution
treat momentum [Eq. (9)] as a strong constraint while

treating continuity [Eq. (8)] as a weak constraint since
the main uncertainty lies in the bathymetry. For the sake
of simplicity, assume that the initial and boundary con-
ditions are known exactly. Thus the unknowns (control
variables) are the corrections to the continuity equation,
C(x, t), due to errors in the ocean rest depth.

This example may appear to be slightly contrived,
and it is admittedly so. It is arguable that the depth H(x)
is itself an unknown parameter for which the assimi-
lation system must solve. If the system were to estimate
H(x), the problem would be rendered nonlinear. This
nonlinear inverse problem can be solved by optimal
control methods (parameter estimation) using descent
algorithms and can easily be likened to the strong-con-
straint approach. However, estimation of H(x) is not the
objective. The objective is to determine the sea level
and velocity that best satisfy the equations of motion
given that the ocean depth is uncertain. The goal here
is not to argue that (8) and (9) accurately represent a
particular physically realizable situation. Rather, Eq. (8)
serves only as an example of a conservation equation
for a quantity (mass in this case) in which the flux
through a control volume may be uncertain [in this par-
ticular case due to the uncertainty in H(x)].

Though the discussion centers on this one example,
additional examples are immediate. Consider the ver-
tical diffusion equation in certain numerical ocean mod-
els in which the vertical flux of a quantity S is provided
by

]S
flux 5 K . (10)S ]z

The uncertainty in the vertical flux is due to uncer-
tainty in its parameterization in terms of the vertical
diffusivity K and the representation of the flux as being
proportional to the vertical gradient. At the ocean sur-
face or bottom, there may exist external inputs that de-
scribe the flux, and these may contain large errors as
well. The equation describing the conservation of the
quantity S is

]S ]fluxS5 . (11)
]t ]z

The traditional method for weak-constraint assimi-
lation is to add an unknown forcing to the right-hand
side of (11), and the assimilation process would provide
an optimal estimate of the unknown forcing. However,
the estimated forcing applied to (11) appears as a source
or sink of the quantity. If the quantity S were the salt
content in the ocean, the resulting optimal solution for
the forcing in (11) would be applying salt sources and
sinks throughout the water column. The optimal solution
seemingly violates physical laws because of the manner
in which the problem is set up. The uncertainties in the
conservation equation (11) are so small that (11) may
be regarded as a strong constraint. The uncertainties lie
within the flux parameterization given by (10). The issue
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FIG. 1. A one-dimensional C grid is used to represent the dynamical equations. The sea level
height h exists at points centered between velocity points u. The problem is well posed by
specification of the initial conditions for all values of h and u along with boundary conditions
for u.

comes to properly determining the point at which lies
the expected error in knowledge of physical dynamics.

The example provided by Eqs. (8) and (9) is chosen
to examine how an assimilation system may create an
egregious violation of a physical law, which is conser-
vation of mass. The flux errors within (8) are due to
uncertainties in H(x). The violation of conservation of
other quantities is just as egregious, but the creation or
destruction of matter raises a more immediate outcry to
the violation of basic principles.

The representer approach is used to examine the im-
pact of changing the equation to which the weak con-
straint is applied. As demonstrated by Bennett (1992)
the optimal solution x̂ of the weak-constraint problem
[Eq. (6)] is provided by a linear combination of rep-
resenter functions added to the background. A simplified
discussion of the representer solution is presented in the
appendix. The optimal solution may be written as

x 5 b r 1 x , (12)O i i bg
i

where bi are the weights of the representer functions r i,
and xbg is the background estimate [the solution to Eq.
(5)]. A representer function is constructed for each mea-
surement by

