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Abstract

The numerical schemes for the geographic propagation of random, short-crested, wind-gen-
erated waves in third-generation wave models are either unconditionally stable or only con-
ditionally stable. Having an unconditionally stable scheme gives greater freedom in choosing
the time step (for given space steps). The third-generation wave model SWAN (“Simulated
WAves Nearshore”, Booij et al., 1999) has been implemented with this type of scheme. This
model uses a first order, upwind, implicit numerical scheme for geographic propagation. The
scheme can be employed for both stationary (typically small scale) and nonstationary (i.e.
time-stepping) computations. Though robust, this first order scheme is very diffusive. This
degrades the accuracy of the model in a number of situations, including most model appli-
cations at larger scales. The authors reduce the diffusiveness of the model by replacing the
existing numerical scheme with two alternative higher order schemes, a scheme that is intended
for stationary, small-scale computations, and a scheme that is most appropriate for nonstation-
ary computations. Examples representative of both large-scale and small-scale applications are
presented. The alternative schemes are shown to be much less diffusive than the original
scheme while retaining the implicit character of the particular SWAN set-up. The additional
computational burden of the stationary alternative scheme is negligible, and the expense of
the nonstationary alternative scheme is comparable to those used by other third generation
wave models. To further accommodate large-scale applications of SWAN, the model is
reformulated in terms of spherical coordinates rather than the original Cartesian coordinates.
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Thus the modified model can calculate wave energy propagation accurately and efficiently at
any scale varying from laboratory dimensions (spatial scale O(10 m) with resolution O(0.1
m)), to near-shore coastal dimension (spatial scale O(10 km) with resolution O(100 m)) to
oceanic dimensions (spatial scale O(10 000 km) with resolution O(100 km).  2002 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Wave action models have been applied at every scale imaginable, from numerical
simulations of laboratory experiments to global wave models. Though the dominant
processes may vary between applications of differing scale, numerical errors resulting
from the discrete approximation of the problem occur at any scale. For any wave
model which uses a first order numerical scheme for geographic propagation, dif-
fusion is usually the most serious type of numerical error. Diffusion effects tend to
be more severe in the highly nonstationary and nonuniform conditions characteristic
of oceanic scales. Numerical diffusion acts to continuously diffuse a feature in a
wave field as the feature propagates. For example, in a time series comparison of
global model output to data from a deepwater buoy, the diffusion might manifest as
an underprediction of energy maxima and overprediction of minima. Diffusion can
lead to misinterpretation of results and misguided attempts to improve model skill
through alteration of physics and forcing. The finer aspects of a complex numerical
model cannot be properly addressed unless the numerical error is sufficiently minim-
ized. Thus, it is readily apparent that a first order scheme—unless applied at
extremely fine resolution—is unsuitable for modeling applications in which propa-
gation plays a significant role. Higher-order schemes have therefore been
implemented in third-generation wave models. For the WAVEWATCH model
(Tolman, 1991), Tolman (1995) uses the “QUICKEST” scheme of Leonard (1979)
and Davis and Moore (1982), combined with the “ULTIMATE” total variance dimin-
ishing limiter (Leonard, 1991) and reports considerable improvements in numerical
accuracy. Bender (1996) improved the numerics of the WAM model (cycle 2, see
WAMDI Group, 1988) from first-order to third-order and observed that, in simula-
tions of the Southern Ocean, underpredictions of wave heights due to numerical
diffusion are corrected. He notes that this is unsurprising, considering that the area
is characterized by swell propagated over long distances. Neu and Won (1990) also
look at higher-order schemes in spectral wave models.

All of these models deal with larger scale, nonstationary applications. However,
a diffusion-reduction strategy that is appropriate at one scale may not be appropriate
for general application. Though it tends to be a greater concern at larger scales,
numerical diffusion is not, strictly speaking, affected by scale. In one-dimensional
propagation, diffusion by a given numerical scheme (per time step) is simply a func-
tion of Courant number, Cg�t/�x, and how well the energy feature is resolved by
the computational grid (in two dimensions, the angle of incidence of the propagation
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direction in relation to the computational grid is also important). Poorly resolved
features can exist at any scale. The goal of this present study is to implement a
diffusion-reduction strategy for the third generation wave action model SWAN
(Booij et al., 1999) that is feasible at all scales. SWAN is well suited for such a
study as it contains both deep-water and shallow-water physics.

One work does exist in the literature that aims to reduce numerical error in a wave
model inclusive of smaller scales: Lin and Huang (1996) propose three higher-order
schemes in their presentation of the “Goddard Coastal Wave Model” . The authors
report that using these new schemes, diffusion and dispersion are practically zero.
Unfortunately, none of these schemes are suitable for diffusion-reduction in an arbi-
trary scale model. One scheme is derived for a governing equation that is different
from that of SWAN (and in fact, should not be used in coastal applications). Math-
ematical analysis of the other two schemes—denoted “second-order semi-implicit
schemes”— shows that they are only first-order. In applications, these schemes
appear to have a much broader stability range than the first order scheme used by
WAM (WAMDI Group, 1988), but they are quite diffusive, comparable in this
respect to the WAM scheme. We were unable to reproduce the accuracy demon-
strated in Lin and Huang (1996) using those two schemes.

Though no suitable solution to our particular problem exists in the literature, there
does exist a great wealth of research dealing with the accuracy of the numeric
approximation of the hyperbolic wave equation for a variety of applications. These
works, too numerous to list here, were invaluable in this study.

The SWAN model was originally designed for nearshore applications. The current
version of SWAN at the time of this writing (cycle 2, version 40.01) has two short-
comings that make it unsuitable for large-scale applications. Firstly, the model is
formulated in Cartesian coordinates; this does not take into account the curvature of
the earth’s surface, the effects of which are significant at oceanic scales. Secondly,
the model employs a first order, upwind, implicit numerical scheme for geographic
propagation which is highly diffusive (more so, in general, than the first order,
upwind, explicit scheme which is the default scheme of WAM (WAMDI Group,
1988)). This very diffusive scheme was chosen for SWAN due its unconditional
stability which allows the use of relatively large time steps with finely resolved (e.g.
O(10 m)) computational grids typical of nearshore simulations, thus making it much
more efficient on such grids than the WAM model. Also, an unconditionally stable
scheme will often be more efficient on curvilinear grids (with varying grid steps in
the domain) or spherical grids (with small grid steps near the poles).

Here we investigate the replacement of the first order scheme with higher-order
schemes that maintain the basic set-up of SWAN and its operational viability. To
that end we choose two schemes which are most suitable for the model from an
array of potential alternatives. We implement the replacement schemes and present
example applications of the improved model. Simply reformulating the basic action
balance equation terms of longitude and latitude (requiring additional refraction-like
terms) solves the problem of propagation on a sphere.
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2. Model description

The SWAN model (“Simulating WAves Nearshore” , Booij et al., 1999) is a third
generation wave action model. It is governed by a form of the two-dimensional
hyperbolic wave equation, expressed in terms of the wave action density spectrum:

N(x,y,s,q) � E(x,y,s,q)/s, (1)

where N is wave action density, E is wave energy density, x and y denote geographic
location, s is the relative frequency, and q is the direction of propagation. Wave
action is propagated in geographic and spectral space, while source and sink terms
act on the waves. The action balance equation, in horizontal Cartesian coordinates
(x,y), can be written as

∂
∂t

N �
∂
∂x

CgxN �
∂
∂y

CgyN �
∂

∂s
CsN �

∂
∂q

CqN �
S
s

. (2)

(e.g. Whitham, 1974; Phillips, 1977; Mei, 1983; Hasselman et al., 1973). Here, t
denotes time. The first term represents the local rate of change; the second and third
terms represent geographic propagation; the fourth term represents changes to rela-
tive frequency (e.g. by nonstationary depth or by currents); the fifth term represents
refraction (by depth and currents) , and S /s denotes the total of source and sink
terms. The four propagation speeds are shown below (as derived from linear wave
theory, e.g. Whitham, 1974; Mei, 1983).

