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Abstract

We analyze the discontinuous finite element errors associated with p-degree solutions for two-dimensional first-order
hyperbolic problems. We show that the error on each element can be split into a dominant and less dominant com-

ponent and that the leading part is Oðhpþ1Þ and is spanned by two (p þ 1)-degree Radau polynomials in the x and y
directions, respectively. We show that the p-degree discontinuous finite element solution is superconvergent at Radau
points obtained as a tensor product of the roots of (p þ 1)-degree Radau polynomial. For a linear model problem, the p-
degree discontinuous Galerkin solution flux exhibits a strong Oðh2pþ2Þ local superconvergence on average at the element
outflow boundary. We further establish an Oðh2pþ1Þ global superconvergence for the solution flux at the outflow
boundary of the domain. These results are used to construct simple, efficient and asymptotically correct a posteriori

finite element error estimates for multi-dimensional first-order hyperbolic problems in regions where solutions are

smooth.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The discontinuous Galerkin method (DGM) was first used for the neutron equation by Reed and Hill

[20]. Since then, DGM methods have been used to solve hyperbolic [4–7,11–13,16], parabolic [14,15], and

elliptic [2,3,23] partial differential equations. For a more complete list of citations on the DGM and its

applications consult [10].

The DGM has been used successfully to solve systems of hyperbolic systems of conservation laws. The

DGM method has several advantages over continuous methods, since it uses completely discontinuous
polynomial bases it can sharply capture discontinuities which are common for hyperbolic problems and

makes order variations and mesh refinement much easier in the presence of hanging nodes. The DGM has a

simple communication pattern that makes it useful for parallel computations.
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A posteriori error estimates have been an integral part of every adaptive method, thus for the DGM to be
used in an adaptive setting one needs to develop a posteriori error estimates that will be used to guide the

adaptive process by indicating regions where more or less resolution is needed, to assess the quality of the

solution and to stop the adaptive process. A variety of a posteriori error estimates for DG methods have

been developed by Bey and Oden [4], S€uuli [22] and Rivi�eere and Wheeler [21] for linear problems. For
nonlinear problems consult [8,9,19].

Adjerid et al. [1] proved that smooth DGM solutions of one-dimensional hyperbolic problems using

p-degree polynomial approximations have an Oðhpþ2Þ superconvergence rate at the roots of Radau poly-
nomial of degree p þ 1. They used this result to construct asymptotically correct a posteriori error esti-
mates. They further established a strong Oðh2pþ1Þ superconvergence at the downwind end of every element.
Krivodonova and Flaherty [18] proved a superconvergence result on average on the outflow edge of every

element of unstructured triangular meshes and constructed a posteriori error estimates that converge to the

true error under mesh refinement.

In this paper we extend the one-dimensional results of Adjerid et al. [1] to multi-dimensional hyperbolic

problems on rectangular meshes. We show how to select the finite element space such that the leading term

in the true local error is spanned by two (p þ 1)-degree Radau polynomials in the x and y directions, re-
spectively. The p-degree discontinuous finite element solution exhibits an Oðhpþ2Þ superconvergence at the
Radau points obtained as a tensor product of the roots of Radau polynomial of degree p þ 1. For a linear
model problem we show that, locally, the solution flux is Oðh2pþ2Þ superconvergent on average on the
outflow element boundary. We further show that the solution flux converges at an Oðh2pþ1Þ rate on average
at the outflow boundary of the domain. We use these superconvergence results to construct asymptotically

correct a posteriori error estimates.

The paper is organized as follows, in Section 2 we present the error analysis and new superconvergence

results. In Section 3 we construct several a posteriori error estimates for linear and nonlinear problems. We

present computational results for several linear and nonlinear problems in Section 4. The computational
results suggest that the theory of Section 2 extends to more general situations such as nonlinear conser-

vation laws and solutions with discontinuities, except for the flux superconvergence which is under further

investigation. We conclude and discuss our results in Section 5.

2. Error analysis

We begin our error analysis by considering the linear first-order model problem

a � ru ¼ f ðx; yÞ; ðx; yÞ 2 X ¼ ½0; 1	 
 ½0; 1	; ð2:1aÞ

subject to the boundary conditions at the inflow boundaries

uðx; 0Þ ¼ g0ðxÞ and uð0; yÞ ¼ g1ðyÞ: ð2:1bÞ

Let oX ¼ oXin [ oXout denote the boundary of X and m be the outward unit normal to oX. The inflow
boundary is

oXin ¼ fðx; yÞ 2 oXja � m < 0g ð2:2aÞ
and the outflow boundary is

oXout ¼ fðx; yÞ 2 oXja � m > 0g: ð2:2bÞ
We assume that a ¼ ½a1; a2	T is constant with ai > 0, i ¼ 1; 2. The functions f ðx; yÞ, g0ðxÞ and g1ðyÞ are
selected such that the exact solution uðx; yÞ 2 C1ðXÞ.
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In order to obtain a weak discontinuous Galerkin formulation, we partition the domain X into N ¼ n
 n
square elements and start the integration with elements whose inflow boundary is on the domain inflow

boundaries. In order to perform an error analysis we consider the first element D ¼ ½0; h	2 where h ¼ 1=n
and the space Vp of polynomial functions such that

Ppþ1 � Vp [ fxpþ1; ypþ1g; pP 0; ð2:3aÞ
where Pk is the space of polynomials of degree k

Pk ¼ qjq
(

¼
Xk
m¼0

Xm
i¼0

cmi x
iym�i

)
: ð2:3bÞ

These spaces are suboptimal but they lead to a very simple a posteriori error estimator. For efficiency

reasons we consider the smallest spaces that satisfy (2.3a) and (2.3b)

Vp ¼ V jV
(

¼
Xp
k¼0

Xk
i¼0

cki x
iyk�i þ

Xp
i¼1

cpþ1i xiypþ1�i
)
: ð2:4Þ

We note that tensor product elements satisfy (2.3a) and (2.3b).