21r 5 AW A*A ,Mii (13)

where A is the linearized dynamical operator that pro-
vides the model state for all space and time including
the appropriate initial and boundary conditions, W21 is
the matrix providing the dynamical equation, boundary,
and initial condition error covariance estimates, A* is
the adjoint of the model operator, and AMi is a mea-
surement function that provides the ith measurement of
the state. The examples here are based on finite-differ-
ence representations of the dynamical equations. In this
case the dynamical operator A is a matrix and the adjoint
operator is the transpose of the matrix. Equation (13)
is solved for the representer function by first solving the
adjoint equations forced by the measurement functional,

next performing the covariance multiplication, and then
using the result to force the forward dynamics. Assume
that the background field xbg satisfies conservation prop-
erties. This would be expected as the background field
is usually the result of a model forecast without any
corrections applied to the dynamical equations. Because
the optimal solution is a linear combination of repre-
senters, the conservation (or nonconservation) proper-
ties of the representer functions will be passed on to the
final inverse solution. For example, if there were one
measurement of height and a mass-conserving back-
ground field estimate with a representer function that is
not mass conserving, then the conservation of mass in
the optimal solution estimate will be destroyed. Thus,
the representer functions for a given measurement may
be examined to demonstrate the conservative properties
of the optimal solution.

3. Nonconservative assimilation

A finite-difference scheme is introduced to discretely
model the analytic equations (8) and (9) with a correc-
tion estimate to the mass conservation equation. The
numerical grid (Fig. 1) is similar to an Arakawa C grid
(Mesinger and Arakawa 1976):

h 2 h H u 2 H ui,n11 i,n21 i11 i11,n i i,n5 2 1 C , (14)i,n2dt dx

u 2 u h 2 hi,n11 i,n21 i,n i21,n5 2g . (15)
2dt dx

The first and second subscripts provide the spatial
and temporal indices, respectively. A leapfrog forward
stepping in time is used for both u and h. The leapfrog
scheme produces an unrealistic or parasitic mode (Ko-
walik and Murty 1993). An Asselin filter in time pro-
vides a discrete time-smoothing operator and suppresses
the parasitic mode (Asselin 1972). While more accurate
methods are available (such as Runge–Kutta), a simple
formulation provides a clearer example, and the in-
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creased computational time for an accurate solution to
the simple equations is bearable. The Asselin filter is
considered to be a dynamical equation used to propagate
the state forward in time, and this particular dynamical
equation is taken as a strong constraint when computing
the representer functions. For the experiments here, the
depth Hi is set to 100 m throughout all space and time.
The domain length is 1000 km with a grid spacing of
5 km. The experiment time range is 5.5 h with a time
step of 50 s.

The initial conditions applied are

u 5 upinput (16)i,0 i,0

h 5 hpinput , (17)i,0 i,0

and the boundary conditions applied are

u 5 upinput (18)0,n 0,n

u 5 upinput . (19)NX21,n NX21,n

The initial and boundary covariance amplitudes rel-
ative to the continuity correction have a large impact
on the representer functions. Because the intent here is
to examine the conservative properties of the representer
function due to the correction to the conservative equa-
tions, the boundary and initial condition covariances
cloud the issue at hand. Therefore, the initial and bound-
ary conditions are taken to be strong constraints in the
problems considered here. This removes questions con-
cerning error covariances associated with the boundary
and initial condition inputs. Thus, all equations includ-
ing boundary and initial conditions are strong con-
straints except for the conservation equation (14), and
the control variables are the values of the function Ci,n.

Two representer functions are constructed. The mea-
surement position for each representer function is the
same: centered in space at 500 km and at the 3-h time
point. The representer functions for a velocity mea-
surement (Fig. 2) and a height measurement (Fig. 3)
indicate the effect each measurement would have on the
optimal solution. Solution of the adjoint equations of
(14)–(19) are convoluted by the covariance function
covi,j,n,m representing the spatial and temporal error co-
variances. The covariance function used here is

2 2 2 22(x 2x ) /L 2(t 2t ) /Ti j n mcov 5 ei,j,n,m (20)

with L taken to be 100 km and T taken to be 1 h. This
covariance function assumes that errors have no bias
(zero mean) and are Gaussian distributed with a variance
of one. The same covariance function is applied to all
residuals within this examination.