Propagation speed in x-space:

Cgx �
dx
dt

�
1
2�1 �

2kd
sinh2kd�skx

k2 � Ux (3)

Propagation speed in y-space:

Cgy �
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dt

�
1
2�1 �

2kd
sinh2kd�sky

k2 � Uy (4)

Propagation speed in s-space:
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dt

�
∂s
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∂t
� Ū·�d��cgk̄·

∂Ū
∂s

(5)

Propagation speed in q-space:

Cq �
dq
dt

� �
1
k�∂s

∂d
∂d
∂m

� k̄·
∂Ū
∂m� (6)

Here, k̄ = (kx,ky) is the wave number with magnitude k (related to s through the
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dispersion relationship of linear wave theory), d is water depth, Ū = (Ux,Uy) is the
current velocity, s is the space coordinate in direction q and m is a coordinate normal
to s. The operator d/dt denotes the total derivative along a spatial path of action
propagation, and it is defined as:

d
dt

�
∂
∂t

� Cg·�x,y (7)

where Cg = k̄/k·∂s/∂k is the group velocity, and �x,y is the horizontal gradient oper-
ator. The source/sink terms that act on the action balance equation include wind
input, dissipation (by whitecapping, bottom friction, and depth-induced breaking),
and nonlinear wave-wave interactions (triads and quadruplets). Detailed description
of these terms and how they are implemented in SWAN can be found in Ris (1997)
and Booij et al. (1999).

For applications on a large geographic scale, the action balance equation, eq. (2),
needs to be reformulated in terms of spherical coordinates by: (a) replacing x and
y with longitude (n) and latitude (l), (b) replacing the propagation speeds with
j̇,l̇,ṡ and q̇ respectively and (c) by replacing N(x,y,t;s,q)dxdy with
N(j,l,t;s,q)djdl. This results in the longitude-latitude formulation of the action
balance equation:

∂
∂t

N � (cosj)�1
∂

∂j
j̇cosjN �

∂
∂l
l̇N �

∂
∂s
ṡN �

∂
∂q
q̇N �

S
s.

(8)

where R is the earth’s radius and

j̇ � �1
2�1 �

2kd
sin2kd�sksinq

k2 � Uj�R�1 (9)

l̇ � �1
2�1 �

2kd
sinh2kd�skcosq

k2 � Ul�(Rcosj)�1 (10)

ṡ � Cs (11)

q̇ � �
1
k�∂s

∂d
∂d
∂m

� k̄·
∂Ū
∂m��CscosqtanjR�1 (12)

where q is the wave direction taken clockwise from geographic east.
The original finite-difference scheme in SWAN for propagation in positive x-direc-

tion and positive y-direction is the following first-order (two-level) up-wind scheme
(corresponding to (2), ignoring source/sink terms and spectral propagation):

�Nq � 1�Nq

�t �
i,j

� �[CgxN]i�[CgxN]i�1

�x �
j,q � 1

(13)

� �[CgyN]j�[CgyN]j�1

�y �
i,q � 1

� 0,

where q is a time-level index and i and j are grid counters and �t, �x and �y are
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increments in time and geographic space respectively. This is the two-dimensional,
first order, backward space, backward time (BSBT) scheme. For combinations of
positive and negative x-directions and y-directions the scheme is obtained by using
the proper + and � signs in eq. (13), leading to the four-sweep technique of SWAN.
In this case, the implicitness of the scheme makes it unconditionally stable. Thus,
the model can be applied in computational grids with small geographic grid spacing
without a correspondingly small time step. By comparison, the first order explicit
scheme used by WAM (WAMDI Group, 1988) is conditionally stable, though some-
what less expensive per time step (requiring fewer division operations) and somewhat
less diffusive (especially for Courant numbers near the stability limit). The BSBT
scheme is probably the most diffusive of all commonly used schemes.

3. Alternatives to higher order numerical schemes

Implementation of a higher order scheme is not the only means by which diffusion
can be reduced. As diffusion is greatly dependent on geographic resolution, one
alternative would be the use of smaller grid size. Increasing resolution has the advan-
tage of decreasing phase error as well as diffusion. This, generally speaking, will
lead to fewer numerical oscillations. However, this approach to reducing diffusion
in SWAN has two problems that limit its utility:

1. Size limitations: SWAN, as it is currently written, must hold the entire wave
action matrix N(x,y,s,q) in memory. Thus, there is a practical limitation on how
many grid points can be included in the computational grid for a given
machine size.

2. Propagation burden: The fraction of computation time spent by SWAN on geo-
graphic propagation is generally not large. This may become increasingly true in
the future, as more expensive source/sink term formulations are implemented to
take advantage of faster computers. If stability requirements and solution tech-
niques are similar for both schemes, then a lower order scheme may be replaced
with a much more expensive higher order scheme with only moderate impact on
total computation time. By contrast, increasing resolution will have a large impact
on total computation time unless the code is altered such that propagation terms
are solved on a subdivided grid.

For time-stepping computations, increasing geographic resolution without a corre-
sponding increase in temporal resolution will result in a larger Courant number. In
the case of the BSBT scheme, a larger Courant number will, to some degree, offset
the benefit of higher geographic resolution. To take an opposite tact, because of the
dependence on Courant number, numerical error of the BSBT scheme (and most
other schemes) may be decreased by using a smaller time step without a correspond-
ing decrease in geographic step size. However, the dependence of diffusion on time
step size is not great for this scheme, so this option can be dismissed.

Replacing the BSBT scheme with another first order scheme would decrease dif-
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fusion. For example, the explicit first order upwind scheme (BSFT, stable for Courant
number less than one) could be combined with the implicit first order downwind
scheme (FSBT, stable for Courant number greater than one) to create an uncon-
ditionally stable model which is less diffusive than a model which uses only the
BSBT scheme. Though the presentation differs somewhat, this is essentially the
approach of Hardy et al. (2000). This type of approach has definite advantages, but
for modeling a wider range of applications, it was felt that the additional accuracy
of a higher order scheme is required.

It could be argued that the first order explicit scheme, which becomes quite accur-
ate near its stability limit, might be implemented with an adaptive step size. Unfortu-
nately, in the context of a two-dimensional spectral wave model, this approach is
inconvenient, and benefit is limited.

4. Discussion: “Wiggles”

Numerical propagation speed depends on the wave length of the Fourier compo-
nents of the signal. Generally the errors in the propagation speed are largest for the
shortest components (2�x waves and somewhat longer). Numerical schemes which
do not damp these short components will cause the short waves to become visible
as “wiggles” if they are sufficiently present in the solution. It is an ironic fact that
a scheme with phase error and no diffusion will generally appear to be worse than
a scheme with diffusion and comparable phase error, because the oscillations—which
appear much more vividly with the less diffusive scheme—are so obviously non-
physical. This seemingly unfair judgement is sometimes justified, as the total vari-
ation of error can be as important as the total error. The result of negative wave
action (due to the wiggles) is clearly something to avoid. In SWAN, negative wave
action is removed during propagation in (s,q) space. Such removal obviously
compromises wave action conservation. In most applications of SWAN, wiggles will
not result in negative wave action, as they occur against a positive background level
of energy. Nevertheless, one can easily imagine cases where negative energy is poss-
ible, even likely to be generated by the scheme. In an idealized case of propagation
through a gap in an obstacle, an illuminated zone is immediately adjacent to a
shadowed zone of zero energy. Or an energetic swell field entering an area of calm
water may have numerical oscillations leading the edge of the energy front
(sometimes called the “shock front” ).