The DGM [17] consists of determining Uðx; yÞ 2 Vp on D such thatZ
Cin

a � mV ðU� � UÞdr þ
Z Z

D
a � rUV dxdy ¼

Z Z
D
f ðx; yÞV dxdy; 8V 2 Vp; ð2:5Þ

where C ¼ Cin [ Cout is the boundary of D, with Cin and Cout, respectively, denoting the inflow and outflow
boundaries of D as shown in Fig. 1. For the boundary data U� on Cin we use either the exact boundary
condition or its interpolant

U�ðx; yÞ ¼ pg0 if ðx; yÞ 2 C1;
pg1 if ðx; yÞ 2 C4;

�
ð2:6Þ

where pw is the p-degree polynomial that interpolates w at the roots of (p þ 1)-degree right Radau poly-
nomial

Rpþ1ðnÞ ¼ Lpþ1ðnÞ � LpðnÞ; �16 n6 1 ð2:7Þ
with Lp being Legendre polynomial of degree p.

Fig. 1. An element D with inflow (solid) and outflow (dashed) boundaries.

S. Adjerid, T.C. Massey / Comput. Methods Appl. Mech. Engrg. 191 (2002) 5877–5897 5879



Once we determine the solution on the first element D we proceed to the elements whose inflow
boundaries are either on the inflow boundary of X or an outflow boundary of D and continue this process
until the solution is determined in the whole domain. On an element whose inflow boundary is not on the

boundary of X, U� is defined as

U�ðx; yÞ ¼ lim
s!0þ

Uððx; yÞ þ smÞ; ðx; yÞ 2 Cin: ð2:8Þ

We will show that the discontinuous Galerkin local finite element error can be split into an Oðhpþ1Þ
component which is a linear combination of two right Radau polynomials of degree p þ 1 in the x and
y directions, respectively, and a higher-order component. Prior to this, we need to establish the DGM
orthogonality condition and prove two preliminary lemmas.

We begin by multiplying (2.1a) by V 2 Vp, integrating over the element D and using Green�s formula to
obtainZ

C
a � mVudr �

Z Z
D

a � rVudxdy ¼
Z Z

D
f ðx; yÞV dxdy: ð2:9Þ

Applying Green�s formula to (2.5) leads toZ
Cout

a � mUV dr þ
Z

Cin

a � mU�V dr �
Z Z

D
a � rVU dxdy ¼

Z Z
D
f ðx; yÞV dxdy: ð2:10Þ

Subtracting (2.10) from (2.9) leads to the DGM orthogonality conditionZ
Cin

a � m��V dr þ
Z

Cout

a � m�V dr �
Z h

0

Z h

0

a � rV �dxdy ¼ 0; 8V 2 Vp; ð2:11Þ

where

� ¼ u� U ð2:12Þ
is the local finite element discretization error. Using the mapping of ½0; h	2 onto the canonical element
½�1; 1	2 defined by x ¼ hð1þ nÞ=2 and y ¼ hð1þ gÞ=2 and ûuðn; gÞ ¼ uðxðnÞ; yðgÞÞ we obtain the DGM or-

thogonality condition (2.11) on the canonical elementZ
ĈCin

a � m�̂��V̂V dr̂r þ
Z

ĈCout

a � m�̂�V̂V dr̂r �
Z 1

�1

Z 1

�1
a � rV̂V �̂�dndg ¼ 0; 8V̂V 2 V̂Vp: ð2:13Þ

In the remainder of this paper we will omit the ^ unless we feel it is needed for clarity.

Lemma 2.1. If Qk 2 Vk satisfiesZ
Cout

a � mQkV dr �
Z Z

D
a � rVQk dndg ¼ 0; 8V 2 Vp; k6 p; ð2:14Þ

then

Qk ¼ 0; k6 p: ð2:15Þ

Proof. Using Green�s formula we write (2.14) as

�
Z

Cin

a � mQkV dr þ
Z Z

D
a � rQkV dndg ¼ 0; 8V 2 Vp: ð2:16Þ
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Adding (2.14) to (2.16) with V ¼ Qk we obtain

�
Z

Cin

a � mQ2k dr þ
Z

Cout

a � mQ2k dr ¼
Z

C
ja � mjQ2k dr ¼ 0; k6 p: ð2:17Þ

This leads to Qk ¼ 0 on C. Combining this with (2.16) for V ¼ a � rQk yields a � rQk ¼ 0 on D which
completes the proof. �

In the following lemma we will write the interpolation error as a power series in h.

