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Abstract

We analyze the discontinuous finite element errors associated with p-degree solutions for two-dimensional first-order
hyperbolic problems. We show that the error on each element can be split into a dominant and less dominant com-
ponent and that the leading part is O(#**!) and is spanned by two (p + 1)-degree Radau polynomials in the x and y
directions, respectively. We show that the p-degree discontinuous finite element solution is superconvergent at Radau
points obtained as a tensor product of the roots of (p + 1)-degree Radau polynomial. For a linear model problem, the p-
degree discontinuous Galerkin solution flux exhibits a strong O(4%*2) local superconvergence on average at the element
outflow boundary. We further establish an O(h**!) global superconvergence for the solution flux at the outflow
boundary of the domain. These results are used to construct simple, efficient and asymptotically correct a posteriori
finite element error estimates for multi-dimensional first-order hyperbolic problems in regions where solutions are
smooth.
© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The discontinuous Galerkin method (DGM) was first used for the neutron equation by Reed and Hill
[20]. Since then, DGM methods have been used to solve hyperbolic [4-7,11-13,16], parabolic [14,15], and
elliptic [2,3,23] partial differential equations. For a more complete list of citations on the DGM and its
applications consult [10].

The DGM has been used successfully to solve systems of hyperbolic systems of conservation laws. The
DGM method has several advantages over continuous methods, since it uses completely discontinuous
polynomial bases it can sharply capture discontinuities which are common for hyperbolic problems and
makes order variations and mesh refinement much easier in the presence of hanging nodes. The DGM has a
simple communication pattern that makes it useful for parallel computations.
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A posteriori error estimates have been an integral part of every adaptive method, thus for the DGM to be
used in an adaptive setting one needs to develop a posteriori error estimates that will be used to guide the
adaptive process by indicating regions where more or less resolution is needed, to assess the quality of the
solution and to stop the adaptive process. A variety of a posteriori error estimates for DG methods have
been developed by Bey and Oden [4], Siili [22] and Riviere and Wheeler [21] for linear problems. For
nonlinear problems consult [8,9,19].

Adjerid et al. [1] proved that smooth DGM solutions of one-dimensional hyperbolic problems using
p-degree polynomial approximations have an O(h”*?) superconvergence rate at the roots of Radau poly-
nomial of degree p+ 1. They used this result to construct asymptotically correct a posteriori error esti-
mates. They further established a strong O(h%*!) superconvergence at the downwind end of every element.
Krivodonova and Flaherty [18] proved a superconvergence result on average on the outflow edge of every
element of unstructured triangular meshes and constructed a posteriori error estimates that converge to the
true error under mesh refinement.

In this paper we extend the one-dimensional results of Adjerid et al. [1] to multi-dimensional hyperbolic
problems on rectangular meshes. We show how to select the finite element space such that the leading term
in the true local error is spanned by two (p + 1)-degree Radau polynomials in the x and y directions, re-
spectively. The p-degree discontinuous finite element solution exhibits an O(A#”*2) superconvergence at the
Radau points obtained as a tensor product of the roots of Radau polynomial of degree p + 1. For a linear
model problem we show that, locally, the solution flux is O(h**2) superconvergent on average on the
outflow element boundary. We further show that the solution flux converges at an O(h**!) rate on average
at the outflow boundary of the domain. We use these superconvergence results to construct asymptotically
correct a posteriori error estimates.

The paper is organized as follows, in Section 2 we present the error analysis and new superconvergence
results. In Section 3 we construct several a posteriori error estimates for linear and nonlinear problems. We
present computational results for several linear and nonlinear problems in Section 4. The computational
results suggest that the theory of Section 2 extends to more general situations such as nonlinear conser-
vation laws and solutions with discontinuities, except for the flux superconvergence which is under further
investigation. We conclude and discuss our results in Section 5.