In general, phase error is dependent on two factors: the Courant number and the
resolution of the feature being modeled (the wave form, shock front, etc.). Thus, a
scheme which is unconditionally stable may have a practical limitation on Courant
number. This limitation is obviously a subjective quantity, unlike a stability criterion.
For example, when modeling the propagation of swell across great distances, suf-
ficiently small wiggles might be tolerated because of the greater accuracy of a less
diffusive scheme. But in a case where gradients in the wave action field are being
used to drive a sediment transport model, wiggles could potentially create non-physi-
cal sediment transport patterns. These patterns could be just as problematic as the
reduced gradients that would be caused by numerical diffusion.
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5. Choice of numerical schemes

5.1. Considerations

Several factors were considered when choosing the replacement schemes:

� Diffusion. This is the greatest deficiency of the existing BSBT scheme. A scheme
for which diffusion is not heavily dependent on spatial and temporal resolution
is preferred.

� Stability. Unconditional stability is preferred, as it allows more flexibility when
choosing a time step size. (As mentioned above, this is especially important when
fine geographic resolution is used.)

� Conservation: Conservation of the quantity to be transported is required.
� Numerical dispersion. Minimal numerical oscillation is preferred. Such oscil-

lations (or “wiggles” ) are dependent on both spatial and temporal resolution.
� Structure. Ideally, the scheme should fit within the general framework of the two-

level, up-wind, four-sweep technique that is used in SWAN to solve the discret-
ized action balance equation, Eqs. (2) and (8).

� Expense (per calculation). Though an increase in computational burden is
expected, the scheme should not be excessively expensive. A fully implicit scheme
requiring additional matrix solutions is undesirable.

5.2. Scheme descriptions

About 40 alternative numerical schemes (for hyperbolic problems) were con-
sidered (most of them taken from Petit (1997) who collected these schemes over a
period of years, often from unpublished sources). Some were dismissed outright on
the basis of the above criteria and considerations. A large group was tested in one-
dimensional experiments; most of these were eliminated and a much smaller group
was tested in two dimensions.

As most one-dimensional schemes can be generalized to two dimensions in more
than one possible manner, it is unhelpful to the reader to present two-dimensional
results while only providing a statement of the scheme in one dimension. We state
the two-dimensional form used, where appropriate. With regard to judging particular
schemes, the one-dimensional problem is a valuable tool for providing a general
sense of how the two-dimensional application of a scheme might behave, but is much
less conclusive than a direct study of the two-dimensional problem. Therefore, we
do not present one-dimensional test results here. One-dimensional tests were perfor-
med for this study only as a means to eliminate schemes that perform poorly in the
simplest tests and therefore are certain to fail miserably in practical applications. It
should be stressed that conclusions (e.g. stability requirements, conservation, order
of accuracy) derived from testing and/or mathematical analyses of schemes in one
dimension do not necessarily apply to the scheme in two dimensions.

There is also the issue of nonuniform Courant number, m. In the context of a wave
action model, this occurs when currents or depths are nonuniform, or when a grid
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with variable spacing is used. A two-dimensional scheme which is stable and flux
conserving for cases of uniform m may be less robust in the more general case of
nonuniform m. Unfortunately, mathematical analyses—stability analysis in parti-
cular—tend to be difficult, if not impossible, for the general case. Optimistic assump-
tions can be made based on analyses of the one dimensional scheme with uniform
m. Empirical observation of behavior is particularly useful in such instances.

Using mathematical analysis or empirical study, it is difficult to quantify the accu-
racy (even relative accuracy) of general schemes, due to the number of degrees of
freedom, e.g. the Courant number in two dimensions, the resolution (dimensional or
non-dimensional) in two dimensions, severity of m non-uniformity. Sampling is
inevitable.

Each scheme is tested on its own merits, with no consideration of possible
enhancements (e.g. filters, limiters). Though it could be argued that this will not
necessarily result in the best scheme/enhancement combination, it provides a fair
enough attempt.

Of the schemes which were investigated in two-dimensional form, we present five
of the most notable examples. The BSBT scheme used by SWAN (cycle 2, version
40) is also described, to provide a baseline. Source/sink terms are neglected for now
(the issue is addressed later). In some of these analyses, to quantify numerical error,
we use the numerical growth rate (multiplication factor per time step) D, and/or the
ratio of physical to numerical celerity, Cn/C. In a general sense, the former is related
to stability and diffusion, while the latter is associated with dispersion error and
“wiggles” .

5.2.1. First order, upwind, implicit (backward space, backward time, BSBT)
Eq. (13) can be written as:

(1 � mx,i,j � my,i,j)Nq � 1
i,j �Nq

i,j�mx,i�1,jNq � 1
i�1,j �my,i,j�1Nq � 1

i,j�1 � 0, (14)

where mx is the Courant number for propagation in the x direction, mx=Cgx�t/�x (Cgx

is the x-component of the propagation velocity), subscripts i and j indicate grid steps
in x and y respectively, and q denotes the time step.

5.2.1.1. Truncation error Eq. (14) effectively solves in the case of constant
CFL numbers

∂N
∂t
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∂x
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2
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∂2N
∂x2 � CgxCgy�t

∂2N
∂x∂y

�
1
2
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gy�t
1 � my

my

∂2N
∂y2 � �

1
6

C3
gx�t2

3mx
2 � 3mx � 1
mx

2

∂3N
∂x3 (15)

�
1
2

C2
gxCgy�t2

3mx � 1
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∂3N
∂x2∂y

�
1
2

CgxC2
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3my � 1
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∂3N
∂x∂y2 �

�
1
6

C3
gy�t2

3my
2 � 3my � 1
my

2

∂3N
∂y3 � O(�t3)
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By substitution of the CFL numbers the truncation error can be given in terms of
�x, �y and �t.

5.2.1.2. Growth rate, dispersion, and stability For the case of uniform propagation
speed, the numerical growth rate, D, and the ratio of numerical velocity to actual
velocity Cg,n/Cg are given by:

D�2 � [1 � mx(1�cos(ax)) � my(1�cos(ay))]2 � [mxsin(ax) (16)

� mysin(ay)]2,

Cn

C
�

arccos(D 1 � mx(1�cos(ax)) � my(1�cos(ay)) )
axmx � aymy

. (17)

Here, ax=kx�x (thus inversely proportional to the number of points per
wavelength), where k is the wavenumber vector of the numerical solution (not to be
confused with the wavenumber of a wind-wave). In the case where the Courant
numbers are uniform, it is apparent from (16) that with mx � 0 and my � 0, that
D�2�1, and the scheme is therefore unconditionally stable. Experiments have shown
that this is likely to be true for the non-uniform case (scheme (14)) as well.

Due to the four degrees of freedom (mx, my,ax, ay), the expression for D of the
two-dimensional problem cannot be presented without a large number of figures.
Therefore, the growth rate, D, of the BSBT solution of the one-dimensional problem
is shown in Fig. 1. In the context of the two-dimensional wave equation, this figure
describes only the special case of energy propagating parallel to the x- or y- axis.
However, it is useful for providing a general sense of diffusivity of the scheme
relative to two other schemes (below).

5.2.1.3. Conservation Conservation can be proven for the BSBT scheme for the
general case of nonuniform m.

5.2.1.4. Stationary case The stationary case of BSBT can be considered a subset
of the nonstationary case: the ∂/∂t term is equal to zero, and the stationary problem
is treated as a nonstationary problem with a single time step of arbitrary size. Analy-
ses for the nonstationary case therefore apply to the stationary case.