Lemma 2.2. Let w 2 C1ð0; hÞ and pw be a p-degree polynomial that interpolates w at Radau points on ½0; h	.
Then the interpolation error

wðxðnÞÞ � pwðxðnÞÞ ¼
X1
k¼pþ1

Q�
k ðnÞhk; ð2:18Þ

where

Q�
pþ1ðnÞ ¼

wðpþ1Þð0Þ
2pþ1ðp þ 1Þ! ðn � n0Þðn � n1Þ � � � ðn � npÞ ¼ cpþ1Rpþ1ðnÞ ð2:19Þ

and

Q�
k ðnÞ ¼ Rpþ1ðnÞrk�p�1ðnÞ; k > p þ 1; ð2:20Þ

with rkðnÞ being a polynomial of degree k.

Proof. By the standard interpolation error there exists sðxÞ such that

wðxÞ � pwðxÞ ¼ wðpþ1Þðsðx; hÞÞ
ðp þ 1Þ! ðx� x0Þðx� x1Þ � � � ðx� xpÞ; x 2 ½0; h	; ð2:21Þ

where xi ¼ hð1þ niÞ=2 and ni, i ¼ 0; 1; . . . ; p, are the roots of right Radau polynomial Rpþ1 in ½�1; 1	. On
½�1; 1	 the interpolation error can be written as

wðnÞ � pwðnÞ ¼ hpþ1wðpþ1ÞðsðxðnÞ; hÞÞ
2pþ1ðp þ 1Þ! ðn � n0Þðn � n1Þ � � � ðn � npÞ; n 2 ½�1; 1	: ð2:22Þ

The Maclaurin series of wðpþ1ÞðsðxðnÞ; hÞÞ with respect to h yields

wðpþ1ÞðsðxðnÞ; hÞÞ ¼ wðpþ1Þð0Þ þ
X1
k¼1

hkqkðnÞ; ð2:23aÞ

where

qkðnÞ ¼
1

k!
dkwðpþ1ÞðsðxðnÞ; hÞÞ

dhk

����
h¼0

; k > 0 ð2:23bÞ

is a polynomial of degree k.
Combining (2.22), (2.23a) and (2.23b) completes the proof. �

Now we are ready to state the main result of this section.
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Theorem 2.1. Let u and U be the solution of (2.1a), (2.1b) and (2.5), respectively. Then the local finite element
error can be written as

�ðn; gÞ ¼
X1
k¼pþ1

hkQkðn; gÞ; ð2:24Þ

where

Qpþ1 ¼ b1Rpþ1ðnÞ þ b2Rpþ1ðgÞ: ð2:25Þ
Furthermore, at the outflow boundary of the physical element DZ

Cout

a � m�dr ¼ Oðh2pþ2Þ: ð2:26Þ

Proof. Writing the Maclaurin series of the local error � with respect to h yields

� ¼
X1
k¼0

Qkðn; gÞhk: ð2:27Þ

Substituting the series (2.27) in the DGM orthogonality condition (2.13), using (2.18) and collecting terms

having the same powers of h we write

Xp
k¼0

hk
Z

Cout

a � mQkV dr
�

�
Z Z

D
a � rVQk dndg

�

þ
X1
k¼pþ1

hk
Z

Cin

a � mQ�
k V dr

�
þ
Z

Cout

a � mQkV dr �
Z Z

D
a � rVQk dndg

�
¼ 0; 8V 2 Vp: ð2:28Þ

Thus, for 06 k6 p we haveZ
Cout

a � mQkV dr �
Z Z

D
a � rVQk dndg ¼ 0; 8V 2 Vp: ð2:29Þ

By Lemma 2.1, (2.29) leads to Qk ¼ 0, k ¼ 0; 1; . . . ; p, and establishes (2.24).
On the other-hand, using Lemma 2.2, we write

Q�
pþ1ðn; gÞ ¼

1

2pþ1ðp þ 1Þ!
opþ1u
oxpþ1

ð0; 0Þðn � n0Þðn � n1Þ � � � ðn � npÞ on C1;

1

2pþ1ðp þ 1Þ!
opþ1u
oypþ1

ð0; 0Þðg � n0Þðg � n1Þ � � � ðg � npÞ on C4:

8>><
>>: ð2:30Þ

A direct computation reveals that Qpþ1 can be split as

Qpþ1 ¼
1

ðp þ 1Þ!
dpþ1ðu� UÞ
dhpþ1

ðn; gÞ
����
h¼0

¼ �QQpþ1 þ ~QQp; ð2:31aÞ

where ~QQpðn; gÞ 2 Vp and

�QQpþ1 ¼
1

2pþ1ðp þ 1Þ!
opþ1u
oxpþ1

ð0; 0Þðn � n0Þðn � n1Þ � � � ðn � npÞ

þ 1

2pþ1ðp þ 1Þ!
opþ1u
oypþ1

ð0; 0Þðg � n0Þðg � n1Þ � � � ðg � npÞ: ð2:31bÞ
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Substituting (2.31a) and (2.31b) in the Oðhpþ1Þ term of the series (2.28) leads toZ
Cin

a � mQ�
pþ1V dr þ

Z
Cout

a � m �QQpþ1V dr �
Z Z

D
a � rV �QQpþ1 dndg

þ
Z

Cout

a � m ~QQpV dr �
Z Z

D
a � rV ~QQp dndg ¼ 0; 8V 2 Vp: ð2:32Þ

Using (2.30) and (2.31b) we can show thatZ
Cin

a � mQ�
pþ1V dr þ

Z
Cout

a � m �QQpþ1V dr �
Z Z

D
a � rV �QQpþ1 dndg ¼ 0; 8V 2 Vp: ð2:33Þ

Combining (2.32) and (2.33) with Lemma 2.1 leads to ~QQp ¼ 0. Using (2.31a) and (2.31b) we establish (2.25).
Using (2.30) with Lemma 2.2 we can show thatZ

