IMPROVEMENT OF PARABOLIC NONLINEAR DISPERSIVE WAVE MODEL

By James M. Kaihatu'

ABSTRACT: Improvements to a previously published nonlinear parabolic wave model are developed and im-
plemented. A second-order correction to a free-surface boundary condition used to develop the original model
is formulated. The correction takes into account the complete second-order transformation between amplitudes
of the velocity potential and those of the free-surface elevation. Additionally, wide-angle propagation terms are
included in the model. It is shown that the model with the second-order correction retains the properties of
third-order Stokes theory quite well in deep water. Comparisons of model behavior to data reveal that both
nonlinearity and wide-angle propagation effects need to be included in the model for general wave transformation
problems in shallow water. Skewness predictions are considerably improved by using both the second-order
correction and by retaining a greater number of frequency components in the calculation. Asymmetry calculations
are aided by incorporation of frequency-squared weighting for distribution of the dissipation function. Further
improvement may entail a different form of the breaking model.

INTRODUCTION

For many nonlinear weakly dispersive wave transformation
problems in shallow water, the Boussinesq equations of Per-
egrine (1967) or variants thereof (Freilich and Guza 1984; Liu
et al. 1985; Herbers and Burton 1997) are used. The models
are robust simulators of shallow water wave evolution so long
as kh < 1, where k is a representative wave number and 4 a
characteristic water depth. Much work has been done on in-
creasing the dispersive range of weakly nonlinear models.
Most of these developments can generally be divided into two
classes: so-called ‘“‘extended” Boussinesq models and nonlin-
ear mild-slope equations [we are explicitly excluding nonlinear
models with third-order Stokes nonlinearity, e.g., Kirby and
Dalrymple (1983)]. The former class seeks to incorporate im-
proved dispersive behavior by reformulation of the Boussinesq
equations so that the linear dispersive properties mimic those
of fully dispersive linear theory. These developments (and
further enhancements) have been detailed extensively in sev-
eral publications [e.g., Witting (1984), Madsen et al. (1991),
Nwogu (1993), Schiffer et al. (1993), Schiffer and Madsen
(1995), Wei et al. (1995), and Madsen and Schiffer (1998)].

In contrast to the extended Boussinesq equations, the non-
linear mild-slope equation models are fully dispersive linear
models that incorporate second-order nonlinearity; they reduce
to the linear mild-slope equation (Berkhoff 1972) in the linear
limit. Bryant (1974) investigated the evolution of spatially pe-
riodic waves in time using equations with both second-order
nonlinearity and fully dispersive coefficients over a flat bot-
tom. The three-wave (triad) interaction terms are explicit due
to the frequency domain formulation. Frequency dispersion
effects served to detune the strength of the interaction, though
Bryant (1974) demonstrated that significant energy exchange
can still occur under conditions of near resonance. Agnon et
al. (1993) and later Eldeberky and Madsen (1999) detailed
deterministic 1D wave evolution models that contained full
dispersion and triad interactions. Kaihatu and Kirby (1995)
and Tang and Ouelette (1997) developed parabolic 2D exten-
sions of the model of Agnon et al. (1993). These parabolic
models, however, are limited to small aperture applications.
Agnon and Sheremet (1997) and Eldeberky and Madsen
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(1999) developed stochastic variants of these nonlinear mild-
slope equation models.

In the course of the model development, Eldeberky and
Madsen (1999) noted that the models of Agnon et al. (1993),
Kaihatu and Kirby (1995), and Agnon and Sheremet (1997)
were somewhat incomplete in their formulations, since they
used the first-order truncation of the dynamic free-surface
boundary condition to move between amplitudes of ¢ (in
terms of which the original problem was framed) and those of
the free-surface elevation m, the desired dependent variable.
Eldeberky and Madsen (1999) noted that the use of the first-
order dynamic free-surface boundary condition in this trans-
formation of variables led to underpredictions of energy trans-
fer at higher frequencies. They used the full second-order
free-surface boundary condition in this regard, but inverted the
expression by successive approximations so that the full sec-
ond-order model was expressed solely in terms of the ampli-
tudes of m. They then developed both deterministic and sto-
chastic models using this inverted expression.

In this study, we extend the models of Kaihatu and Kirby
(1995) by the addition of wide-angle parabolic approximation
terms and a second-order correction for the transformation
from & to m. The wide-angle parabolic approximation uses the
results of Kirby (1986) to construct a nonlinear parabolic
model with enhanced accuracy at wider angles of incidence to
the onshore-offshore (x) coordinate axis. The second-order &b—
m correction should ostensibly improve the simulation of wave
propagation at high frequencies. The full second-order dy-
namic free-surface boundary condition is used to develop this
second-order correction. We will investigate the effect of the
addition of these terms on both monochromatic and spectral
wave propagation over various bathymetries.