5.2.2. Second order, upwind (SORDUP)
For this scheme the spatial derivative is determined as the optimal (most accurate)

discretization for the numerical stencil (i, i�1, i�2) using conventional Taylor Series
expansion. The stationary case (∂/∂t=0) is given as:

�3
2
mx,i,j �

3
2
my,i,j�Ni,j�2mx,i�1,jNi�1,j �

1
2
mx,i�2,jNi�2,j�2my,i,j�1Ni,j�1 (18)

�
1
2
my,i,j�2Ni,j�2 � 0.
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Fig. 1. Numerical growth rate D of the one-dimensional BSBT scheme. Here, l is the numerical wave-
length. Courant number values shown are µ�1, to allow comparison to a conditionally stable scheme
(Fig. 3).

Analysis of this stationary, two-dimensional scheme is comparable to the analysis
of a nonstationary, one-dimensional scheme with three time levels. The nonstationary
case is not given here, as performance of the scheme applied to this type of problem
is poor and therefore not considered for implementation in the model.

5.2.2.1. Truncation error For purposes of analysis, the scheme can be re-writ-
ten as:

(1.5mxy,i,j � 1.5)Ni,j�2mxy,i�1,jNi�1,j � 0.5mxy,i�2,jNi�2,j�2Ni,j�1 (19)

� 0.5Ni,j�2 � 0,

where

mxy �
mx

my

�
Cgx�y
Cgy�x

. (20)

We find that (19) solves the following differential equation:
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Fig. 2. Numerical growth rate D for the one-dimensional S&L scheme.

Cgx

∂N
∂x

� Cgy

∂N
∂y

� �
1
3

Cgx�x2(m2
xy�1)

∂3N
∂x3 �

1
4

Cgx�x3(m3
xy � 1)

∂4N
∂x4 (21)

� 0(�x4)

5.2.2.2. Stability and amplification factor By study of the amplification factors of
the scheme, the unconditional stability of the scheme is made credible for the case
of uniform m.

5.2.2.3. Empirical evidence Applications of the scheme have shown no stability
problems. A benchmark test of conservation in two dimensions with non-uniform m
was conducted: a case of an energy signal turning within a control volume (a 90°
turn over approximately 150 grid points). This test suggests that the scheme is con-
servative.

5.2.3. S&L (Q0=0, Q1=1/6) (Stelling and Leenderste 1992)
What we refer to as the “S&L” scheme is a cyclic scheme taken from Stelling and

Leenderste (1992), the scheme described by “Q0=0, Q1=1/6” , using their notation. In
two dimensions it can be implemented as:
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�1 �
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12
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12
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i,j � Nq
i,j�

1
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((mxNq)i � 1,j�(mxNq)i�1,j)

�
1
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1
12

(15(mxNq � 1)i�1,j�6(mxNq � 1)i�2,j (22)

� (mxNq � 1)i�3,j) �
1
12

(15(myNq � 1)i,j�1�6(myNq � 1)i,j�2

� (myNq � 1)i,j�3)

5.2.3.1. Truncation error The Stelling and Leendertse scheme, as implemented
above, with uniform mx and my solves the following PDE:
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∂4N
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The order of consistency shows that the phase error is second order in �t whereas
diffusion is third order. This is an obvious improvement over the BSBT scheme.
Moreover, for smaller Courant numbers (say, for [mx, my]� 3), this diffusion dampens
the higher wavenumbers (of the propagating feature) much better than the low wav-
enumbers, thus reducing the wiggles. Wiggles are therefore sufficiently smoothed
that they are hardly noticeable (except in extreme cases).

5.2.3.2. Growth rate and dispersion (stability and oscillations) Expressions for
growth rate, D, and relative celerity Cg,n/Cg were calculated, but are quite long and
are omitted here. Experimentation with a large number of possible input values for
the derived expression for D yielded no unstable combinations. Therefore, the
scheme is very likely unconditionally stable.

The scheme can be made stationary by the assumption Nq + 1
i,j = Nq

i,j. However, this
discretization cannot be considered a subset of the nonstationary scheme and may
be unstable. Also, it is important to note that the numerical stencil of such a stationary
S&L scheme includes downwind points, which is incompatible with the up-wind
set-up of SWAN. The stationary version of the scheme will therefore not be con-
sidered further. Fig. 2 shows the growth rate, D, for the one-dimensional application
of the scheme.

5.2.3.3. Empirical evidence As with the BSBT scheme, experience with using this
scheme suggests that it is unconditionally stable for cases of non-uniform m. How-
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Fig. 3. Growth rate D of the one-dimensional BCML (n=3) scheme.

ever, because of the numerical oscillations, there is a practical limitation to time step
size with this scheme. The maximum usable Courant number is a very subjective
number depending on the tolerance of the model user, the severity of the “shock
front” or comparable feature in the wave action field, and the resolution of the fea-
ture. In field applications, the largest acceptable Courant number can be as low as
2.0 or as high as 10.0. Under more ideal conditions (e.g. propagation past a semi-
infinite breakwater in deep water), m�	 can often be used.

The benchmark test for conservation of action suggests that the scheme is perfectly
conserving for the general case of non-uniform m.

5.2.4. Box
5.2.4.1. One-dimensional implementation The “Box” scheme, used the solve the
one dimensional wave equation uses the following finite differencing (Preissmann,
1961):

∂N
∂t

�
1
2�Ni

q�Ni
q�1

�t
�

Nq
i�1�Nq�1

i�1

�t � (24)

∂N
∂x

�
1
2�Nq

i �Nq
i�1

�x
�

Ni
q�1�Nq�1

i�q

�x � (25)

The scheme is unconditionally stable and accurate to second order in this one-dimen-
sional form. This scheme is unusual because it does not have any diffusion (D=1;
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no even-ordered derivatives in the truncation error). In itself this is a good property
as the amplitudes of each Fourier components of the initial condition are preserved
if applied on the simple wave equation (constant m). Unfortunately the scheme does
have phase errors, resulting in “wiggles” . The oscillations are much more noticeable
than they would be if the scheme did have diffusion. Thus, when and where oscil-
lations do occur, the total lack of diffusion might be considered a drawback.

This higher order scheme has the attractive feature of a compact numerical stencil,
making it suitable for applications along boundaries (both internal and external).

5.2.4.2. Two-dimensional implementation We use a two-dimensional implemen-
tation which might more accurately be called a “cube” scheme, where each derivative
is calculated from the eight points on an upwind-oriented cube:
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It can be shown that, with this two-dimensional implementation, the scheme
remains second order accurate. Conservation can be proven by constructing the Box
scheme using a finite volume method. It can be proven for the case of uniform m
that the scheme is unconditionally stable and has no diffusion. Extensive applications
suggest that this also holds true in the case of non-uniform m. Not surprisingly, the
unusually severe numerical oscillations of the Box scheme are also evident in two
dimensions. The unattractive prospect of a numerical filter may be unavoidable in
an implementation of this scheme.

5.2.5. NISL (non-interpolating, semi-Lagrangian Lax–Wendroff scheme)
This scheme works by scanning back along the characteristic line to the previous

time level. Since the characteristic line typically does not terminate on a grid node
at the previous time level, a finite differencing scheme (Lax–Wendroff) is used—in
lieu of interpolation—to make the appropriate correction to the terminus value.
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5.2.5.1. Nonstationary implementation The NISL scheme, in two dimensions, is
stated by Olim (1994) as:

Nq
i,j�Nq�1

i�y,j�x(1�m2
rx�m2

ry) �
mrxmry

4
(Nq�1

i�y�1,j�x�1 � Nq�1
i�y � 1,j�x � 1

�Nq�1
i�y � 1,j�x�1�Nq�1

i�y�1,j�x � 1) �
mrx

2
[Nq�1

i�y�1,j�x(1 � mrx) (29)

�Nq�1
i�y � 1,j�x(1�mrx)] �

mry

2
[Nq�1

i�y,j�x�1(1 � mry)�Nq�1
i�y,j�x � 1(1�mry)],

where mrx is the residual Courant number in x-space, (Cgx�t/�x�y)); y is the nearest
integer to mx = (Cgx�t/�x); mry is the residual Courant number in y-space, (Cgy�t/
�y�x); x is the nearest integer to my = (Cgy�t/�y).