Cin

a � mQ�
k V dr ¼ 0; 8V 2 V2p�k; k ¼ p þ 1; . . . ; 2p: ð2:34Þ

Using (2.34), the OðhkÞ, p þ 16 k6 2p, term of (2.28) yieldsZ
Cout

a � mQkV dr �
Z Z

D
a � rVQk dndg ¼ 0; 8V 2 V2p�k: ð2:35Þ

Testing against V ¼ 1 we obtainZ
Cout

a � mQk dr ¼ 0; k ¼ p þ 1; . . . ; 2p ð2:36Þ

which establishes (2.26). �

In the previous theorem we have extended the results of Adjerid et al. [1] to multi-dimensional problems

on square meshes. In particular, we have proved that the p-degree DG solution is Oðhpþ2Þ superconvergent
at Radau points (ni; nj), i; j ¼ 0; . . . ; p and that the DG solution has an Oðh2pþ2Þ superconvergence on
average at the outflow boundary of D.
We note that for an arbitrary nonzero constant vector a, (2.24)–(2.26) hold where the significant part of

the error is spanned by the p þ 1-degree Radau polynomials

Rpþ1ðnÞ ¼ Lpþ1ðnÞ � signða1ÞLpðnÞ; Rpþ1ðgÞ ¼ Lpþ1ðgÞ � signða2ÞLpðgÞ: ð2:37Þ

2.1. Global error analysis

In the following theorem we will show a superconvergence result for the global discretization error if

pP 1.

Theorem 2.2. Under the conditions of Theorem 2.1 the global finite element error e for pP 1 satisfies the
superconvergence resultZ

Xout

a � meðx; yÞdr ¼ Oðh2pþ1Þ: ð2:38Þ
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Proof. Adding and subtracting uðx; yÞ to both terms on the left side of (2.5) we obtainZ
Cin

a � mV ðU� � uþ u� UÞdr þ
Z Z

D
a � rðU � uþ uÞV dxdy ¼

Z Z
D
f ðx; yÞV dxdy; 8V 2 Vp;

ð2:39Þ
where D is an arbitrary element.
This can be written asZ

Cin

a � mV ðe� e�Þdr �
Z Z

D
a � reV dxdy ¼ 0 8V 2 Vp: ð2:40Þ

Integrating by parts leads toZ
Cin

a � mVe� dr þ
Z

Cout

a � mVedr �
Z Z

D
a � rVedxdy ¼ 0 8V 2 Vp: ð2:41Þ

Testing against V ¼ 1 yieldsZ
Cin

a � me� dr þ
Z

Cout

a � medr ¼ 0: ð2:42Þ

Summing over all elements we obtainZ
Xin

a � me� dr þ
Z

Xout

a � medr ¼ 0: ð2:43Þ

Combining (2.43) and Lemma 2.2 we establish (2.38). �

2.2. Nonlinear problems

We will describe similar results for problems of the form

a � ruþ /ðuÞ ¼ f ðx; yÞ; ðx; yÞ 2 X ð2:44Þ

with boundary conditions at the inflow boundary.

The DGM weak formulation consists of determining Uðx; yÞ 2 Vp on D such thatZ
Cin

a � mV ðU� � UÞdr þ
Z Z

D
½a � rUV þ /ðUÞV 	dxdy ¼

Z Z
D
f ðx; yÞV dxdy; 8V 2 Vp: ð2:45Þ

In the following theorem we state superconvergence results and local error estimates for nonlinear prob-

lems.

Theorem 2.3. Let u and U be the solution of (2.44) and (2.45), respectively. If u is smooth, then the local error
estimates (2.24) and (2.25) hold.

Proof. The DGM orthogonality for (2.44) on an element D can be written as

Z
Cin

a � m��V dr þ
Z

Cout

a � m�V dr �
Z h

0

Z h

0

½a � rV �þ ð/ðuÞ � /ðUÞÞV 	dxdy ¼ 0; 8V 2 Vp: ð2:46Þ
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On ½�1; 1	 
 ½�1; 1	 the orthogonality condition (2.46) becomesZ
Cin

a � m��V dr þ
Z

Cout

a � m�V dr �
Z 1

�1

Z 1

�1
a � rV �



þ h
2
ð/ðuÞ � /ðUÞÞV

�
dndg ¼ 0; 8V 2 Vp:

ð2:47Þ
Assuming / analytic and /00 bounded and using Taylor series of / about u we have