The representer function sea level and velocity in-
tegrated over space demonstrate the conservation of
properties within the representers. For the velocity mea-
surement (Fig. 2) integrated volume does not change in
time. However, the integrated velocity (proportional to
integrated momentum) does indicate an increase over
time. There is no requirement that the integrated velocity

be maintained in the representer, but rather that the bal-
ance between the sea level and velocity field be main-
tained since (15) is taken as a strong constraint.

For the height measurement (Fig. 3), total volume
increases around the measurement time period and lev-
els off by the end of the 5-h representer function. The
reason for the increasing volume (and thus generated
mass) is that the correction added to the continuity equa-
tion Ci,n in (14) is positive throughout all space and
time. The spatially integrated velocity for this repre-
senter function remains constant throughout time. The
correction to the background provided by this repre-
senter function depends on the dynamical error covari-
ance in Eq. (20), the measurement error covariance, and
the actual difference between the background and the
measurement. Thus the color bar range in the figures
does not indicate the actual correction to the background
field. However, the nonconservation properties will be
included in the solution.

4. Conservative assimilation

The finite difference equations are slightly altered to
explicitly compute the mass flux. In addition, the con-
tinuity equation is taken as a strong constraint by re-
moving the error Ci,n. The control variables are now the
mass flux corrections. Thus the mass flux is made a
weak constraint by including the error estimate Fi,n. The
mass flux error estimate in this case accounts for the
uncertainty in mass flux due to uncertainty in the ocean
depth:

f 5 H u 1 F (21)i,n i i,n i,n

h 2 h f 2 fi,n11 i,n21 i11,n i,n5 2 (22)
2dt dx

u 2 u h 2 hi,n11 i,n21 i,n i21,n5 2g . (23)
2dt dx

The equations for initial and boundary equations re-
main the same as Eqs. (14)–(15). The conservative rep-
resenter functions for the velocity and height measure-
ments (Figs. 4 and 5) indicate similar spatial patterns
as in the nonconservative case with the influence of the
measurements propagating from the measurement point
both back and forward in time with phase speed of

The spatial scales of the conserved representerÏgH.
functions are slightly smaller than the nonconserved
functions because the same spatial and temporal length
scales are used for all covariances of the correction fields
and the flux correction appears as a derivative in the
continuity equation. Both total mass and velocity are
conserved in both the velocity and height measurement
representers.

The amplitudes of the representer functions in Figs.
2 and 3 are quite different from the amplitudes of the
representer functions in Figs. 4 and 5. This is because
the adjoint variables for the flux and for the sea level
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FIG. 2. The representer function for a weak constraint on continuity and a measurement of velocity indicates (top right) the correction
applied to continuity and how the measurement will affect the solution of (middle left) velocity, (middle center) mass flux, and (middle
right) sea level. (bottom) The spatially integrated sea level as a function of time indicates that a velocity measurement conserves mass (solid
line) but does not conserve momentum (dashed line). The numbers above each shaded plot indicate the shade bar range.

have different magnitudes. In the conservative case, a
measurement functional forces the adjoint dynamics by
directly adding to the sea level residual. The sea level
residual then contributes to the flux residual by a factor

of 1/dx (which is taken to be 5000 m in these examples).
Thus the same measurement will contribute differently
to the different residuals. The covariance functions ap-
plied should account for this fact. Because the sea level
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FIG. 3. The same as in Fig. 2 except for a measurement of sea level. (bottom) The spatially integrated sea level as a function of time
indicates that a velocity measurement does not conserves mass (solid line) but does conserve momentum (dashed line). Shaded areas indicated
as in Fig. 2.

and flux are quite different variables, it should be ex-
pected that they should have quite different error co-
variance amplitudes and structures. The examples here
use the same error covariance for each.