5.2.5.2. Nonstationary performance This scheme generally performed as well as
other higher order schemes (e.g. S&L, Box) for CFL values less than one. For larger
values, results are more impressive: the scheme actually becomes more accurate as
CFL increases. However, it was found that the scheme is conditionally stable (e.g.
the scheme is unstable for mxr = mxr = 0.5, ax=ay=p/2). The stability requirements of
eq. (29) were judged so problematic that the scheme was dropped from the test
group. (We note that it was later found that Olim’s one-dimensional scheme can be
extended to two dimensions in such a way that the unconditional stability is preserved
(H. Petit, personal communication)).

5.2.5.3. Stationary implementation This is essentially the one-dimensional form
given by Olim (1994), with the time variable replaced by a second space variable.
In cases where Cgx/�x � Cgy/�y, the scheme is:

Ni,j�Ni�p,j�1�1/2(mxy�p)(Ni�p � 1,j�1�Ni�p�1,j�1) � 1/2(mxy (30)

�p)2(Ni�p � 1,j�1�2Ni�p,j�1�Ni�p�1,j�1),

wheremxy =
Cgx�y
Cgy�x

and p is the nearest integer to mxy.

In cases where Cx/�x � Cy/�y, the scheme is:

Ni,j�Ni�1,j�p�1/2(mxy�p)(Ni�1,j�p � 1�Ni�1,j�p�1) � 1/2(mxy (31)

�p)2(Ni�1,j�p � 1�2Ni�1,�p�Ni�1,j�p�1),

where mxy =
Cgy�x
Cgx�y

.

In (31), the first subscript is analogous to the time subscript of the one-dimensional
nonstationary scheme and the second subscript is analogous to the space subscript
of that scheme. Eq. (31) has an explicit diffusion term. This is potentially convenient
for dealing with the so-called “Garden Sprinkler Effect” (GSE), (SWAMP Group,
1985, Booij and Holthuijsen,1987). The scheme is unconditionally stable.

Unfortunately, the scheme, as stated above, has little value for solving problems
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of nonuniform m because it assumes that mxy does not change along the characteristic
line. If mxy does change, the scheme essentially “ looks back” to the incorrect location.
To solve the problem correctly, it is necessary to integrate propagation along a curved
characteristic (for example, by ray tracing along a subdivided grid). Thus, implemen-
tation of Eqs. (30) and (31) in SWAN is ruled out, though it might be possible to
implement a similar, but more generally correct, procedure sometime in the future.

5.2.5.4. Stationary performance The benchmark (nonuniform Cg) test of conser-
vation bears out concerns regarding performance with nonuniform m: the flux out of
the control volume equals approximately 23% of flux into the control volume.

5.2.6. BCML (n=3) (backward characteristic method, Lagrangian interpolation)
It was felt that a higher order, conditionally stable scheme should be investigated

in detail along with the unconditionally stable schemes described above. The BCML
(n=3) scheme was chosen for this. The BCML method is described in Petit (1997)
in one dimension for all values of n as:

Nq � 1
j � �

i � �n

n�1 � �
m � �n,m
i

n�1
m � m
m�i �Nq

j � i (32)

For n=2, this is the “QUICKEST” scheme (Leonard, 1979; Davis and Moore,
1982), notable because the WAVEWATCH model (Tolman, 1995) uses this scheme,
along with the “ULTIMATE” total variance diminishing limiter (Leonard, 1991).

One possible implementation of BCML (n=3) in two dimensions with nonuniform
m is:
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� 0.

5.2.6.1. Truncation error and stability: uniform m We analyzed truncation error
and stability only for the case of uniform m, where

mx,i1 � j1,i2

mx,i1,i2

my,i1,i2 � j2

my,i1,i2

� 1 (34)

This less general form of (33) solves the differential equation
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This two-dimensional equation is therefore fifth order accurate. The stability con-
dition is: 0�mx�1�0�my�1.

Expressions for D and Cn/C were also derived, but are omitted here for the sake
of brevity. Fig. 3 shows the growth rate, D, of the one dimensional application of
the scheme. Though not the general (two-dimensional) case, comparison with Figs.
1 and 2 provide a general sense of diffusivity relative to the other schemes. It is
apparent that the BCML(n=3) method has far less diffusion than the other schemes
considered. Only the short wave components are damped out rapidly.

5.2.6.2. Conservation in one dimension It can be shown that the BCML (n=3)
scheme is conservative for the case of uniform m, and approximately conservative
for the case of mildly varying m.

5.2.6.3. Conservation in two dimensions Because the scheme is relatively com-
plex, we do not attempt to prove conservation in two dimensions.

5.2.6.4. Empirical evidence Tests indicate that the scheme is conservative for the
case of uniform m and conditionally stable for the general cases. We applied the
stability range (derived for the case of uniform m) to the benchmark tests which
included non-uniform m and never encountered stability problems. The benchmark
conservation test indicates that conservation behavior of the two-dimensional scheme
is similar to that of the one-dimensional scheme: approximate conservation with
nonuniform m.

5.2.6.5. General comments Some general comments can be made regarding the
BCML (n=3) scheme:

1. The conditional stability of the scheme makes it more appropriate for large-scale
applications. This is an acceptable limitation, due to the availability of other
schemes that can be used at smaller scales.

2. The scheme is fifth order accurate, but because it has a 36-point stencil and numer-
ous division operations, it is too expensive for implementation in SWAN with
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present-day computer technology. The impressive accuracy of the scheme
(examples shown below) offers a demonstration of what may be possible in the
future with schemes such as this one.

3. Conservation error exists with the scheme for non-uniform m. This error will be
negligible for most wave model applications. If perfect conservation is needed,
there may exist means to achieve this (e.g. by solving the governing equation
using Finite Volume Methods rather than by finite differencing).

6. Simple applications

Here, we detail two of the more notable applications used in the empirical analysis
mentioned above. Both scenarios can be considered diffusion-prone (relative to typi-
cal model applications). One is representative of large-scale cases, and the other is
representative of smaller scale cases.

6.1. Nonstationary example: two-dimensional spike propagation

The propagation of a two-dimensional spike is used to represent the travel of a
swell system across an ocean. The narrow shape of the spike makes it a severe test
case, very prone to the effects of diffusion and dispersion. Only one spectral bin is
used per spike, so alteration of the shape of individual spikes during propagation is
purely artificial. The spike is defined by:

N(x,y) � [cosh(�/r)]�1, (36)

where r is a representative radius of the spike, and � is the radial distance from the
spike center.

Numerics are affected by Courant number, the resolution of the spike, and the
angle of propagation; many combinations were used. Sample cases are shown in Fig.
4. The initial shape and location of the four spikes are shown in the lower left corner.
The four spikes are propagated at angles of 0, 15, 30, and 45 degrees. The parameter
“A” (shown at the end location of each spike) indicates the fraction of spike ampli-
tude retained, a rough measure of diffusion. The problem is non-dimensionalized
and solved in terms of Courant numbers Cgx�t/�x and Cgy�t/�y. Thus, spatial scale
is arbitrary. Model parameters for the cases shown in this figure are: Cg�t/�s=0.75,
�x=�y=0.1, where Cg = √C2

gx + C2
gy and �s = √�x2 + �y2. Results are generally in

agreement with the results of mathematical analysis. For example,

� the NISL scheme becomes more accurate as (mx, my) increases, and is the most
accurate scheme for (mx, my)  2.