/ðuÞ � /ðUÞ ¼ aðuÞ�� �2

2
/00ð�uuÞ; aðuÞ ¼ /0ðuÞ: ð2:48aÞ

The Maclaurin series of aðuÞ with respect to h yields

aðuÞ ¼ 2
X1
k¼0

hkQkðn; gÞ; Qkðn; gÞ ¼
1

2

/ðkþ1ÞðuðxðnÞ; yðgÞÞÞ
k!

dku
dhk

ðxðnÞ; yðgÞÞjh¼0 2 Pk: ð2:48bÞ

We note that in order to establish (2.48b) we used the chain rule with xðnÞ ¼ hð1þ nÞ=2 and yðgÞ ¼
hð1þ gÞ=2.
Substituting (2.27), (2.48a) and (2.48b) in (2.47) and collecting terms having same powers of h lead toZ

Cout

a � mQ0V dr �
Z Z

D
a � rVQ0 dndg þ

Xp
k¼1

hk
Z

Cout

a � mQkV dr
�

�
Z Z

D
½a � rVQk þ Zk�1V 	dndg

�

þ
X1
k¼pþ1

hk
Z

Cin

a � mQ�
k V dr

�
þ
Z

Cout

a � mQkV dr �
Z Z

D
½a � rVQk þ Zk�1V 	dndg

�
¼ 0; 8V 2 Vp;

ð2:49aÞ

where

Zk ¼
Xk
l¼0

QlQk�l: ð2:49bÞ

Applying Lemma 2.2, the Oð1Þ term yields Q0 ¼ 0. By induction we prove that Qk ¼ 0, k ¼ 0; 1; . . . ; p. We
note that the term in (2.48a) involving �2 is higher order and does not contribute to our leading terms.
Following the same lines of reasoning used to prove (2.25) we establish the same result for nonlinear

problems. �

3. A posteriori error estimation

The results of Theorem 2.1 and 2.2 suggest that the global finite element error on each element D can be
approximated as

eðx; yÞ ¼ u� U � Eðx; yÞ ¼ b1Rpþ1ðxÞ þ b2Rpþ1ðyÞ: ð3:1Þ
Substituting u in (2.5) by eþ U leads toZ Z

D
a � rðU þ eÞW dxdy ¼

Z Z
D
fW dxdy: ð3:2Þ

Approximating e by E yields the following discrete problem for the errorZ Z
D

a � rðU þ EÞRpþ1ðxÞdxdy ¼
Z Z

D
fRpþ1ðxÞdxdy; ð3:3aÞ
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Z Z
D

a � rðU þ EÞRpþ1ðyÞdxdy ¼
Z Z

D
fRpþ1ðyÞdxdy: ð3:3bÞ

We note that the strong superconvergence (2.26) of p-degree, p > 0, finite element solution flux at the
outflow boundary of each element suggests that we should neglect the jump terms in the error problem

without compromising the accuracy of our error estimate. Since for p ¼ 0 this strong superconvergence at
the outflow boundary is lost and (3.3a) and (3.3b) fails to have a unique solution, we solve the following

problem for the error estimateZ
Cin

a � mðU� þ E� � U � EÞR1ðxÞdr þ
Z Z

D
a � rðU þ EÞR1ðxÞdxdy ¼

Z Z
D
fR1ðxÞdxdy; ð3:4aÞ

Z
Cin

a � mðU� þ E� � U � EÞR1ðyÞdr þ
Z Z

D
a � rðU þ EÞR1ðyÞdxdy ¼

Z Z
D
fR1ðyÞdxdy: ð3:4bÞ

For nonlinear problems of the form

uy þ hðuÞx ¼ f ðx; yÞ ð3:5Þ
we find E by solving the linearized problemZ Z

D
½h0ðUÞ; 1	 � rðU þ EÞRpþ1ðxÞdxdy ¼

Z Z
D
fRpþ1ðxÞdxdy; ð3:6aÞ

Z Z
D
½h0ðUÞ; 1	 � rðU þ EÞRpþ1ðyÞdxdy ¼

Z Z
D
fRpþ1ðyÞdxdy: ð3:6bÞ

We also use the solution of the linearized problem (3.6a) and (3.6b) as an initial guess for Newton iteration

when solving the nonlinear finite element problem for EZ Z
D
½h0ðU þ EÞ; 1	 � rðU þ EÞRpþ1ðxÞdxdy ¼

Z Z
D
fRpþ1ðxÞdxdy; ð3:7aÞ

Z Z
D
½h0ðU þ EÞ; 1	 � rðU þ EÞRpþ1ðyÞdxdy ¼

Z Z
D
fRpþ1ðyÞdxdy: ð3:7bÞ

An accepted efficiency measure of a posteriori error estimates is the effectivity index. In this paper we use

the local effectivity indices in the L2 norm

hi ¼
kEkL2ðDiÞ

kekL2ðDiÞ
; i ¼ 1; 2; . . . ;N ð3:8Þ

and the global effectivity index

h ¼
kEkL2ðXÞ

kekL2ðXÞ
: ð3:9Þ

Ideally, effectivity indices should approach unity under mesh refinement.