2. Error analysis

We begin our error analysis by considering the linear first-order model problem
a-Vu=f(x,y), (x,y) € =10,1] x [0,1], (2.1a)
subject to the boundary conditions at the inflow boundaries
u(x,0) = go(x) and u(0,y) =g (). (2.1b)

Let 0Q = 0Q;, U 09, denote the boundary of Q and v be the outward unit normal to 0Q. The inflow
boundary is

0, = {(x,y) € 0QJa - v < 0} (2.2a)
and the outflow boundary is
0Qou = {(x,y) € 0Q|a - v > 0}. (2.2b)

We assume that a = [0, 2,]" is constant with o, > 0, i = 1,2. The functions f(x,y), go(x) and g(y) are
selected such that the exact solution u(x,y) € C*(Q).
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In order to obtain a weak discontinuous Galerkin formulation, we partition the domain Q intoN =n x n
square elements and start the integration with elements whose inflow boundary is on the domain inflow
boundaries. In order to perform an error analysis we consider the first element 4 = [0, 4]* where & = 1/n
and the space 7~, of polynomial functions such that

Po TV ,U Ty p >0, (2.3a)
where 2, is the space of polynomials of degree &
k m
P = {q|q = Z Zc;”xiy’"i}. (2.3b)
m=0 i=0

These spaces are suboptimal but they lead to a very simple a posteriori error estimator. For efficiency
reasons we consider the smallest spaces that satisfy (2.3a) and (2.3b)

P

k )4
Y, = {V|V = Z Zcfx"yk_" + Zcf“x’f’“‘}. (2.4)
i1

k=0 i=0

We note that tensor product elements satisfy (2.3a) and (2.3b).
The DGM [17] consists of determining U(x,y) € ¥*, on 4 such that

/ oc-vV(U’—U)do—l—//a-VUdedy://f(x,y)dedy, Ve, (2.5)
Tin 4 4

where I' = 'y, U Iy is the boundary of 4, with I'y, and Iy, respectively, denoting the inflow and outflow
boundaries of 4 as shown in Fig. 1. For the boundary data U~ on I';, we use either the exact boundary
condition or its interpolant

_ [ mgy if (x,y) €17y,
U (.X}y) - {ngl if (x,y) c F4, (26)

where nw is the p-degree polynomial that interpolates w at the roots of (p + 1)-degree right Radau poly-
nomial

Rpr(&) = Lt (&) —~ L,(8), —1<é<1 (27)
with L, being Legendre polynomial of degree p.
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Fig. 1. An element 4 with inflow (solid) and outflow (dashed) boundaries.
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Once we determine the solution on the first element 4 we proceed to the elements whose inflow
boundaries are either on the inflow boundary of Q or an outflow boundary of 4 and continue this process
until the solution is determined in the whole domain. On an element whose inflow boundary is not on the
boundary of Q, U~ is defined as

U™ () = lim U((x,p) +sv),  (x,9) € I'n. (2.8)
We will show that the discontinuous Galerkin local finite element error can be split into an O(h"*!)
component which is a linear combination of two right Radau polynomials of degree p+ 1 in the x and
y directions, respectively, and a higher-order component. Prior to this, we need to establish the DGM
orthogonality condition and prove two preliminary lemmas.

We begin by multiplying (2.1a) by V' € 77, integrating over the element 4 and using Green’s formula to
obtain

/rvaudaf//AwVVudxdy://Af(x,y)dedy. (2.9)

Applying Green’s formula to (2.5) leads to

/ oz-vUVda—f—/ a-vU Vdo— //az-VVdedy = //f(x,y)dedy. (2.10)
rou( Fin A4 A
Subtracting (2.10) from (2.9) leads to the DGM orthogonality condition

bk
/ a-ve*Vda+/ a-veVda—// a-VVedxdy =0, VVev,, (2.11)
I'in Tout 0 Jo

where
e=u—-U (2.12)

is the local finite element discretization error. Using the mapping of [O,h]2 onto the canonical element
[—1,1]* defined by x = h(1 4 ¢)/2 and y = A(1 +1)/2 and @(¢,n) = u(x(&),y(n)) we obtain the DGM or-
thogonality condition (2.11) on the canonical element

/ a~vé‘I7d6+/ oz-véVd&/i /inI}édéan, YWev, (2.13)
Iy Iout - -
In the remainder of this paper we will omit the " unless we feel it is needed for clarity.
Lemma 2.1. If O, € V' satisfies
/ oz~vaVdo'f//Acx~VVdeéd11:O7 Yev, k<p, (2.14)
Tout

then
0:=0, k<p. (2.15)

Proof. Using Green’s formula we write (2.14) as

—/ oz-vaVda—i—//oc-VQkafdn:O, YVev,. (2.16)
Ty A
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Adding (2.14) to (2.16) with V = O, we obtain
2 _ 2 _
f/ cx~vad0'+/ ozondeaf/|oz~v|de070, k<p. (2.17)
T'in Tout I

This leads to Or =0 on I'. Combining this with (2.16) for V =a - VQ; yields a- VO, =0 on 4 which
completes the proof. [J

In the following lemma we will write the interpolation error as a power series in 4.