� oscillations are generally more noticeable with the Box scheme than with other
schemes.

� BCML(n=3) is the most accurate scheme (for (mx, my) � 1)
� The Box scheme is less diffusive than the S&L scheme.
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Fig. 4. Results of two-dimensional spike propagation test using the a) BSBT, b) S&L, c) Box, d) NISL
and e) BCML (n=3) schemes. The conserved quantity, wave action, is shown. Length scales are of arbi-
trary units; e.g. if units of km, the problem can be interpreted as swell propagation across an ocean.
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� S&L is much less diffusive than BSBT, much faster than BCML(n=3), and has
less obvious “wiggles” than Box (mostly due to the diffusion of S&L).

There was initially some concern that the omission of “off-axis” points in the two
dimensional implementation of the S&L scheme (eq. (22)) would lead to distortion
of the signal. While some distortion is noticeable, it is no worse than the BOX
scheme (which does include “off-axis” points).

6.2. Stationary example: propagation past a breakwater

An idealized submerged breakwater is simulated by specifying the wave height
at an open boundary (x=0) H=1 for y�98 and y104 H=2 for 98 �= y �= 104, (a
rectangular wave energy signal superimposed on a background wave field), where
x and y are nondimensionalized by Courant number and H is the dimensionless wave
height. At the downwave open boundary (x=100), the numerical solution can be
compared to an exact analytical solution. In this case, numerics are affected by geo-
graphic resolution and angle of propagation; various combinations were used for
comparisons. Sample comparisons are shown in Fig. 5. Spatial resolution used in
this particular case are: �x=1, �y=2. Spatial units are nondimensionalized by Cgx�t
/�x and Cgy�t/�y (�t is a dummy variable in true stationary computations). Angle
convention is defined by: propagation at 0° being parallel to the x-axis (+x), and
propagation at 90° being parallel to the y-axis (+y). Note that in the context of a
wind-wave model, this is an extreme test case. Because of the steep gradients of the
problem, both diffusion and wiggles are greatly exaggerated relative to a more typical
wave-modeling problem.

The S&L scheme is included in the comparison of the stationary schemes; the
scheme was run in nonstationary mode until steady state was reached. A relatively
small time step was used; therefore the S&L results used in these stationary compari-
sons are an optimistic representation of performance that can be expected from the
scheme at the resolutions tested.

Results are as expected: the higher order schemes are much less diffusive, though
wiggles are visible in the solutions. Of these schemes, the S&L scheme has the least
noticeable phase speed error, but is relatively inefficient (because this is a station-
ary problem).

6.3. Implementation

Through side-by-side comparisons and the process of elimination described (in
part) above, the schemes chosen for implementation were the S&L scheme (primarily
for nonstationary applications) and the SORDUP scheme (for stationary
applications). These two schemes have been added to the original code, alongside
the BSBT scheme. Near boundaries and obstacles, the model reverts to the first
order scheme.
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Fig. 5. Example two-dimensional, stationary application: propagation of wave energy past a gap in a
breakwater. Shown are the results along a transect parallel to gap at 100 units distance behind the gap for
propagation angles 35° (left figure) and 65° (right figure). Length scales are of arbitrary units; e.g. meters.

6.3.1. Nonstationary
In terms of computation time, the nonstationary model remains efficient with the

S&L scheme. Use of the scheme (along with GSE-correcting diffusion described
below) typically results in a 40%–50% increase in computation time per time step.
As discussed above, there is less freedom to use large time steps with the S&L
scheme (as compared to the BSBT scheme). In some situations (particularly with
finely resolved grids), the limit on time step-size will result in considerably greater
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computation time. This is not a serious problem, since small-scale, high resolution
problems are generally treated as stationary cases, for which a third scheme can be
used (see following section).

6.3.2. Stationary
The second order, upwind (SORDUP) scheme, implemented for use as the primary

stationary scheme, is not significantly more expensive than the BSBT scheme. In
some cases, computation time is actually reduced due to faster convergence (this
refers to iterations used by SWAN which are not directly related to geographic
propagation). The “wiggles” of the SORDUP scheme are the only potential draw-
back, and these oscillations will be negligible for most applications. (We note, how-
ever, that it is possible to eradicate wiggles from the SORDUP scheme by using an
extension of the scheme which is more diffusive (only first order accurate), yet still
less diffusive than the BSBT scheme.)

No true stationary version of the S&L scheme was implemented. It is possible to
employ the nonstationary S&L-based model, with constant forcing, until steady state
is achieved. However, the number of time steps required by this pseudo-stationary
model is proportional to the number of grid points along the direction of propagation.
Since the SORDUP scheme does not suffer this limitation, it is more efficient for
stationary cases with a moderate (or larger) number of grid points.

6.4. The “garden sprinkler effect”

6.4.1. Nonstationary
With the reduced diffusion of the S&L scheme, the well known “garden sprinkler

effect” (GSE) (e.g. SWAMP Group, 1985) becomes noticeable. The garden sprinkler
effect occurs when spectral discretization is too coarse for the scale of propagation.
It manifests as nonphysical discontinuities in the wave field which appear as natural
dispersion occurs. This problem can be countered by using a fine spectral discretiz-
ation. When this is computationally infeasible, one can use the procedure of Booij
and Holthuijsen (1987). This procedure operates by diffusing wave energy a) in the
direction of wave propagation (to counter the effect of frequency discretization; see
(41)) and b) normal to the direction of wave propagation (to counter effect of direc-
tional discretization; see (42)). In effect, diffusion is used to approximate the natural
dispersion of continuous spectra. The resulting wave action balance equation
(omitting source terms and spectral propagation terms), is

∂
∂t

N(x,y,t) �
∂
∂x

[CgxN(x,y,t)�Dxx

∂
∂x

N(x,y,t)] �
∂
∂y

[CgyN(x,y,t) (37)

�Dyy

∂
∂y

N(x,y,t)]�2Dxy

∂2

∂x∂y
N(x,y,t) � 0,

where

Dxx � Dsscos2q � Dnnsin2q, (38)

Dyy � Dsssin2q � Dnncos2q, (39)
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Dxy � (Dss�Dnn)sinqcosq, (40)

Dss � �C2
gT/12, and (41)

Dnn � C2
g�q2T/12. (42)

where T is the wave age of the wave component considered (the time elapsed since
the generation of the bulk of the energy of the wave component), �C̄ is the difference
in propagation speed across the spectral frequency bin and �q is the directional
resolution. The first-order derivative terms comprise of the unmodified governing
equation, while the second-order derivative terms are the GSE-correcting modifi-
cations.

Simple, explicit finite differencing of the second order derivatives is used:

∂2Nij

∂x2 �
Nq

i � 1,j�2Nq
i,j � Nq

i�1,j

�x2 , (43)

∂2Nij

∂x∂y
�

Nq
i,j�Nq

i�1,j�Nq
i,j�1 � Nq

i�1,j�1

�x�y
, etc. (44)

This explicit finite differencing is fast (having little impact on computation time)
but conditionally stable. Tolman (1995) gives a two-dimensional stability criterion
based on Fletcher (1988, Part I, section 7.1.1):

Q �
max(Dxx,Dyy,Dxy)�t

min(�x,�y)2 �0.5 (45)

Through mathematical analysis (not shown) it can be shown that a likely stability
condition for the one-dimensional S&L scheme, with an explicit diffusion term is
D�t
�x2�0.5. Thus it is credible that (45) holds true for the two-dimensional S&L

scheme, with explicit diffusion. In experiments, we found that for all cases which
satisfy the slightly more restrictive Q�0.48, no instability was observed. In short, by
adding the GSE correction, the unconditionally stable advection equation of SWAN
becomes an advection-diffusion equation which is likely conditionally stable. It is
readily shown that for typical ocean applications Dnn dominates the diffusion Q and
can be written as:

Q � C̄T/�x·C̄�t/�x·�q2/12. (46)

The variable wave age T can be computed during the computations of SWAN
(Booij and Holthuijsen, 1987) but it requires the same order of magnitude of com-
puter memory as integrating the action balance equation. Instead a constant wave
age T̄ can be used as an approximation, so that Eq. (46) becomes

Q � L̄/�x·m·�q2/12, (47)
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where the characteristic travel distance of the waves is L̄ = C̄T̄ (e.g. the dimension
of the ocean basin). For oceanic applications the Courant number is at typically
m�1/2 so that Q�0.25 for typical values of �q and L̄/�x (the number of grid point
in one direction of the grid). This implies that the S&L scheme with these GSE-
correcting measures is stable for typical ocean cases. For shelf sea (regional) appli-
cations the value of m=O(1) which is but the garden sprinkler effect tends to be small
on these scales and the diffusion can and should be disabled to avoid the stability
problem. For small-scale (local) applications typically m=O(10–100). But such cases
are usually treated as stationary and the SORDUP scheme should be used. An alter-
native for the GSE-correcting modifications would be to apply a geographic convol-
ution filter on the computational results (a filter that is the equivalent of the diffusion
term). This would have the advantage that the nonstationary scheme remains uncon-
ditionally stable. (This was not implemented.)

6.4.2. Stationary
GSE corrective measures were not implemented for the SORDUP scheme, as it

is unlikely to be a serious problem with stationary simulations (in fact, frequency-
related GSE does not occur in stationary simulations).

7. Validation of the improved model

The S&L-based model was validated with a series of tests—described in detail
by Rogers et al. (1999)—to confirm that the model performs well under a variety
of conditions with and without source terms: idealized simulations, laboratory-scale
simulations, and field simulations. The SORDUP model has also been validated
(though less extensively than the S&L model).

Stationary computations are generally limited to simulations with smaller domains,
since forcing conditions are assumed steady during propagation of wave energy
across the domain. For most small scale cases, diffusion will not be a dominant
cause of error. For example, in simulations of the DUCK94 experiment (Duck, N.C.,
Oct 10–22, 1994, with an approximately 2000 km2 bathymetry grid and uniform
wave input; see Rogers et al., 1999), a relatively mild nonuniformity in the wave
field is a result of focusing/de-focusing of waves by the bathymetry via refraction.
Numerical diffusion tends to smooth such features only slightly. Wave conditions
at Duck are typically broad-banded, which tends to mask those numerical errors
which do occur. One would expect that the diffusion would have a more pronounced
effect on spatial variation of spectral shape than on spatial variation of total energy.
Thus, the effect of diffusion for this type of case tends to be subtle and of little
interest for many wave model applications.

A small-scale case which is more likely to show greater nonuniformity in an
energy field—and thus marked diffusion—is a case of wave blocking by an obstacle
such as a breakwater, as shown above. In Section 7.2, we present a small-scale
simulation that shares characteristics of the breakwater case: propagation past islands
within the Southern California Bight.
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Though we do not present the results here, the improved model has been validated
in a larger, regional-scale simulation in conjunction with spherical coordinates (N.
Booij, personal communication). This was a simulation of nine days during February
1996 in the North Sea (with the computational grid extending from 45°W to 10°E
and from 40° to 65° N). Wind forcing and wave buoy data were provided by KNMI
(Royal Netherlands Meteorological Office). Time series comparisons at two instru-
ment locations in deep water have the expected trend: results using the S&L scheme
show higher peaks and lower troughs, while the results with the first order scheme
are noticeably smoothed. The differences are not dramatic (generally less than 5%
of the total wave height), because the features being propagated in the wave action
field are already relatively smooth and are therefore not greatly diffused by the first
order scheme. Judging from comparisons to buoy data, numerical error appears to
be small relative to other types, e.g. error associated with forcing and approximations
in the model’s physics.

7.1. Interaction with source/sink terms and spectral propagation

As has been demonstrated by Tolman (1992), the numerics of geographic propa-
gation can significantly influence the physics of a model. Because source terms and
spectral propagation were not included in the mathematical and empirical investi-
gations of the schemes described above, it was necessary to validate the improved
model with these components active. Overall, results were quite good, matching
results from the original model where appropriate. There was one concern regarding
directional spectra output by the model with the S&L scheme: in cases of irregular
bathymetry, the directional distributions given by the S&L model tend to be much
more irregular than the distributions given by the BSBT model. This is thought to
be a result of: 1) interaction between the geographic propagation scheme and the
spectral propagation schemes; and, 2) the increased fidelity of the new scheme (which
naturally results in larger gradients in the model solution). This increased irregularity
does not appear to have a negative impact on the model results in general.

The new schemes appear to work just as well with source terms as they do without.
For example, one test combined strong wind input with a “wiggly” S&L scheme
solution (intentionally made “wiggly” by using a very large time step size): no
unusual behavior was observed. However, it should be mentioned that it is possible—
even likely—that numerical analysis performed without regard to source/sink terms
will be invalid when these terms are included. Thus it is entirely possible that, strictly
speaking, this model remains first order accurate despite implementation of the higher
order schemes. This is obviously a concern for a many other types of numerical
models. We hope to address the issue in a later study.

7.2. Example field application: Southern California Bight

San Miguel and Santa Rosa Islands are located offshore of Ventura, California,
in the Southern California Bight. Fig. 6 shows their location with respect to the
coast. The wave climate in the Southern California Bight (stretching from Point
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Fig. 6. Map of San Miguel (left) and Santa Rosa (right) Islands and vicinity. The Datawell directional
buoy is located at Point Conception. (Figure provided by Dr. W. C. O’ Reilly (Scripps)).

Conception south to the Mexican border) has been actively monitored by the Coastal
Data Information Program (CDIP), which is based at Scripps Institution of Ocean-
ography in La Jolla. (CDIP is jointly funded by the California Department of Boating
and Waterways, and the U.S. Army Corps of Engineers.)

The California shelf is extremely narrow; it is generally no more than 11 km from
shoreline to shelf-break. The bathymetry in the Bight is mostly planar, with submar-
ine canyons and other features in some areas. The California coastline south of Point
Conception generally faces southwest. The presence of Point Conception shelters
much of the Bight from waves coming from the northwest, as occurs often during
winter storms. During the summer, the wave climate in the Bight is dominated by
swell generated by Southern Hemisphere storms. The islands in the Bight potentially
shelter much of the coastline from offshore waves.

In early 1992, pressure gages were installed around the Santa Rosa Island to meas-
ure the wave climate in the area. Fig. 7 shows the locations of the gages and the
bathymetry around the islands. We will emphasize comparisons of the data with the
model at the most sheltered gage, #10. A Datawell buoy located offshore of Point
Conception measured waves as they entered the Bight.

7.2.1. Model setup
The computational area for the model is that shown in Fig. 7. The grid extends

66.7 km by 53.4 km, with a resolution of 100 m in both directions. The SWAN
model was run on computational grids of four different resolutions: 100, 200, 400,
and 800 m. The finest (100 m) resolution allows more direct comparisons to models
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Fig. 7. Bathymetry and gage locations around San Miguel and Santa Rosa Islands. Depths are in meters.
Gages shown are: #8 (o), #9 (x), #10 (*), and #11 (+).

run by the Scripps Institution of Oceanography; this resolution also ensures that the
bathymetric variations in the vicinity of the islands are well resolved in the model.
Directional spectra measured at the Point Conception buoy during January 1992 were
used as model input, with data frequencies limited to the swell range (0.05 to 0.09
Hz). The directional range used comprised waves arriving from due north to due
south (37 directional bins at 5 degree intervals).