4. Numerical examples

Example 1. We consider the linear hyperbolic problem

ux þ 2uy ¼ f ðx; yÞ; ðx; yÞ 2 ½0; 1	2 ð4:1aÞ
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subject to the boundary conditions

uðx; 0Þ ¼ g0ðxÞ uð0; yÞ ¼ g1ðyÞ: ð4:1bÞ

We select f ðx; yÞ, g0 and g1 such that the exact solution is

uðx; yÞ ¼ exþy : ð4:1cÞ

We perform several tests on this example to study the effect of boundary conditions on the quality of our

a posteriori error estimates and show the superconvergence points of the discontinuous Galerkin solution.

We start by solving (4.1a)–(4.1c) on a uniform mesh having 64 elements with p ¼ 1; 2; 3 with U� being the
true boundary conditions. We repeat the previous experiment with U� being the interpolant of true

boundary conditions at Radau points as defined in (2.6). We present the local effectivity indices in Figs. 2

and 3. The effectivity indices corresponding to the exact boundary conditions are farther from unity than

those corresponding to interpolated boundary conditions, especially on elements near the inflow bound-

aries. In both experiments the effectivity indices converge to one under p refinement.
We solve (4.1a)–(4.1c) using U� defined in (2.6) on a 16-element uniform mesh with p ranging from 1 to 6

and show the zero-level curves of the true error on each element in Fig. 4. As predicted by the theory of

Section 2, these results indicate that the p-degree discontinuous Galerkin solution is superconvergent at
Radau points, shown by �x�, on each element for pP 1.

Since there is no superconvergence for global errors when p ¼ 0, the error estimation procedures (3.3a),
(3.3b), (3.6a), (3.6b), (3.7a) and (3.7b) do not apply. This is illustrated by solving (4.1a), (4.1b), (4.1c), (3.4a)

and (3.4b) using approximate boundary conditions on a 100-element mesh with p ¼ 0 and presenting the
local effectivity indices in Fig. 5. In this case we observe that the local effectivity indices get larger than unity

away from the inflow boundary elements.

As a final test, we solve (4.1a)–(4.1c) on uniform meshes having 25, 100, 225, 400, 625 and 900 elements

with p ¼ 1; 2; 3; 4 using the true boundary conditions. We present the true errors in Table 1 and the global
effectivity indices in Table 2. We repeat the previous experiment using approximate boundary conditions

(2.6) with all other parameters unchanged and present the errors and global effectivity indices in Tables 3

and 4, respectively. The computational results indicate that the error estimates obtained using the proce-

dure (3.3a) and (3.3b) converge to the true error under both h and p refinements. This is the first a posteriori
finite element error estimate that exhibits convergence under h- and p-refinement for multi-dimensional
problems. Since the effect of the true versus approximate boundary conditions on the effectivity indices is

negligible, we shall use the approximate boundary conditions in the remainder of this section.

Example 2. We solve (4.1a)–(4.1c) on the quadrilateral domain X ¼ ABCD where A ¼ ð0; 0Þ, B ¼ ð1; 0:1Þ,
C ¼ ð1; 1Þ and D ¼ ð1; 1:1Þ, on a 16-element mesh for p ¼ 1–4 and show the zero levels of the contour plot
of the error on each element in Fig. 6. The computational results suggest that the DG solution is super-

convergent at the Radau points on more general meshes.

To show the convergence of our a posteriori error estimates under mesh refinement, we solve the previous

problem on meshes having 25, 100, 225, 400, 625, 900 elements and p ¼ 1–4. We present the effectivity
indices in Table 5 which indicate that the error estimates converge to the true errors under both h and p
refinements for quadrilateral meshes.

Example 3. We consider the following problem with a contact discontinuity

ux þ 2uy ¼ 0; ðx; yÞ 2 ½0; 1	2 ð4:2aÞ
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Fig. 2. Local effectivity indices for Example 1 on a 64-element uniform mesh and p ¼ 1; 2; 3 (top to bottom) with true boundary
conditions.
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Fig. 3. Local effectivity indices for Example 1 on a 64-element uniform mesh and p ¼ 1; 2; 3 (top to bottom) with approximate
boundary conditions.
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Fig. 4. Zero-level curves of the contour plot of the DG error for Example 1 on a 16-element uniform mesh and p ¼ 1–6 (upper left to
lower right) with approximate boundary conditions. Radau points are shown with an �x�.
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Fig. 5. Local effectivity indices for Example 1 on a 100-element uniform mesh for p ¼ 0 with approximate boundary conditions.

Table 1

kekL2ðXÞ for Example 1 on uniform meshes having 25, 100, 225, 400, 625, 900 elements and p ¼ 1–4 with true boundary conditions
N p ¼ 1 p ¼ 2 p ¼ 3 p ¼ 4
25 1.8684e)2 3.5066e)4 4.8726e)6 5.3577e)08
100 4.7156e)3 4.3948e)5 3.0338e)7 1.6526e)09
225 2.1027e)3 1.3035e)5 5.9883e)8 2.1708e)10
400 1.1847e)3 5.5019e)6 1.8943e)8 5.1475e)11
625 7.5894e)4 2.8179e)6 7.7583e)9 1.6860e)11
900 5.2738e)4 1.6311e)6 3.7413e)9 6.7745e)12

Table 2

Effectivity indices for Example 1 on uniform meshes having 25, 100, 225, 400, 625, 900 elements and p ¼ 1–4 with true boundary
conditions

