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Abstract

The area south of the Shandong peninsula has been of great interest to both oceanographers and underwater
acousticians due to the measurements of Zhou et al. [J. Acoust. Soc. Am. 90 (1991) 2042]. Over a period of years, in
the summer, they observed anomalous losses in shallow water acoustic signals. They attributed the losses to acoustic
mode conversions produced by solitary internal waves (solitons). Their hypothesis remains unsubstantiated due to a
scarcity of oceanographic measurements in this area. In this simulation study the non-hydrostatic, 2.5-dimensional
Lamb model was used to generate solitons in an adjacent, deeper area than that examined by Zhou et al. [J. Acoust.
Soc. Am. 90 (1991) 2042]. Topographic variations and semi-diurnal tidal strength magnitudes were obtained from
digital atlases and published data. For summer conditions, the Lamb model simulations showed that the existing
semi-diurnal tidal flow over the topographic variations could lead to the formulation of internal bores and solitons.
SAR observations of solitons near this region were used to select parameters and initialize the Lamb model.
The resulting soliton simulations were comparable to the two-dimensional surface spectra seen in the SAR data.
Soliton amplitudes of 2–7 m were indicated. Acoustic studies were made using the highly accurate finite element
parabolic equation (FEPE) acoustic model applied to the initial soliton state data generated by the Lamb model.
Mode decomposition of the acoustic fields in the deeper region showed that the mode conversions necessary for
anomalous signal losses were present. These findings are consistent with the soliton hypothesis made by Zhou et al.
[J. Acoust. Soc. Am. 90 (1991) 2042].
© 2002 Published by Elsevier Science B.V. on behalf of IMACS.
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1. Introduction

Sea floor protrusions can combine with tidal flow to produce substantial upwelling of water mass that
create nonlinear effects (internal waves) below the sea surface. In the shallow water ocean regions the
sound speeds can have large gradients near the sea surface defining athermocline region. Under such
conditions internal waves take on soliton characteristics, producing a near-surface “ripple” that travels
along the thermocline for very long distances (up to 100 nm). Similar conditions are also found near
straits.

Solitons with large amplitudes potentially can have a significant effect on ocean acoustic propagation
in shallow water regions[1–10]. Acoustic mode conversions occur due to acoustic interactions with the
soliton packets. Under the right environmental conditions a large loss in acoustic signal transmission
can result. This anomalous signal loss is due to the acoustic mode conversions combined with mode
attenuations in the ocean bottom that are significantly larger for the converted modes. The loss occurs
within a narrow band of acoustic frequencies. The anomalous loss is most prominent when there is strong
coupling between the lower-order (water-borne) propagation modes and the higher-order, very lossy
(bottom interacting) modes. The entire effect represents a “resonance” effect that occurs at and near the
resonance frequency[11].

A decade has passed since the seminal paper on anomalous signal loss due to solitons[1]. A number
of ocean acoustic experiments in other regions have shown that shallow water solitons can degrade
ocean acoustic signals. However, signal losses on the order of those reported by Zhou et al.[1] have
not been observed. Furthermore, it has been suggested that scattering from fish swim bladders could
produce similar losses in signal, and that certain species of fish tend to seasonally congregate in dense
schools. Thus, the reason for the large anomalous signal loss remains unresolved. In lieu of simultaneous
collocated oceanographic and acoustic data from the Yellow Sea, we have generated our own synthetic
oceanographic and acoustic data using computer simulations. Decomposition of the resulting acoustic
field structure indicates that the anomalous signal loss due to large solitons hypothesis is indeed a valid
explanation for the observations made by Zhou et al.[1].

2. Soliton simulations in the Yellow Sea

The purpose of this work was to determine if solitons could be the reason for the large signal loss
observed by Zhou et al.[1]. No oceanographic measurements were made during their ocean acoustic ex-
periments. Therefore, no solitons were observed. We attempted to resolve the issue by performing large
scale computer simulations of the dynamic oceanography coupled with accurate ocean acoustic transmis-
sion predictions. Such an endeavor required a number of resources, including a nonlinear nonhydrostatic
oceanography model and an accurate ocean acoustics propagation model.

2.1. Nonhydrostatic oceanographic model

The Lamb model[12] was used to generate computer simulations of dynamic solitons in the region
around the Shandong peninsula in the Yellow Sea (Fig. 1). The model was originally created by Lamb
to study the generation of internal gravity waves by tidal flow over ocean bottom topography (e.g.
shelf-breaks, bank edges, and fjord sills). The model solves the fully nonlinear, nonhydrostatic Boussinesq



Fig. 1. Topographical map showing the Shandong peninsula region and the region (boxed area) where solitons were generated
using the Lamb model. The straight line extending from the region was the track where these soliton simulations were made.