Lemma 2.2. Let w € C*(0,h) and nw be a p-degree polynomial that interpolates w at Radau points on [0, ).
Then the interpolation error

W(a() — mn(x()) = D 05 (O, (.18)
where
- w(0)
Qp+1(é) = m(f —&)(E =& (E=¢,) = cpriRpri(©) (2.19)
and
0, (&) =Ry (Oripa(8), k>p+1, (2.20)

with r.(&) being a polynomial of degree k.
Proof. By the standard interpolation error there exists s(x) such that

_ Wt (s(x, k)
w(x) — nw(x) = S

where x; = h(1 + ¢&;)/2 and &, i =0,1,...,p, are the roots of right Radau polynomial R,,; in [—1,1]. On
[—1, 1] the interpolation error can be written as

(x—=x0)(x—x1) - (x—x,), xe€[0,A], (2.21)

P10+ (g
w(&) —mw(¢) = " 2p+1(15-f- if')7h)) (E=C)(E—¢&) - (E-¢&), Cel-11] (2.22)

The Maclaurin series of w1V (s(x(&),k)) with respect to 4 yields

WP (s(x(E), 1)) = WP (0) + 3 Hu(9), (2.230)
where
EypP ) (s(x
(&) = %d éh(k (&), h) i k>0 (2.23b)

is a polynomial of degree k.
Combining (2.22), (2.23a) and (2.23b) completes the proof. [

Now we are ready to state the main result of this section.
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Theorem 2.1. Let u and U be the solution of (2.1a), (2.1b) and (2.5), respectively. Then the local finite element
error can be written as

(& =Y Ko, (2.24)
k=p+1
where
Opi1 = ﬁlRpH(f) + ﬂszH(”l)- (2.25)

Furthermore, at the outflow boundary of the physical element A

/ a-veda = O(h7?). (2.26)
roul

Proof. Writing the Maclaurin series of the local error € with respect to % yields
e=> Ou(&nht. (2.27)
=0

Substituting the series (2.27) in the DGM orthogonality condition (2.13), using (2.18) and collecting terms
having the same powers of & we write

kioh"(/rma-vaVda—/AwVVQ;Aédn)

+ Z hk</ a-vQ,;Vda—i—/ a-vaVda—//a'VVdefdﬂ> =0, VWev, (2.28)
Tin Tout 4

k=p+1

Thus, for 0 <k < p we have
/ a-vaVda—//a-VVdefdnzo, Ve, (2.29)
Tout A

By Lemma 2.1, (2.29) leads to O, =0, k =0,1,...,p, and establishes (2.24).
On the other-hand, using Lemma 2.2, we write
1 oty
(0,0)(& = &)(E—¢1)--- (=&, on T,
- 20+l (p + 1)! oxpt! P
Qp+1(éa”l) = (li ) G’J’C“u (2.30)
T G 00— &)= (1=&) on I

A direct computation reveals that 0, can be split as

1 d&'u-U 3 _
s g | ~0ue, o

where Qp(é, n) € ¥, and

Qp+l =

- l a[)+l
O = 3y 1y et (O OE— GE=E) (€= )
1 oty

+ 2p+1(p_|_ 1)! 6yp+1 (070)(’7 - 50)(7/’ - él) te (7/ - ép)' (2.31b)
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Substituting (2.31a) and (2.31b) in the O(A**!) term of the series (2.28) leads to

/ oc-vQ;HVda—i—/ oz-vQP+1VdU—//a-VVQP+1d€dn
Iin Tout A

+/ “‘VQ,,VdU— //wVVdeédn =0, vVIev,. (2.32)
Tout A
Using (2.30) and (2.31b) we can show that
/ - vQ;HVdaJr/ a-vQ, Vdo— // a-VVQ, dédp =0, VYV eV, (2.33)
Fin Tout A4

Combining (2.32) and (2.33) with Lemma 2.1 leads to Qp = 0. Using (2.31a) and (2.31b) we establish (2.25).
Using (2.30) with Lemma 2.2 we can show that