N p ¼ 1 p ¼ 2 p ¼ 3 p ¼ 4
25 0.8760 0.9188 0.9240 0.9236

100 0.9388 0.9597 0.9641 0.9659

225 0.9594 0.9732 0.9764 0.9781

400 0.9696 0.9800 0.9825 0.9839

625 0.9757 0.9840 0.9861 0.9872

900 0.9798 0.9867 0.9885 0.9894
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subject to the boundary conditions

uðx; 0Þ ¼ e�2x; 06 x6 1; ð4:2bÞ

uð0; yÞ ¼ ey þ 0:25; 0 < y6 1: ð4:2cÞ
The exact solution is

uðx; yÞ ¼ e�2xþy þ 0:25 if x < y=2;
e�2xþy if xP y=2:

�
ð4:2dÞ

The true solution has a contact discontinuity along y ¼ 2x. Therefore, the smoothness assumption of
Theorem 2.1 is violated and as a result we expect the a posteriori error estimate to perform poorly near the

discontinuity.

We solve (4.2a)–(4.2d) on meshes having 32
 32 and 200
 200 elements with p ¼ 1; 2 and present the
local effectivity indices in Fig. 7. These computational results indicate that the local effectivity indices on

elements away from the discontinuity converge to unity under mesh refinement. Our error estimates per-

form poorly on elements near the discontinuity. Since we are not using limiting to suppress spurious os-
cillations near the discontinuity, the region around the discontinuity where the error is underestimated gets

wider as p increases.

Example 4. We consider the inviscid Burger�s equation

uy þ uux ¼ f ðx; yÞ ðx; yÞ 2 ½�1; 1	2 ð4:3aÞ
subject to the boundary conditions

uðx; 0Þ ¼ g0ðxÞ; and uðy; 0Þ ¼ g1ðxÞ: ð4:3bÞ

Table 3

kekL2ðXÞ for Example 1 on uniform meshes having 25, 100, 225, 400, 625, 900 elements and p ¼ 1–4 with approximate boundary
conditions

N p ¼ 1 p ¼ 2 p ¼ 3 p ¼ 4
25 1.8793e)2 3.5112e)4 4.8676e)6 5.3588e)08
100 4.7299e)3 4.3971e)5 3.0306e)7 1.6514e)09
225 2.1069e)3 1.3039e)5 5.9836e)8 2.1693e)10
400 1.1865e)3 5.5031e)6 1.8931e)8 5.1436e)11
625 7.5987e)4 2.8184e)6 7.7542e)9 1.6849e)11
900 5.2793e)4 1.6313e)6 3.7396e)9 6.7701e)12

Table 4

Effectivity indices for Example 1 on uniform meshes having 25, 100, 225, 400, 625, 900 elements and p ¼ 1–4 with approximate
boundary conditions

N p ¼ 1 p ¼ 2 p ¼ 3 p ¼ 4
25 0.8845 0.9211 0.9285 0.9257

100 0.9423 0.9610 0.9664 0.9676

225 0.9616 0.9741 0.9782 0.9795

400 0.9712 0.9807 0.9838 0.9851

625 0.9770 0.9846 0.9872 0.9883

900 0.9808 0.9871 0.9894 0.9903

5892 S. Adjerid, T.C. Massey / Comput. Methods Appl. Mech. Engrg. 191 (2002) 5877–5897



We select f , g0 and g1 such that the exact solution is

uðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 þ 5y2

p
: ð4:3cÞ

We solve (4.3a)–(4.3c) on meshes having 35, 140, 315, 560, 875, 1260, 1715 rectangular elements with an

element aspect ratio Dx=Dy ¼ 5=7 and p ¼ 1–4, where Dx and Dy denote the length and width, respectively,
of an element D. We compute a posteriori error estimates by solving the linear problem (3.6a) and (3.6b)

and show the local effectivity indices in Table 6. We apply Newton�s iteration to solve the nonlinear

Fig. 6. Zero-level curves of the contour plot of the DG discretization error for Example 2 on a 16-element uniform mesh and p ¼ 1–4
(upper left to lower right) with approximate boundary conditions. Radau points are shown with an �x�.

Table 5

Global effectivity indices for Example 2 on uniform meshes having 25, 100, 225, 400, 625, 900 elements and p ¼ 1–4
N p ¼ 1 p ¼ 2 p ¼ 3 p ¼ 4
25 0.9416 0.9770 0.9901 0.9940

100 0.9707 0.9885 0.9951 0.9974

225 0.9804 0.9924 0.9968 0.9983

400 0.9853 0.9943 0.9976 0.9988

625 0.9882 0.9954 0.9981 0.9990

900 0.9902 0.9962 0.9984 0.9992
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problem (3.7a) and (3.7b) using the linear error estimate (3.6a) and (3.6b) as an initial guess and present the
effectivity indices in Table 7. While effectivity indices for both estimators are within 2% from unity, the error

estimates obtained by solving the linear problem (3.6a) and (3.6b) are more efficient. For the remaining

computational examples we will present numerical results for the linear error estimator only.

Fig. 7. Local effectivity indices for Example 3 with ðN ; pÞ ¼ ð1024; 1Þ, ð40000; 1Þ, ð1024; 2Þ and ð40000; 2Þ (upper left to lower right).