5. Nonconserving solutions cannot conserve

The traditional approach to handle model error in data
assimilation (both in variational and sequential) is to
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FIG. 4. The representer function for a weak constraint on mass flux and a measurement of velocity indicates (top center) the correction
applied to mass flux and how the measurement will affect the solution of (middle left) velocity, (middle center) mass flux, and (middle right)
sea level. (bottom) The spatially integrated sea level as a function of time indicates that a velocity measurement conserves mass (solid line)
and conserves momentum (dashed line). Shaded areas indicated as in Fig. 2.
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FIG. 5. The same as in Fig. 4 except for a measurement of sea level. Shaded areas indicated as in Fig. 2.

include an error term in the right-hand side of the model
equations. The generalized weak-constraint system for
the dynamics used here is given by

f 2 Hu 5 F, (24)

]h ] f
1 5 C, (25)

]t ]x

]u ]h
1 g 5 M, (26)

]t ]x

where unknown forcing functions or residuals are added
to each dynamical equation. The residuals are F, C, and
M. In variational data assimilation the residuals are com-
puted through integration of the adjoint equations,
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which is accomplished by integrating from the final time
to the initial time:

NM]*C ]*M
2 2 g 5 2 (d 2 h )d(t 2 t )O m m m]t ]x m51

3 d(x 2 x ), (27)m

]*C
F 2 5 0, (28)

]x

]*M
2 2 HF 5 0, (29)

]t

where the adjoint final and boundary conditions have
been omitted for the sake of clarity. The adjoint bound-
ary conditions are homogeneous if the boundary con-
ditions are considered strong constraints in the forward
model (as in the examples here). The superscript * de-
notes the adjoint operator (i.e., 2 (]*/]t) is the adjoint
of ]/]t in the forward model).

In computing the optimal solution, a residual provides
forcing to a forward equation. If an equation is taken
as a strong constraint, the corresponding residuals com-
puted by (27)–(28) become Lagrange multipliers, and
no forcing is applied to that equation in the forward
model. Thus, in both the examples covered in sections
3 and 4, the computation of the residuals is the same.
However, different equations are taken as strong con-
straints within each example. To affect this, all that is
required is that the appropriate residual be added to the
forward equation within each example.

As demonstrated by the experiments in section 3,
treating the continuity equation as a weak constraint
does not conserve mass. When the continuity equation
is taken as a strong constraint and the mass flux as a
weak constraint, the solution of this system conserves
mass because no forcing or correction is applied to the
forward equation for continuity. In fact, any expression
for F would lead to mass conservation because the con-
tinuity equation is a strong constraint. It may be dem-
onstrated that both solutions are equal under the con-
dition C 5 2(]F/]x) [by substituting Eq. (24) into (25)].
In practice, the residuals C and F are specified by the
adjoint equations, and the adjoint equation (28) implies
F 5 ]*C/]x. In order to obtain the same solution from
both the approaches considered in sections 3 and 4, it
would be required that

] ]*C
C 5 2 . (30)1 2]x ]x

This last condition (on the continuous derivative and
its continuous adjoint) is satisfied only for a special form
of the residual C. If the continuous derivative is self-
adjoint (with suitable boundary conditions), then C
could be a sinusoid function in space, or any function
that can be expanded into a Fourier series. This would
be rather difficult to achieve (actually impose) on C
since we do not have control on the residual.