Fig. 2. A computer simulation from the Lamb model is shown. Two soliton packets are traveling along the track indicated in
Fig. 1. The broken line rectangle is the ocean region where the acoustic simulations were made.
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equations with Coriolis forces. It is two-dimensional with spatial variation in the vertical and cross-bank
directions only; the along-bank velocity is included but does not vary in they-direction, hence the desig-
nation of 2.5-dimensional. Model forcings are based on observations and measurements, in this case by
the tidal flow around the Shandong peninsula. Horizontal uniform stratification is used and no frictional
effects are included. The model is sensitive to topographic slope, tidal current strength, and stratification.
Appendix Agives a brief discussion of the Lamb model.

2.2. Initiation of the lamb model

Model forcings were obtained from historical, measured data taken in the Shandong peninsula re-
gion. Topographic variations were obtained from a digital atlas of the region, and semi-diurnal tidal
strength magnitudes were obtained from published records. For summer conditions (i.e. density vari-
ability for August), computer simulations from the Lamb model showed that the existing semi-diurnal
tidal flow over the topographic variations could lead to the formulation of internal bores and soli-
tons. Small but valid variations in the forcings parameters that initiated the Lamb model produced
three slightly different soliton packets; an initial state that was valid over shorter ranges, and two dis-
tinct dynamical states, each of which were valid over very long ranges. The validity of the soliton
packets was established by comparisons with SAR satellite data taken in the region. Validations of
the model results are discussed inSection 2.3. The results reported here used the initial soliton state
simulations. Acoustical analysis of the two dynamical soliton states is underway, with no results yet
available.

Fig. 3. Satellite photograph of soliton packets traveling away from the Shandong peninsula. The region shown is approximately
the same as shown inFig. 1and the direction of flow is along the track indicated inFig. 1.
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2.3. Model validation using SAR images of the Yellow Sea

Soliton simulations generated by the Lamb model were benchmarked against satellite imagery obser-
vations, shown inFigs. 2 and 3. The Lamb model was initiated by tidal flow, such that it produced solitons
with wave heights and spacings (i.e. wavelengths) that were very similar to those observed by SAR satellite
observations (date: 22 August 1998; time: 09:42:25; orbit number: 14604; Satellite ID: Radarsat-1; pro-
cessing site: Alaska SAR facility; size: 57,344 Kb; beam mode: scansar wide, 500 km× 500 km; beam
position: SWB; product type: Geocoded; ascending/descending: ascending; pixel spacing: 100.00 m;
northern-most latitude: 36.1379; southern-most latitude: 31.0537; western-most longitude: 121.2180;
eastern-most longitude: 127.0343). As noted inSection 2.2, the SAR images were very useful in es-
tablishing the validity of the soliton simulations produced by the Lamb model, but the SAR images
were not sufficient to identify a unique soliton state. Hence, in this study three slightly different soli-
ton states were validated. We have characterized these states as the initial state and two dynamical
states.

3. Acoustic model simulations

The acoustic simulations and analysis were made in the ocean environment indicated by the broken-line
rectangular box shown inFig. 2. This area contained two of the soliton wave packets that were generated
by the Lamb model. All environmental inputs used in the acoustic model were consistent with those used
in the Lamb model. The simulated acoustic source was placed below the thermocline (depth= 40 m,
range= 80 km), such that it is downrange by 5 km from soliton packet number 1 shown inFig. 2. The
model analysis of the acoustic fields were made after they had propagated partially through soliton packet
number 2, and just before the beginning of upslope propagation. The mode analysis region is indicated
by the left-hand-side of the box inFig. 2.

The finite element parabolic equation (FEPE) model[13–16]was used to predict the interactions of
the acoustic fields as they propagated through the soliton packets. This model was chosen because of its
documented accuracy in rang-varying ocean environments. The FEPE model contains improved energy
conservation techniques and numerically stable algorithms[13,16]. Its acoustic field predictions are
considered benchmark accurate. Such accuracy was required in determining the magnitude of acoustic
mode conversions resulting from soliton interactions. A brief discussion of the FEPE model is given in
Appendix B.