7.2.2. Model results
The SWAN model was run with all January 1992 spectra using the three numerical

schemes (pseudo-stationary S&L, stationary BSBT and SORDUP) at the various
geographic resolutions. Fig. 8 and Table 1 compare results at identical resolution.
Error is calculated using the formula

e � 	�i � 1

N

(Zpred.�Zmeas.)2

�
i � 1

N

Z2
meas. 


0.5

, (48)

where Z is the variable analyzed (in this case, total energy) and N is the number of
records in the time series.
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Fig. 8. Time series comparisons of models to data for the Southern California Bight case (total energy
is shown). Here, SWAN models of equivalent geographic resolutions are compared at the most sheltered
of the pressure gages (#10).

Table 1
Error comparison of models to data for the Southern California Bight case (total energy is shown). SWAN
models of equivalent geographic resolutions are compared at gage #10

Model Geographic resolution (�x in Error, e (of total energy)
meters)

Spectral refraction model 100 0.19
SWAN with BSBT scheme 200 0.74
SWAN with SORDUP scheme 200 0.31
SWAN with S&L scheme 200 0.25

Diffusion is manifested as an overprediction of wave energy at this sheltered gage;
unsurprisingly, the S&L scheme is most accurate. The SORDUP is nearly as accur-
ate, while the BSBT scheme does poorly. Also shown are results from a ray-based
spectral refraction model (LeMehaute and Wang, 1982) run by CDIP (on a 100 m
grid), to provide an approximation of what SWAN would produce if no numerical
errors were present.

Though Fig. 8 adequately illustrates the relative accuracy of the three schemes, it
does not address the issue of efficiency. In fact, though the S&L scheme is more
accurate than the stationary schemes for this case, it is more expensive by a factor
of 60. This is mostly due to the fact that while the stationary models converges in
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Fig. 9. Time series comparisons of models to data for the Southern California Bight case (total energy
is shown). Here SWAN models of approximately equivalent computational requirements are compared
at the most sheltered of the pressure gages (#10).

4–5 iterations, the pseudo-stationary model uses 200 time steps to ensure that all
spectral components reach steady state. Thus a more fair comparison would be of
SWAN models of approximately equal computation time (see Fig. 9 and Table 2).
Here, the two stationary models are run on the 100 m grid, while the limit on compu-
tation time requires that the S&L model be run on a much coarser grid (400 m).
The coarser resolution results in greater diffusion. Thus, in this comparison, the
SORDUP scheme is clearly superior. One can expect this to be the case whenever
computation time is a concern (i.e. when the number of grid points is not small).

Table 2
Error comparison of models to data for the Southern California Bight case (total energy is shown). SWAN
models of approximately equivalent computational requirements are compared at gage #10

Model Geographic resolution (�x in Error, e (of total energy)
meters)

Spectral refraction model 100 0.19
SWAN with BSBT scheme 100 0.55
SWAN with SORDUP scheme 100 0.26
SWAN with S&L scheme 400 0.42
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8. Applicability of the implemented schemes

Some general observations can be given regarding the suitability of the three
numerical schemes. For oceanic applications, the S&L scheme will almost always
be the most effective of the three schemes. At these scales, measures for dealing with
the “garden sprinkler effect” are necessary, which unfortunately makes the model
conditionally stable like other ocean wave models, e.g. WAM (WAMDI Group,
1988) and WAVEWATCH (Tolman, 1991). Thus higher-order explicit schemes are
generally better suited for global-scale wave modeling than the S&L scheme. How-
ever, the numerical accuracy of a global wave model with the S&L scheme is much
greater than any which uses a first order scheme (implicit or explicit), without a
large increase in computational burden (per time step).

For smaller scale, nonstationary models (e.g. regional- and sub-regional- scale
modeling), the choice of propagation scheme is somewhat more subjective. At these
scales, the GSE correction will typically not be used with the S&L scheme (for
example, no GSE was noticed the simulation of the North Atlantic discussed earlier),
so there is no “hard” stability criterion for the scheme. However, there is a soft CFL
criterion, typically in the range of 2–10, necessary to prevent non-physical oscil-
lations (“wiggles” ). The limiting number used is dependent on the tolerance of the
user and the resolution of spatial gradients by the computational grid. For finely
resolved grids, this limits the size of the time step that can be safely used with the
S&L scheme. This is in contrast to the BSBT scheme, for which a large time step
can be used without an obvious penalty. Thus, scheme choice depends on the “natu-
ral” time step size of the simulation, determined by factors such as the time increment
of forcing data, the step size required for proper behavior of source/sink terms, etc.
In cases where the S&L scheme dictates a smaller time step size, this cost must be
weighed against likely benefit. The benefit of a higher order scheme is obviously
greater for cases that are prone to diffusion. What constitutes “diffusion-prone” is
not obvious. The degree of nonuniformity (or, more specifically, the leading even-
ordered terms in a scheme’s truncation error) provides a general sense of whether
a particular model application is prone to diffusion. A more definitive measure of
diffusion-proneness is unfortunately impractical.

A significant advantage of a soft CFL criterion, as compared to the hard stability
criterion of a conditionally stable model, is that the modeler has the freedom to
choose the time step according to the peak frequency component rather than accord-
ing to the lowest frequency component. Similarly, in the case of curvilinear grid
applications, the smallest geographic resolution in the grid does not dictate the time
step used for the entire simulation. Thus, the S&L is better suited for many regional
scale applications than would be a conditionally stable, high-order, explicit scheme.

For stationary cases, any of the three schemes (S&L, SORDUP, BSBT) can be
used. However, the SORDUP scheme will almost always be the best choice in terms
of efficiency, for reasons discussed previously:

1. the SORDUP scheme is more accurate (less diffusive) than the BSBT scheme,
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only slightly more expensive, and non-physical oscillations are generally mild
and avoidable.

2. the SORDUP scheme is almost as accurate at the S&L scheme, and is typically
much less expensive for moderate to large grids (10000 or more grid points) than
the S&L scheme.

9. Summary

In order to reduce numerical diffusion in the third generation wave model SWAN,
two second order finite differencing schemes, denoted as “S&L” (from Stelling and
Leendertse, 1992) and “SORDUP” (Second ORDer, UPwind), have been
implemented in the geographic propagation routine of the model and will be available
as options in a future public release of the code. These two schemes were chosen
after extensive mathematical analysis and numerical experimentation with a number
of schemes. In this paper, we present notable aspects of these investigations, includ-
ing that of the pre-existing, first order “BSBT” (Backward Space, Backward Time)
scheme, and three schemes which were not implemented in the full version of the
code, but are noteworthy enough to be included in the discussion: “NISL” (Non-
Interpolating, Semi-Lagrangian, Olim 1994), “BCML (n=3)” (Backward Character-
istic Method, Lagrangian interpolation), and the “Box” scheme. The improved model
has been validated. It demontrates greatly reduced diffusion in cases where diffusion
presents problems with the original model. One validation exercise was described
herein: a simulation of swell propagation past islands in the Southern California
Bight. Results (at a location in the grid that is conducive to diffusion) are dramati-
cally improved with the higher order schemes.

To further accommodate application at larger scales, for which the curvature of
the earth is of significance, the model has been reformulated in spherical coordinates.
This has been demonstrated, alongside the two implemented higher order schemes,
in Holthuijsen and Booij (2000).

All three schemes appear to be unconditionally stable and action-conserving in
the general case of nonuniform Courant number. In the context of a wave action
model, this suggests than they can be safely applied in the presence of nonuniform
bathymetry and current field. None of the schemes are superior to the others in all
modeling situations; we have discussed the applicability and efficiency of each
scheme. By carefully choosing the scheme appropriate for a given situation, the
SWAN model can be used to model wind waves at any scale with relatively minimal
numerical error.
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