In practice, the derivatives are represented by discrete
operators. We should investigate if the earlier condition
on C could be satisfied in the discrete derivative and its
adjoint. Let the derivative operator be represented by a
matrix with real coefficients D, so that the requirement
(30) becomes C 5 2DD*C, where the superscript *
denotes the (matrix) transposition. This condition
should hold for any C since there is no control or con-
straint imposed on C. To satisfy the condition in the
earlier numerical model, the discrete operator D must
be such that DD* 5 2I, where I is the unit N 3 N
matrix, N being the number of grid points. Let the gen-
eral term of D be dij. Then the ijth term of DD* is

N

d d 5 2d , (31)O ik jk i j
k51

where dij is the Kronecker symbol:

1 if i 5 j
d 5 .50 if i ± j

The diagonal terms in Eq. (31) are

N

2d 5 21, (32)O ik
k51

which has no real solution.
There is a second case that must be considered in

general, and this involves the problem in which the
derivative of flux occurs on the right-hand side of the
conservation equation. In such a case the requirement
that the two methods in sections 3 and 4 produce the
same solution is that C 5 DD*C for any residual C,
which is translated in discrete notation by DD* 5 I. This
implies that the discretization of the continuous first
derivative operator should be provided by an orthonor-
mal matrix, which is not the case. Thus, there is no
(real) discretization that could provide the solutions
from both approaches to be the same. There is clearly
one approach that displays conservation properties and
one that cannot by construction.

Note that the developments of this section assume
that the covariance function for the continuity and fluxes
is an identity operator. Generalization to include co-
variance implies that C 5 2DVD*C must be satisfied,
where V is the covariance function. The covariance V
must be positive definite, and thus it may be split into
two matrixes so that the requirement becomes C 5
2(DU)(DU)*C. Because (DU)(DU)* is positive definite,
it is not possible for C 5 2(DU)(DU)*C.

6. Discussion

It may be argued that in the presence of many data,
a system could use a combination of some conserving
as well as some nonconserving representer functions.
On one hand, the weighted sum of conserving repre-
senter functions will be conserving. On the other hand,
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the weighted sum of two (or more) nonconserving rep-
resenter functions might possibly be conserving. This
would be the case if there were two (or more) mea-
surements of, say, sea level at the same location in space
and time, whose average equals the first guess (back-
ground) field at the particular location, and the sum of
the representer weights would be zero. Essentially the
representer functions of the measurements would cancel
one another. In this case the measurements are bringing
no new information about the ocean, and could be dis-
carded in the assimilation process.

The weights used in the cost function (6) describe
not only the expected errors of each dynamical equation
or state value but also the cross covariances. In the
example provided it is assumed that there is no cross-
correlated error between the equation for sea level (con-
tinuity) and velocity (momentum). It would be possible
to include the cross correlation so that when a correction
to sea level is made, it would also produce an according
change in velocity so that it would induce the mass flux
needed to change the sea level. Specifying such co-
variances for this simple system would be possible.
However, for a larger system containing many more
variables, it is not as easily determined. The application
of independent corrections to each state variable is a
result of our inability to accurately determine the true
error covariance structure. By simplifying each dynam-
ical equation into flux components and conservation
components, the cross-covariance error determination is
simplified.

It may also be argued that there should be no strong
constraints within an optimal solution. The weights ap-
plied to the dynamical equations, boundary conditions,
and initial conditions should reflect the expected error
levels. The strong-constraint assumption for a particular
equation reflects our expectation that the equation error
levels are much less than the error levels of other equa-
tions. The strong constraint is used as a method to save
computer memory space in the optimization process and
to allow the solution process to focus on the major
sources of errors.

The example provided by the mass flux and momen-
tum equations is purposely simplified to present more
clearly the basic idea. The momentum equation is taken
to be a strong constraint in section 3 and both the mo-
mentum and continuity equations are taken to be strong
constraints in section 4. However, it is not intended to
advocate strong-constraint assimilation systems. Every
dynamical equation has uncertainties within it. The un-
certainties may be the result of neglected terms in equa-
tions, errors in parameters, truncated tangent lineari-
zations of equations, truncated Taylor series used to con-
struct finite-difference representations of analytical de-
rivatives, or spatial averages that may be required (e.g.,
to compute a y velocity value at a u velocity point on
a C grid). Thus each dynamical equation used in a nu-
merical model contains some level of uncertainty. How-
ever, the accuracy in some equations may be relatively

so high that the equations could be taken as a strong
constraint without significant degradation to the optimal
solution.

