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routing; search and rescue; antisubmarine warfare
and surveillance; tactical planning; high-resolution
boundary conditions for even higher resolution coastal
models; inputs to ice, atmospheric, and bio-physical
models and shipboard environmental products; envi-
ronmental simulation and synthetic environments;
observing system simulations; ocean research; pollu-
tion and tracer tracking; and inputs to water quality
assessment.
[Sponsored by ONR and SPAWAR]
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Bimodal Directional Distribution of
the Second Kind: Resonant
Propagation of Wind-Generated
Ocean Waves
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Introduction: Over the last several decades, it
has been accepted that under steady forcing, wind-
generated waves travel in the direction of wind. Last
year, we presented two-dimensional (2D) spectral
analysis of 3D ocean wave topography at equilib-
rium stage." The results demonstrate unequivocally a
robust bimodal directionality in wave components
shorter than the dominant wavelength. The genera-
tion mechanism of the bimodality is clarified to be
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nonlinear wave-wave interaction. Continued investi-
gation reveals a second kind of bimodal directional
distribution produced by resonant propagation of
waves with the forcing wind field. In this situation,
the dominant waves in a young sea align in oblique
angles with the wind direction to maintain propaga-
tion resonance for a more efficient air-sea momen-
tum transfer. As a result, two symmetric wave sys-
tems straddle the wind vector. The results from these
analyses will revise our fundamental understanding
of the physics of wind-wave generation and the forc-
ing functions governing the dynamics of ocean waves.
The implications of these directional observations on
remote sensing (directional characteristics of ocean
surface roughness) and air-sea interaction (directional
properties of mass, momentum, and energy trans-
fers) are significant.

Airborne Observation and Analysis: Refer-
ence 1 reports spatial measurements of ocean waves
using an airborne topographic mapper (ATM, an air-
borne scanning lidar system). The 3D topography
provides an excellent directional resolution. Figure 8
shows images of the wave conditions at three differ-
ent fetches along a flight track in the Gulf of Mexico.
The waves are generated by a steady offshore wind
following a cold front passing through the region.
The top image (Fig. 8(a)) is in the near-shore region,
and the coastline is visible in the image. The orienta-
tion of the surface undulations is perpendicular to
the wind. The next two images (Figs. 8(b)-(c)) are far-
ther downwind. The crosshatched patterns suggest
that two wave systems of about equal intensity are
crossing each other at a large angle. It is quite obvi-
ous that these wave patterns do not fit the conven-
tional unimodal directional distribution function, which
has been assumed explicitly or implicitly in the de-
scription of surface roughness properties relating to
remote sensing and air-sea transfers.

Recent advances in global positioning, laser rang-
ing, and computer technologies provide the capabil-
ity to acquire high-resolution topography of ocean
surface waves for quantitative analysis of their spa-
tial and temporal evolutions. Figure 9(a) shows a se-
guence of surface wave topography over the 42-km
flight track, along which the three photographs shown
in Fig. 8 were taken. The corresponding directional
wavenumber spectra are shown on the right-hand
side of the figure (Fig. 9(b)). The dominant waves of
this sequence of spectra are obviously directionally
bimodal. At short fetches, the dominant wave direc-
tion is crosswind rather than along-wind. As fetch
increases, two distinct wave systems propagate ob-
liquely to the wind, forming a crosshatched pattern
(Fig. 9(a)). These are characteristics of resonant propa-
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FIGURE 8
Ocean surface waves produced by a steady offshore wind. The
fetch (distance from shore) increases from top to bottom.
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FIGURE 9 —
(a) 3D surface topography of ocean waves along a flight track at 6 different fetches (38.1, 31.5, 24.8, 18.2, 11.5, and 4.93 km 161

from top to bottom). The wind is blowing from right to left. (b) The corresponding 2D spectra calculated from the surface topogra-
phies shown in (a). The wind direction is at 6 = 0°.
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gation between winds and waves. Under the reso-
nant condition, waves propagate in step with the wind
field to receive continuous nourishment from the
wind. Because the phase velocity of young waves is
much slower than the wind speed, to maintain propa-
gation resonance, they travel at oblique angles from
the wind. Reference 2 provides details of the analy-
sis on the spatial and temporal evolution of wind-
generated waves.