4. Analysis of the acoustic field structure

Color contour plots of the acoustic field predictions are shown inFig. 4 for acoustic frequencies of
450, 500, and 550 Hz. The color scale represents the acoustic transmission loss, in decibels (dB), where
red is the lowest loss shown (at 50 dB) and blue is the highest loss shown (at 100 dB), i.e. red indicates
the strongest acoustic field and blue indicates the weakest acoustic field. The acoustic fields shown in the
Fig. 4(a)–(c)are the acoustic fields that propagated within the ocean region indicated by the broken-line
rectangular box shown inFig. 2 note that the direction of acoustic propagation is reversed, i.e. the
fields propagate right-to-left inFig. 2, and left-to-right inFig. 4. The acoustic source was located at
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Fig. 4. Wavenumber decomposition of the vertical acoustic pressure fields before (black arrow) and after (red arrow) passing
through the two soliton packets. The colored arrows indicate the location in range where the vertical pressure fields were sampled.
The peaks in the wavenumber plots are indicative of the normal modes present and their relative strengths. The three figures,
(a)–(c), illustrate the acoustic fields around the resonance frequency: (a) before resonance, at 450 Hz, (b) at resonance, 500 Hz,
and (c) after resonance, 550 Hz. Figure (d) shows the acoustic signal loss due to the solitons when the acoustic source is at the
resonance frequency.

depth= 40 m, range= 0 km. InFig. 4(d)the acoustic receiver was located at depth= 40 m throughout
the 0–50 km range.

The two inserted white graphs in each of the three contour plots,Fig. 4(a)–(c), show the vertical acoustic
field structure, in wavenumbers, at the ranges indicated by the colored vertical arrows. Thus, the inserted
white graph on the left-hand-side of each contour plot shows the vertical field structure of the acoustic
field just after it has left the acoustic source and before it has interacted with the first soliton packet; the
inserted white graph on the right-hand-side of each contour plot shows the vertical field structure of the
acoustic field after it has interacted with and propagated through both soliton packets.

Of special interest are the stronger acoustic modes before and after the interactions with the soliton
packets. InFig. 4(a)acoustic mode 1 has the majority of the acoustic energy, initially, and mode 1 still
has the majority of the energy after the acoustic interactions with both soliton packets. Therefore, at
450 Hz the predominate energy carrying mode does not undergo mode conversion when it interacts with
the soliton packets. The intensities of modes 2 and 3 are reduced by interactions with the soliton and the
ocean bottom, but their relative strengths remain unchanged and there is no evidence of mode conversion.
A similar conclusion is drawn from the acoustic mode analysis shown inFig. 4(c)where the acoustic
frequency was 550 Hz. The change in relative strengths between modes 2, 3, and 4 could be due to either
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mode conversions and/or different ocean bottom attenuations for the different modes. Regardless, the
predominate mode 1 is unaffected.

At 500 Hz the acoustic mode analysis shown inFig. 4(b) indicates that, initially modes 1 and 4 are
predominately the strongest; but, after interacting with the soliton packets they have lost most of their
acoustic energy to modes 3 and 4. This is similar to the mode conversions that Zhou et al. hypothesized. In
our simulations the resonance frequency is in a narrow band, located between 450 and 550 Hz, with center
resonance frequency near 500 Hz. The acoustic transmission loss curves shown inFig. 4(d)indicate how
the acoustic fields are affected by solitons when the acoustic source is near or at the resonance frequency.
In this simulation when the source frequency is at the resonance frequency of 500 Hz, the loss in signal
after passing through both soliton packets is approximately 5 dB more than it is at the non-resonance
frequencies (e.g. 450 or 550 Hz).

These results are preliminary and no attempt has been made to propagate the converted acoustic fields
further and examine the influence that ocean bottom attenuation has on the acoustic intensities at long
ranges from the soliton packets. At longer ranges, if modes 2 and 3 have significantly higher mode
attenuations in the ocean bottom than do modes 1 and 4, a larger loss in acoustic intensity will result from
these mode conversions, and the large anomalous signal loss observed by Zhou et al.[1] is possible. If
modes 1 through 4 have nearly the same magnitudes in their ocean bottom attenuations, then almost no
loss in intensity will result other than what is shown inFig. 4(d); although the acoustic interactions with
the soliton packets produced mode conversions, the total acoustic pressure, which is summed over all
modes, would be unchanged.