As an example, the momentum flux equation (for a
hydrostatic and Bousinnesque fluid) is

]u ] ] ] 1 ]p
1 (F ) 1 (F ) 1 (F ) 2 f y 1 5 0x y z]t ]x ]y ]z r ]xo

(33)

with pressure determined by
0

p(x, y, z, t) 5 gr(z9) dz9 1 gr h(x, y, t)E o

z

1 p (x, y, t) (34)atm

and with the horizontal fluxes provided by advection
and tangential stresses given by

1 ]u
F 5 uu 2 K (35)x hr ]xo

1 ]u
F 5 uy 2 K (36)y hr ]yo

1 ]u
F 5 uw 2 K . (37)z yr ]zo

Note that different diffusivities are provided in the hor-
izontal (Kh) and vertical (Ky ) directions.

In the momentum conservation equation (33), the
largest errors are due to the numerical representation of
the equation. On a finite-difference C grid, values of the
y velocity exist at grid points different from grid points
of u velocity. The model must spatially average values
of y to compute the Coriolis force at a u point, and this
induces errors. The pressure gradient is computed by
vertical integration of the density in combination with
the sea level (34). Sigma coordinate models are known
to contain large errors in this term due to the manner
in which Eq. (34) is represented numerically (Stellings
and Vankester 1994). Discretization errors are reduced
as the numerical model resolution is increased. If a nu-
merical model is able to properly resolve the dynamical
processes, the discretization errors in (33) are minimal
and the equation may be regarded as a strong constraint.

However, the horizontal fluxes described by Eqs.
(35)–(37) contain substantial errors. In the construction
of a variational data assimilation system, the dynamical
equations are usually linearized, a tangent linear model
constructed, and the adjoint of the tangent linear model
used to determine the optimal values of control vari-
ables. For example, the gradient of the advection of u
momentum due to u velocity becomes

] ]
bg bg(uu) 5 [(u 1 u9)(u 1 u9)]

]x ]x

]
bg bg bg bg5 (u u 1 u9u 1 u u9 1 u9u9)

]x
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]
bg bg bg bgø (u u 1 u9u 1 u u9), (38)

]x

where ubg is a prior or background field estimate for the
optimal solution of u, and u9 is a perturbation of the
background field that the assimilation system will op-
timally determine. In constructing the tangent linear
model, the nonlinear terms involving perturbations from
the background field (u9u9) are ignored, and this leads
to the final approximation of (37). By ignoring the non-
linear perturbation terms, an error is induced into the
fluxes. Thus linearization errors from advection should
not contribute to the conservation equation (33).

The horizontal and vertical diffusivities contain er-
rors, and the errors are expected to have substantially
different covariance amplitudes and length scales. The
vertical boundary conditions for the momentum flux
equation are the surface wind stress and bottom stress.
In the adjoint model, residuals from the momentum
equation would be passed to the wind stress field. This
is very important since the wind field is expected to
contain dramatically different spatial and temporal co-
variance scales than errors in the internal vertical flux.

Assimilation systems should not assume all conser-
vative equations to be near strong constraints. Conser-
vation equations for different parameters such as chlo-
rophyll may have sources and sinks distributed through-
out the ocean interior. Thus a direct error to the con-
servation equation may be warranted in certain
circumstances in addition to possible flux and forcing
errors.

While the nonconservative approach may not explic-
itly compute the fluxes and their adjoints, roughly the
same number of operations would be required under the
nonconservative and conservative approaches. How-
ever, the improved conservative properties do not come
without cost. If the conservation equations are treated
as strong constraints in the system, then residual values
become Lagrange multipliers and still must be computed
even though the Lagrange multipliers need not be saved.
For the momentum equation, the nonconservative ap-
proach would require only one residual to be saved in
computer storage (either in memory or on hard disk).
Under the conservation approach, three residuals would
be required for the u momentum equation [one for each
flux term in (35)–(37)]. While computational require-
ments are only slightly higher, storage requirements are
much higher. An advantage of the conservative ap-
proach is that determination of covariance errors is
slightly simplified since the covariance errors represent
smaller groups of terms with fewer derivatives. It is
arguably easier to determine the covariance error of the
few terms in the flux equation than the covariance error
of all the entire group of terms in the momentum equa-
tion at once.