/r a-vQ, Vde =0, VYV e? 4 k=p+1,...,2p. (2.34)
Using (2.34), the O(K"), p + 1 <k < 2p, term of (2.28) yields

/r oc~vaVda—//Aoz-VVde§di1:O, YV eV i (2.35)
Testing against ' = 1 we obtain

/ a-vQide =0, k=p+1,...,2p (2.36)
FOUI
which establishes (2.26). O

In the previous theorem we have extended the results of Adjerid et al. [1] to multi-dimensional problems
on square meshes. In particular, we have proved that the p-degree DG solution is O(#”*?) superconvergent
at Radau points (£, ¢)), i,/ =0,...,p and that the DG solution has an O(h**2) superconvergence on
average at the outflow boundary of 4.

We note that for an arbitrary nonzero constant vector a, (2.24)—(2.26) hold where the significant part of
the error is spanned by the p + 1-degree Radau polynomials

Rp-%—l(é) = p+l(‘£) - Sign(“l)LP(£>7 Rp+l(’7) = p+1(’7) - Sign(“Z)Lp(’/I)- (237)

2.1. Global error analysis

In the following theorem we will show a superconvergence result for the global discretization error if
p=1l

Theorem 2.2. Under the conditions of Theorem 2.1 the global finite element error e for p = 1 satisfies the
superconvergence result

/ a-ve(x,y)do = O(h7'). (2.38)
Qout
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Proof. Adding and subtracting u(x,y) to both terms on the left side of (2.5) we obtain

/r- a~vV(U_fu+ufU)dGJr//Aat-V(Ufquu)dedy://Af(x,y)dedy,

where 4 is an arbitrary element.
This can be written as

/ a-vV(e—e‘)da—//a-Vededy:O YVev,.
Tin A

Integrating by parts leads to

/ a-vVe’do—&—/ a-vVeda—//wVVedxdyzO vveys,.
Fin Tout 4

Testing against V = 1 yields

/a-ve*da—i—/ a-vedo = 0.
rin roul

Summing over all elements we obtain

/ oc~ve’da+/ o-vedo = 0.
Qin ch!

Combining (2.43) and Lemma 2.2 we establish (2.38). O
2.2. Nonlinear problems

We will describe similar results for problems of the form
a-Vut ) =f(x.y), (xy)eQ

with boundary conditions at the inflow boundary.

The DGM weak formulation consists of determining U(x,y) € ¥7, on 4 such that

wer,

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

/Fma.vV(U—U)daJr//A [a.VUV+¢(U)V]dxdy://Af(xjy)dedyv wev, (2.45)

In the following theorem we state superconvergence results and local error estimates for nonlinear prob-

lems.

Theorem 2.3. Let u and U be the solution of (2.44) and (2.45), respectively. If u is smooth, then the local error

estimates (2.24) and (2.25) hold.

Proof. The DGM orthogonality for (2.44) on an element A can be written as

/a~ve’Vdo+/ oz~veVdo/h/h[oz~VVe+(¢(u)qf)(U))V}dxdyO, YV e, (2.46)
Tin Tout 0 Jo
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On [—1,1] x [-1,1] the orthogonality condition (2.46) becomes
1 1
h
/r az-ve*Vda—i—/F o-veldo — /1 /1 [a-VVe—i—E(db(u) —oU))V|dédn=0, VVev,.

(2.47)

Assuming ¢ analytic and ¢” bounded and using Taylor series of ¢ about u we have

2
€ - ’
¢(u) = dp(U) = alu)e =5 ¢"(a), a(u) = ¢'(u). (2.48a)
The Maclaurin series of a(u) with respect to 4 yields

00 (k+1)ux ku
o) =2Y KO, O =y B TRyl e 2 2ash)

We note that in order to establish (2.48b) we used the chain rule with x(&) = A(1 + ¢)/2 and y() =
h(14+1n)/2.
Substituting (2.27), (2.48a) and (2.48b) in (2.47) and collecting terms having same powers of 4 lead to

/romoc.onVda—//Aoz~VVQodfdﬂ-l-ih"(/OUta.vaVda—//A o+ VYO, +Zk—1V]d§d17>

k=1 1

+ Z h"(/ cx-vQ;Vda—s—/ a-VQkaO'—// (o0 - VYO, +Zk—1V]d‘fd’7) =0, Vrev,
I Tout 4

k=p+1
(2.49a)
where
k
Zy = ZQQJH- (2.49b)
=0

Applying Lemma 2.2, the O(1) term yields Oy = 0. By induction we prove that O, =0,k =0,1,...,p. We
note that the term in (2.48a) involving €? is higher order and does not contribute to our leading terms.