Summary: It has been held as common knowl-
edge that wind-generated waves propagate in the
direction of the wind. This concept has been incor-
porated into unimodal directional distribution func-
tions in virtually all spectral wave models, as well as
in the wind input function in the equation governing
the dynamics of ocean surface waves. Recent field
measurements of 3D ocean surface topography, how-
ever, do not support the assumption. The analysis of
3D wave topography indicates that the directional
distribution of ocean surface waves is primarily bi-
modal. Two different kinds of directional bimodality
are confirmed. The first kind, bimodality, occurs at
the equilibrium stage and in wave components shorter
than the dominant wavelength. The physical mecha-
nism is nonlinear wave-wave interaction that distrib-
utes energy from near the spectral peak toward ob-
lique components, forming a resonant quartet. The
second kind, bimodality, occurs at the young stage
and on dominant waves. The generation mechanism
is resonant propagation between winds and waves.

[Sponsored by ONR.]
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A Video-Based Particle Image
Velocimetry (PIV) Technique for
Nearshore Flows

J.A. Puleo, K. Holland, and T.N. Kooney
Marine Geosciences Division

Introduction: Natural beaches undergo constant

change as they are forced by local physical processes
(such as waves and currents) and human-induced pro-
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cesses (such as nourishment or structure develop-
ment). In addition to scientific and societal interest,
beach or nearshore extreme conditions can also be
important for military operations relating to amphibi-
ous landings and mine burial. While no accurate model
exists to predict beach change, it is generally accepted
that nearshore (littoral) processes such as beach ero-
sion are largely forced by waves and current variabil-
ity. Of these two processes, the current field is most
difficult, given that flows in this region are typically
very complex and nonuniform in space and time.
The traditional approach involves in situ instrumen-
tation, but, due to cost and logistics difficulty in plac-
ing instruments in the dynamic nearshore, deploy-
ments tend to be extremely sparse. An alternate
method to standard instrumentation is needed to
densely and accurately record nearshore flow phe-
nomena.

Particle Image Velocimetry (PIV): Recently,
a video-based remote sensing technique was devel-
oped at the Naval Research Laboratory for quantify-
ing nearshore flow fields using particle image veloc-
imetry (PIV).! PIV is a nonintrusive technique to extract
nearly instantaneous flow fields by correlating sequen-
tial images of a passive, tracer-laden flow. Here, we
use foam patterns caused by breaking waves and bores
as they move across the nearshore region and the
subsequent motion of the foam by local currents.

Synthetic Example: Figure 10 shows two syn-
thetic sequential images separated in time by At. The
offset between Fig. 10(b) and Fig. 10(a) was manu-
ally introduced as 7 pixels to the right and 4 pixels
down. Up to 15% noise at each pixel location was
also introduced to both images. The overlain grid of
nodes (blue dots) is where velocity vectors are to be
evaluated. For a given grid node, a collection of pix-
els | is selected from the first image and repeatedly
compared using an error correlation function (very
similar to cross correlation) to search windows S of
the same size as | in the second image. The maxi-
mum correlation is then determined such that the
spatial offsets Ax and Ay and the time separation
yield the horizontal velocity components as u = &/
At and v = Ay/At. The magenta vectors in Fig. 10(b)
are those returned from the PIV routine and corre-
spond to the manual offsets introduced to the im-
ages. In the field, swash zone foam patterns are cap-
tured via video camera, digitized, and then geo-
rectified® to a real-world coordinate system before
PIV application.

Swash Zone Flows: Figure 11 shows two ex-
amples of the PIV technique applied to video data
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