Certainly the impact of the conservative versus non-
conservative approach must be evaluated within a more
realistic assimilation system. Systems are presently be-

ing constructed with the flexibility to test both the con-
servative and nonconservative approaches. However,
definitive conclusions as to the influence and importance
in operational systems are still some years away.

7. Conclusions

Caution should be exercised when determining the
accuracy of our knowledge of dynamical equations.
Conservation equations and the numerical flux form rep-
resentation of such equations do not contain large errors.
The simplified test presented here has demonstrated that
solving for unknown forcing within conservation equa-
tions can produce the spurious generation or destruction
of properties. To avoid this, applying errors to flux pa-
rameterization leads to conservation. The conservation
approach may also be considered to alleviate some of
the difficulty in specifying the dynamical error covari-
ances. Based on these considerations, it would be worth-
while to implement and test this method in a realistic
operational system.
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APPENDIX

Representer Solution to the Linear Minimization
Problem

This appendix outlines a simplified derivation of the
representer solution for a discrete problem. A more gen-
eral derivation for nonlinear problems may be found in
Uboldi and Kamachi (2000). Both these derivations
compute the optimal perturbation x instead of the total
solution (x 1 xbg) as in Bennett (1992). Given the def-
inition of the dynamical operators and cost function
within the introduction,

A x 5 b (A1)D bg D

A x 5 b , (A2)B bg B

A x 5 b , (A3)I bg I

  A bB D  
A 5 A , b 5 b , (A4)  N B B   A bI I   

T TJ(x) 5 (Ax) W(Ax) 1 [A (x 1 x ) 2 b ]M bg M

3 W [A (x 1 x ) 2 b ]. (A5)MM bg M

Define the residual variables as the weighted residuals
to the dynamical, boundary, and measurement errors,



NOVEMBER 2003 2607J A C O B S A N D N G O D O C K

l 5 W (A x) (A6)DD D

l 5 W (A x) (A7)BB B

l 5 W (A x). (A8)II I

Then the cost function may be written as
T TJ(x) 5 (Ax) l 1 [A (x 2 x ) 2 b ]M bg M

3 W [A (x 2 x ) 2 b ], (A9)MM bg M

where

 lD 
l 5 l . (A10) B 

lI 

For the ith row of AM (the ith measurement), solve Al i

5 for the weighted residuals li. This is the solutionTAMi

of the adjoint model operator (the transpose of the for-
ward problem) forced by the ith measurement function-
al. The ith representer function r i is then a solution of

21 W 0 0D 
Ar 5 0 W 0 l . (A11) i B i 

0 0 WI 

Note there is a representer function for each mea-
surement. Assume the correction to the background is
a linear combination of the representer functions

x 5 rb, (A12)

where b is a column vector of the amplitudes of each
representer function, and the matrix r 5 [r i] has the
representers as columns. If this form of solution is
placed into the cost function, the values of b that pro-
vide a minimization are given by

(W 1 A r)b 5 b .MM M (A13)

It is also possible to demonstrate that the first vari-
ation of the cost function at the solution x 5 rb is 0 if
the weights b are given as in (A13). One important
point to note is that the measurement weights WM do
not alter the representer functions but rather influence
the amplitude of each representer contributing to the
optimal solution.

Thus, the optimizing solution to the cost function is
a linear combination of representer functions. Each rep-
resenter function reflects the impact of a single mea-
surement. The properties of the total solution are a direct
result of the properties of the representer functions com-
posing it. If the representer functions are not conser-
vative, the total solution will not be conservative.
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