Following the same lines of reasoning used to prove (2.25) we establish the same result for nonlinear
problems. [

3. A posteriori error estimation

The results of Theorem 2.1 and 2.2 suggest that the global finite element error on each element A can be
approximated as

e(x,y) =u— U= E(x,y) = biRys1(x) + baRp11 (). (3.1)
Substituting « in (2.5) by e + U leads to
//a~V(U+e)dedy://dexdy. (3.2)
A A

Approximating e by E yields the following discrete problem for the error

//Acx.V(U + E)R,(x)dxdy = //Aﬂepﬂ(x)dxdy, (3.32)
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[[#vws = [ [ 100 b

We note that the strong superconvergence (2.26) of p-degree, p > 0, finite element solution flux at the
outflow boundary of each element suggests that we should neglect the jump terms in the error problem
without compromising the accuracy of our error estimate. Since for p = 0 this strong superconvergence at
the outflow boundary is lost and (3.3a) and (3.3b) fails to have a unique solution, we solve the following
problem for the error estimate

/ a-v(U~+E —U—E)R da+//oz V(U + E)R ()dxdy:/ Ry (x) dxdy, (3.42)
T A
/ a-v(U +E- —U-E)R(y) d0+//oc V(U + E)R(y)dxdy = / JRi(y)dxdy. (3.4b)
T'in
For nonlinear problems of the form
uy + h(u), = f(x,) (3.5)
we find £ by solving the linearized problem
// V(U + E)Rp1(x)dxdy = / SRy1(x)dxdy, (3.6a)
[ W@V Bty = [ [ Rpa)asay. (3.6b)

We also use the solution of the linearized problem (3.6a) and (3.6b) as an initial guess for Newton iteration
when solving the nonlinear finite element problem for £

//A [h'(U—l—E),l]-V(U+E)Rp+1(x)dxdy://AjRpH(x)dxdy’ (3.7)

//A [h'(UJrE),l}-V(U+E)Rp+1(y)dxdy://AprH(y)dxdy. (3.7b)

An accepted efficiency measure of a posteriori error estimates is the effectivity index. In this paper we use
the local effectivity indices in the #* norm

||E||$2(A,-)

91' ==
||e||:f2(4,)

i=1,2,....N (3.8)

and the global effectivity index
o |E ||£/’2(Q)

He”yﬂ(g)

Ideally, effectivity indices should approach unity under mesh refinement.

4. Numerical examples

Example 1. We consider the linear hyperbolic problem

uy + 2u, = f(x,), (x,y) € [0, 1]2 (4.1a)
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subject to the boundary conditions
ux,0)=gx)  u(0,y)=g(). (4.1b)

We select f(x,), go and g; such that the exact solution is

u(x,y) = e, (4.1¢)

We perform several tests on this example to study the effect of boundary conditions on the quality of our
a posteriori error estimates and show the superconvergence points of the discontinuous Galerkin solution.

We start by solving (4.1a)—(4.1¢c) on a uniform mesh having 64 elements with p = 1,2, 3 with U~ being the
true boundary conditions. We repeat the previous experiment with U~ being the interpolant of true
boundary conditions at Radau points as defined in (2.6). We present the local effectivity indices in Figs. 2
and 3. The effectivity indices corresponding to the exact boundary conditions are farther from unity than
those corresponding to interpolated boundary conditions, especially on elements near the inflow bound-
aries. In both experiments the effectivity indices converge to one under p refinement.

We solve (4.1a)—(4.1c) using U~ defined in (2.6) on a 16-element uniform mesh with p ranging from 1 to 6
and show the zero-level curves of the true error on each element in Fig. 4. As predicted by the theory of
Section 2, these results indicate that the p-degree discontinuous Galerkin solution is superconvergent at
Radau points, shown by x’, on each element for p > 1.