Table 6

Effectivity indices Problem (4.3a)–(4.3c) using the linearized error estimator (3.6a) and (3.6b) on meshes having 35, 140, 315, 560, 875,

1260 and 1715 elements and p ¼ 1–4
N p ¼ 1 p ¼ 2 p ¼ 3 p ¼ 4
35 0.996059 1.003180 0.985678 1.287716

140 0.999087 0.998213 1.008134 1.003167

315 0.999579 0.999240 1.008920 1.008087

560 0.999761 0.999572 1.009565 1.008689

875 0.999847 0.999726 1.009887 1.008989

1260 0.999894 0.999810 1.010074 1.009149

1715 0.999922 0.999860 1.010191 1.009245
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Next we consider the homogeneous inviscid Burger�s equation (4.3a) with f ðx; yÞ ¼ 0,
g0ðx; 0Þ ¼ 1þ sinðpxÞ=2 ð4:4Þ

and select g1ð0; yÞ such that the true solution is periodic and forms a shock discontinuity at the point
(ð2=pÞ � 1; ð2=pÞ) which propagates along y ¼ xþ 1. First, we solve this problem on ½�1; 1	 
 ½0; 0:4	 with a
smooth solution on meshes having 35, 140, 315, 560, 875, 1260, 1715 elements with an element aspect ratio

Dx=Dy ¼ 25=7 and p ¼ 1–4. We compute an error estimate by solving (3.6a) and (3.6b) and present ef-
fectivity indices in Table 8. This example shows that the effectivity indices converge to one only under h
refinement which is due to the steepening of the wave as the shock forms.

We conclude by solving the previous problem on ½�1; 1	 
 ½0; 1:999	 on meshes having N ¼ 1260 and
14 000 elements with an element aspect ratio Dx=Dy ¼ 7=5 and p ¼ 1; 2. We plot the local effectivity indices
in Fig. 8. These computational results indicate that the theoretical results of Theorem 2.1 are valid for

nonlinear problems in regions where the solution is smooth, i.e., the local effectivity indices converge to

unity under mesh refinement in regions where the solution is smooth. The regions in the lower right corner

of the domain with underestimated errors correspond to regions of relatively small discretization errors

and, thus, should not affect the quality of the global effectivity index.

5. Conclusion

We showed that the discontinuous Galerkin finite element error can be split into an Oðhpþ1Þ leading
component and a higher-order component. We further showed that the leading term is spanned by two

(p þ 1)-degree Radau polynomials in the x and y directions, respectively. We used this result to construct an
a posteriori estimate of the multi-dimensional discontinuous Galerkin finite element error for hyperbolic
problems on rectangular meshes. The error estimation procedure is simple, can be computed in several

Table 7

Effectivity indices for problem (4.3a)–(4.3c) using the nonlinear error estimator (3.7a) and (3.7b) on meshes having 35, 140, 315, 560,

875, 1260, 1715 elements and p ¼ 1–4
N p ¼ 1 p ¼ 2 p ¼ 3 p ¼ 4
35 0.997489 1.004721 0.988137 1.280450

140 0.999433 0.998730 1.008672 1.003551

315 0.999733 0.999472 1.009163 1.008251

560 0.999848 0.999704 1.009703 1.008782

875 0.999902 0.999811 1.009975 1.009048

1260 0.999932 0.999869 1.010135 1.009190

1715 0.999950 0.999903 1.010236 1.009275

Table 8

Effectivity indices for homogeneous Burger�s equation (4.3a) with initial condition (4.4) on ½�1; 1	 
 ½0; 0:4	 using the linearized error
estimate (3.6a) and (3.6b) on meshes having 35, 140, 315, 560, 875, 1260, 1680 elements and p ¼ 1–4
N p ¼ 1 p ¼ 2 p ¼ 3 p ¼ 4
35 0.9095 1.0698 0.7355 0.4947

140 1.0215 0.9184 0.7413 0.7246

315 0.9954 0.9443 0.9370 0.7349

560 1.0010 0.9851 0.9129 0.9487

875 1.0020 0.9832 0.9636 0.9269

1260 1.0025 0.9933 0.9680 0.9759

1680 0.9993 0.9866 0.9670 0.9770
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norms and does not require any communication across neighboring elements. The later property makes this

estimation procedure useful for parallel computations. The a posteriori error estimates developed in this

paper readily extend to three-dimensional hexahedral elements. For a linear model problem we were able to

show that the flux is strongly superconvergent on average on the outflow boundaries. This indicates that the

error in the DGMs propagates at a higher order. Superconvergence at the outflow boundaries of elements

for nonlinear conservation laws and problems of the form (2.44) is currently under investigation. We plan

to extend these results to locally refined meshes with hanging nodes and unstructured tetrahedral meshes
for hyperbolic systems. Finally, we note that our error estimate does not apply near discontinuities.
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Fig. 8. Local effectivity indices for the homogeneous Burger�s equation (4.3a) with initial condition (4.4) on ½�1; 1	 
 ½0; 1:999	 using
meshes having ðN ; pÞ ¼ ð1260; 1Þ, ð14000; 1Þ, ð1260; 2Þ and ð14000; 2Þ (upper left to lower right).
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