5. Summary

The simulation capabilities of a primitive equation nonlinear ocean soliton model—benchmarked
against satellite observations—and a high-fidelity linear ocean acoustic propagation model have been
combined to examine the hypothesis that anomalous signal losses observed in the Yellow Sea were due to
a soliton resonance effect. The simulation studies presented in this paper tend to substantiate the soliton
resonance hypothesis, although the simulations were made for an ocean region adjacent to the region
where the anomalous signal losses were observed. Furthermore, the soliton simulations presented here
represented solitons in their initial (creation) state. This initial state can be transitory, evolving into two
stable dynamical states. The next phase of this study is to repeat the analysis using soliton simulations
that are representative of these stable dynamical states. The final phase of the study will be generating
the solitons in the shallower part of the Yellow Sea where it is believed that Zhou et al.[1] made their
signal measurements. To firmly establish that solitons were responsible for the signal losses observed by
Zhou et al., we will have to show that all three soliton states in the shallower region of the Yellow Sea
are capable of producing acoustic signal losses. The work presented here is an important first step.
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Appendix A

The Lamb model[12] is based on the two-dimensional invisid incompressible Boussinesq equations
on a rotatingf plane:

�∂U

∂t
+ ( �U · �∇) �U − fv�i = −�∇p − ρ �g

∂v

∂t
+ ( �U · �∇)v + fu = 0
∂ρ

∂t
+ �U · �∇ρ = 0

�∇ · �U = 0

�U = (u, w) is the velocity vector in the cross-bank plane with (u, w) designating the horizontal and
vertical velocities, respectively, and (x, z) designating the corresponding horizontal and vertical spatial
coordinates, respectively;ρ the density;p the pressure;�g the acceleration of gravity vector;f the Coriolis
parameter. The gradient operator is given by∇ = ∂/∂x + ∂/∂z, andt the time.

The along-bank direction is defined as perpendicular to the cross-bank direction. In the along-bank
direction,�i is the unit vector, the velocity is designated by,v, and the spatial coordinate by,y. While
v is included in the model,∂v/∂y is not allowed; hence, the characterization of the Lamb model as a
2.5-dimensional model.

The equations are transformed to a terrain following coordinate system (sigma-coordinates) which
gives higher vertical resolution over the bank region. The equations are solved over a domain bounded
below by the topography and above by a rigid surface. Fluid flow is forced by specifying the semi-diurnal
tidal velocity on the left boundary. An absorption layer is also used to minimize computational boundary
reflections. The right boundary is moved far to the right and a vertical pressure gradient is specified
together with another absorption layer.

Appendix B

Starting with the Helmholtz equation for pressure,∇2P(�r) + k2P(�r) = 0, where the acoustic wave
number, frequency, and sound speed are related by,k(�r) = 2πf/C(�r), and �r is a three-dimensional
spatial vector, write the operator,∇2, in cylindrical coordinates and assume azimuthal symmetry (for the
ocean environment, this is a reasonable assumption). The Helmholtz equation is now of the form

∂2P(r, z)

∂r2
+ 1

r

∂P (r, z)

∂r
+ ∂2P(r, z)

∂z2
+ k2

0n
2(r, z)P (r, z) = 0

The wavenumber is written in terms of the index of refraction of the ocean environment,n (r, z), as
k(r, z) = k0n(r, z), where a reference wavenumber,k0, and sound speed,C0, have been define, such that
k0 = 2πf/C0.
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The complex pressure field,P(r, z), can be written in terms of a “reduced complex pressure field,”
p(r, z), asP(r, z) = p(r, z)/

√
r. The cylindrical spreading term is removed, giving a reduced complex

pressure equation:

∂2p(r, z)

∂r2
= −

(
k2

0n
2(r, z) + ∂2

∂z2

)
p(r, z)

This equation can be factored into[
∂

∂r
+ ik0

√
(1 + X)

] [
∂

∂r
− ik0

√
(1 + X)

]
p = 0

using the notation,X = k−2
0 (∂2/∂z2 + k2 − k2

0), we obtain

∂p

∂r
= ik0

√
(1 + X)p

This represents the outgoing (propagating) acoustic pressure field. The other factored equation repre-
sents the incoming acoustic energy (i.e. the backscattered fields). Causality requirements eliminates the
incoming equation. One final step is to remove a common phase term, exp(ik0r). The one-way parabolic
equation (PE) approximation now has the form

∂p

∂r
= ik0(−1 +

√
(1 + X))p

The pseudo-differential operator term can be approximated by a Pade approximation,−1+√
(1 + X) ∼=∑n

j=1aj,nX/(1 + bj,nX), so that the outgoing pressure field can be found from,

∂p

∂r
= ik0

n∑
j=1

aj,nX

1 + bj,nX
p

By keeping a sufficient number of terms in the Pade approximation, high levels of accuracy can be ob-
tained for the complex pressure field. The FEPE ocean acoustic model is based on this PE approximation.
A decade of benchmarking has established that the FEPE model can accurately propagate acoustic energy
throughout the ocean environment. This includes ocean environments that have multiple interactions with
the rough ocean boundaries (e.g. sea surfaces, seafloors) and the fluctuating ocean volume (e.g. internal
waves).
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