Since there is no superconvergence for global errors when p = 0, the error estimation procedures (3.3a),
(3.3b), (3.6a), (3.6b), (3.7a) and (3.7b) do not apply. This is illustrated by solving (4.1a), (4.1b), (4.1¢), (3.4a)
and (3.4b) using approximate boundary conditions on a 100-element mesh with p = 0 and presenting the
local effectivity indices in Fig. 5. In this case we observe that the local effectivity indices get larger than unity
away from the inflow boundary elements.

As a final test, we solve (4.1a)—(4.1¢) on uniform meshes having 25, 100, 225, 400, 625 and 900 elements
with p = 1,2, 3,4 using the true boundary conditions. We present the true errors in Table 1 and the global
effectivity indices in Table 2. We repeat the previous experiment using approximate boundary conditions
(2.6) with all other parameters unchanged and present the errors and global effectivity indices in Tables 3
and 4, respectively. The computational results indicate that the error estimates obtained using the proce-
dure (3.3a) and (3.3b) converge to the true error under both 4 and p refinements. This is the first a posteriori
finite element error estimate that exhibits convergence under 4- and p-refinement for multi-dimensional
problems. Since the effect of the true versus approximate boundary conditions on the effectivity indices is
negligible, we shall use the approximate boundary conditions in the remainder of this section.

Example 2. We solve (4.1a)—(4.1c) on the quadrilateral domain Q = ABCD where 4 = (0,0), B = (1,0.1),
C=(1,1)and D= (1,1.1), on a 16-element mesh for p = 1-4 and show the zero levels of the contour plot
of the error on each element in Fig. 6. The computational results suggest that the DG solution is super-
convergent at the Radau points on more general meshes.

To show the convergence of our a posteriori error estimates under mesh refinement, we solve the previous
problem on meshes having 25, 100, 225, 400, 625, 900 elements and p = 1-4. We present the effectivity
indices in Table 5 which indicate that the error estimates converge to the true errors under both # and p
refinements for quadrilateral meshes.

Example 3. We consider the following problem with a contact discontinuity

u,+2u, =0, (x,y) €0, 1]2 (4.2a)
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Fig. 2. Local effectivity indices for Example 1 on a 64-element uniform mesh and p = 1,2,3 (top to bottom) with true boundary
conditions.
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Fig. 3. Local effectivity indices for Example 1 on a 64-clement uniform mesh and p = 1,2,3 (top to bottom) with approximate

boundary conditions.
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Local Effectivity Index using p = 0 with interpolated boundary conditions
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Fig. 5. Local effectivity indices for Example 1 on a 100-element uniform mesh for p = 0 with approximate boundary conditions.

Table 1
le]| 25 for Example 1 on uniform meshes having 25, 100, 225, 400, 625, 900 elements and p = 1-4 with true boundary conditions
25 1.8684e-2 3.5066e—4 4.8726e-6 5.3577e-08
100 4.7156e-3 4.3948e-5 3.0338e-7 1.6526e—09
225 2.1027¢e-3 1.3035¢-5 5.9883e-8 2.1708e—10
400 1.1847¢-3 5.5019¢-6 1.8943e-8 5.1475e-11
625 7.5894¢e—4 2.8179¢-6 7.7583e-9 1.6860e—11
900 5.2738¢e—4 1.6311e-6 3.7413e-9 6.7745e-12
Table 2

Effectivity indices for Example 1 on uniform meshes having 25, 100, 225, 400, 625, 900 elements and p = 1-4 with true boundary
conditions

N p=1 p=2 p=3 p=4

25 0.8760 0.9188 0.9240 0.9236
100 0.9388 0.9597 0.9641 0.9659
225 0.9594 0.9732 0.9764 0.9781
400 0.9696 0.9800 0.9825 0.9839
625 0.9757 0.9840 0.9861 0.9872

900 0.9798 0.9867 0.9885 0.9894
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Table 3
llell ¢, for Example 1 on uniform meshes having 25, 100, 225, 400, 625, 900 elements and p = 1-4 with approximate boundary
conditions

N p= 1 p= 2 p= 3 p= 4

25 1.8793e-2 3.5112e—-4 4.8676e—6 5.3588e-08
100 4.7299¢-3 4.3971e-5 3.0306e-7 1.6514e-09
225 2.1069¢-3 1.3039e-5 5.9836e-8 2.1693e-10
400 1.1865e-3 5.5031e-6 1.8931e-8 5.1436e-11
625 7.5987e—-4 2.8184e—-6 7.7542e-9 1.6849¢-11
900 5.2793e-4 1.6313e-6 3.7396e-9 6.7701e—-12

Table 4

Effectivity indices for Example 1 on uniform meshes having 25, 100, 225, 400, 625, 900 elements and p = 1-4 with approximate
boundary conditions

N p=1 p=2 p=3 p=4

25 0.8845 0.9211 0.9285 0.9257
100 0.9423 0.9610 0.9664 0.9676
225 0.9616 0.9741 0.9782 0.9795
400 0.9712 0.9807 0.9838 0.9851
625 0.9770 0.9846 0.9872 0.9883
900 0.9808 0.9871 0.9894 0.9903

subject to the boundary conditions

u(x,0) =e >, 0<x<l1, (4.2b)

u(0,y) =¢"+025 0<y<l (4.2c)
The exact solution is

—2x+y i
u(w):{e Y4025 if x <y/2,

et if x> y/2. (4.2d)

The true solution has a contact discontinuity along y = 2x. Therefore, the smoothness assumption of
Theorem 2.1 is violated and as a result we expect the a posteriori error estimate to perform poorly near the
discontinuity.

We solve (4.2a)—(4.2d) on meshes having 32 x 32 and 200 x 200 elements with p = 1,2 and present the
local effectivity indices in Fig. 7. These computational results indicate that the local effectivity indices on
elements away from the discontinuity converge to unity under mesh refinement. Our error estimates per-
form poorly on elements near the discontinuity. Since we are not using limiting to suppress spurious os-
cillations near the discontinuity, the region around the discontinuity where the error is underestimated gets
wider as p increases.

Example 4. We consider the inviscid Burger’s equation

uy e = f(x,y) () € [-1,1] (4.32)
subject to the boundary conditions
u(x,0) = go(x), and u(y,0)=gi(x). (4.3b)
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Fig. 6. Zero-level curves of the contour plot of the DG discretization error for Example 2 on a 16-element uniform mesh and p = 1-4
(upper left to lower right) with approximate boundary conditions. Radau points are shown with an x’.

Table 5

Global effectivity indices for Example 2 on uniform meshes having 25, 100, 225, 400, 625, 900 elements and p = 1-4
N p= 1 p= 2 p= 3 p= 4
25 0.9416 0.9770 0.9901 0.9940
100 0.9707 0.9885 0.9951 0.9974
225 0.9804 0.9924 0.9968 0.9983
400 0.9853 0.9943 0.9976 0.9988
625 0.9882 0.9954 0.9981 0.9990
900 0.9902 0.9962 0.9984 0.9992

We select f, gy and g; such that the exact solution is

u(x,y) = /1 +x2+ 572 (4.3¢)

We solve (4.3a)—(4.3¢c) on meshes having 35, 140, 315, 560, 875, 1260, 1715 rectangular elements with an
element aspect ratio Ax/Ay = 5/7 and p = 1-4, where Ax and Ay denote the length and width, respectively,
of an element 4. We compute a posteriori error estimates by solving the linear problem (3.6a) and (3.6b)
and show the local effectivity indices in Table 6. We apply Newton’s iteration to solve the nonlinear
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Fig. 7. Local effectivity indices for Example 3 with (N, p) = (1024, 1), (40000, 1), (1024,2) and (40000, 2) (upper left to lower right).

Table 6

Effectivity indices Problem (4.3a)—(4.3c) using the linearized error estimator (3.6a) and (3.6b) on meshes having 35, 140, 315, 560, 875,
1260 and 1715 elements and p = 1-4

N p=1 p=2 p=3 p=4

35 0.996059 1.003180 0.985678 1.287716
140 0.999087 0.998213 1.008134 1.003167
315 0.999579 0.999240 1.008920 1.008087
560 0.999761 0.999572 1.009565 1.008689
875 0.999847 0.999726 1.009887 1.008989
1260 0.999894 0.999810 1.010074 1.009149
1715 0.999922 0.999860 1.010191 1.009245

problem (3.7a) and (3.7b) using the linear error estimate (3.6a) and (3.6b) as an initial guess and present the
effectivity indices in Table 7. While effectivity indices for both estimators are within 2% from unity, the error
estimates obtained by solving the linear problem (3.6a) and (3.6b) are more efficient. For the remaining
computational examples we will present numerical results for the linear error estimator only.
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Table 7
Effectivity indices for problem (4.3a)—(4.3c) using the nonlinear error estimator (3.7a) and (3.7b) on meshes having 35, 140, 315, 560,
875, 1260, 1715 elements and p = 1-4

N p= 1 p= 2 p= 3 p= 4

35 0.997489 1.004721 0.988137 1.280450
140 0.999433 0.998730 1.008672 1.003551
315 0.999733 0.999472 1.009163 1.008251
560 0.999848 0.999704 1.009703 1.008782
875 0.999902 0.999811 1.009975 1.009048
1260 0.999932 0.999869 1.010135 1.009190
1715 0.999950 0.999903 1.010236 1.009275

Table 8

Effectivity indices for homogeneous Burger’s equation (4.3a) with initial condition (4.4) on [—1, 1] x [0, 0.4] using the linearized error
estimate (3.6a) and (3.6b) on meshes having 35, 140, 315, 560, 875, 1260, 1680 elements and p = 1-4

N p=1 p=2 p=3 p=4

35 0.9095 1.0698 0.7355 0.4947
140 1.0215 0.9184 0.7413 0.7246
315 0.9954 0.9443 0.9370 0.7349
560 1.0010 0.9851 0.9129 0.9487
875 1.0020 0.9832 0.9636 0.9269
1260 1.0025 0.9933 0.9680 0.9759
1680 0.9993 0.9866 0.9670 0.9770

Next we consider the homogeneous inviscid Burger’s equation (4.3a) with f(x,y) =0,
go(x,0) = 1 4 sin(nx) /2 (4.4)

and select g;(0,y) such that the true solution is periodic and forms a shock discontinuity at the point
((2/m) — 1,(2/n)) which propagates along y = x + 1. First, we solve this problem on [—1, 1] x [0,0.4] with a
smooth solution on meshes having 35, 140, 315, 560, 875, 1260, 1715 elements with an element aspect ratio
Ax/Ay =25/7 and p = 1-4. We compute an error estimate by solving (3.6a) and (3.6b) and present ef-
fectivity indices in Table 8. This example shows that the effectivity indices converge to one only under 4
refinement which is due to the steepening of the wave as the shock forms.

We conclude by solving the previous problem on [—1,1] x [0,1.999] on meshes having N = 1260 and
14000 elements with an element aspect ratio Ax/Ay = 7/5 and p = 1,2. We plot the local effectivity indices
in Fig. 8. These computational results indicate that the theoretical results of Theorem 2.1 are valid for
nonlinear problems in regions where the solution is smooth, i.e., the local effectivity indices converge to
unity under mesh refinement in regions where the solution is smooth. The regions in the lower right corner
of the domain with underestimated errors correspond to regions of relatively small discretization errors
and, thus, should not affect the quality of the global effectivity index.

5. Conclusion

We showed that the discontinuous Galerkin finite element error can be split into an O(#**!) leading
component and a higher-order component. We further showed that the leading term is spanned by two
(p + 1)-degree Radau polynomials in the x and y directions, respectively. We used this result to construct an
a posteriori estimate of the multi-dimensional discontinuous Galerkin finite element error for hyperbolic
problems on rectangular meshes. The error estimation procedure is simple, can be computed in several
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Fig. 8. Local effectivity indices for the homogeneous Burger’s equation (4.3a) with initial condition (4.4) on [—1, 1] x [0,1.999] using
meshes having (N, p) = (1260, 1), (14000, 1), (1260,2) and (14000, 2) (upper left to lower right).

norms and does not require any communication across neighboring elements. The later property makes this
estimation procedure useful for parallel computations. The a posteriori error estimates developed in this
paper readily extend to three-dimensional hexahedral elements. For a linear model problem we were able to
show that the flux is strongly superconvergent on average on the outflow boundaries. This indicates that the
error in the DGMs propagates at a higher order. Superconvergence at the outflow boundaries of elements
for nonlinear conservation laws and problems of the form (2.44) is currently under investigation. We plan
to extend these results to locally refined meshes with hanging nodes and unstructured tetrahedral meshes
for hyperbolic systems. Finally, we note that our error estimate does not apply near discontinuities.
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