NONLINEAR MODEL OF KAIHATU AND KIRBY (1995)

The model analyzed here is the parabolic frequency-domain
model of Kaihatu and Kirby (1995). The reader is referred to
that publication for the full derivation. The model was derived
starting from the boundary value problem for the velocity po-
tential ¢ for water waves, expanded in Taylor series in € (=ka,
where k is wave number and a is a characteristic amplitude)
about the still water level to second-order (retaining quadratic
nonlinearity). The potential ¢ is a function of cross-shore co-
ordinate x, longshore coordinate y, vertical coordinate z, and
time . We assume that the velocity potential has the form

d(x, y. 2 1) = Y, f(Dba(x, y)e~ + CC ¢))

where &),, is complex; CC denotes complex conjugate; N = total
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number of frequency components: the subscript n = frequency
index, and

cosh k,(h + z)

S cosh k,h @
Using the method of Smith and Sprinks (1975) on the bound-
ary value problem and invoking resonant interaction theory
(Phillips 1980) to select the interacting frequencies of a triad
leads to a time-harmonic evolution equation for d;n with the
triad nonlinearity explicitly detailed. Assuming a propagating
wave form with a slowly varying amplitude

b, = =S A 3)

w,
where A, = complex amplitude: and o = radian wave fre-
quency. substituting this into the time-harmonic equation. and
employing the parabolic approximation (Radder 1979) yields

2ikCC,),A,, — 2kCCOk, — kA, + i(kCCLA, +~ [(CCL(A)],

N=n

=§ (z RAA, el mioa 4 o E SAFA, el emm ki ko
(4)
where R and S = complicated interaction coefficients [shown
in equations 26 and 27 of Kaihatu and Kirby (1995)]; the
subscripts x and v = differentiation with respect to that coor-
dinate: C and C, = phase and group speeds, respectively: and
k, = v-averaged wave number. The use of &, is a consequence
of the parabolic approximation: a phase redefinition is neces-
sary. This 1s the model developed by Kaihatu and Kirby (1995,
equation 35). The implicit Crank-Nicholson scheme (with it-
eration for the nonlinear terms) is used to solve (4). Imple-
mentation of the numerical scheme 1s similar to that detailed
by Liu et al. (1985). One significant concern with the parabolic
formulation (4) is the narrow aperture assumption used to
develop the model. This precludes accurate modeling of
obliquely incident waves.
For convenience we also write down the 1D version of (4)

L kCCy,. i
"2kec,, T 8kCCy),

n—1 N—=n N\
(2 RAA, e ¢ h imipa 4+ 9 Z SAFA, el mhm %)

where the wave numbers in the phase function revert to %,.
Eq. (5) is solved with a fourth-order Runge-Kutta technique
coupled with an error-checking variable stepsize algorithm.

Egs. (1) and (3) actually represent a transformation from
amplitudes of & to those of the free-surface m. This transfor-
mation is derived from

b +gmn=0 (6)

This is the linearized form of the dynamic free-surface bound-
ary condition at z = 0. Assuming time periodicity and the depth
dependence in (2) yields the coefficient —ig/w, that multiplies
the complex amplitude A, in (3). In a sense. the first-order part
of the amplitude of the free surface is being modeled with
second-order nonlinearity with (4).

IMPROVEMENTS TO MODEL

Second-Order Relationship between yy and &

In this section we develop the second-order relationship be-
tween & and m for use in the model of Kaihatu and Kirby
(1995). We begin from the second-order nonlinear dvnamic
free-surface boundary condition

1 S ,
gn + b, + 5 (V,db)" + 5 (b)) + md,=0@€); z=0 (7)
We then use the lowest-order relationship [(6)], and substitute
it into the fifth term in (7) to eliminate 7. This leads to

1 2
¥ (b)) (8)

1 1 L, 1 N
=——d —— V,d) — — (b)) +
" g 2g 2g

We then assume the following form for the amplitude of the
free surface:

m= > Belt @4+ CC ©)

n=1

Substituting (9), (1), and (3) into (7), enforcing resonant triad
interaction among frequency components, and incorporating
the phase redefinition inherent in the parabolic approximation
yields

sn—1 N—n \
. JAA, e i £ 00 JAFA et *‘7*‘7““)
(> 2 !

where

s 5 . kik,
I=w] + 0w, + . =g —— (1D

ww,

ﬂ 5 L kK,
J=w — 0w, T o, g —— (12)

W,

This is the second-order correction to the relation between
amplitudes of ¢ and those of v. Eq. (4) would remain the
primary evolution model. but the above equation would be
used whenever the free surface is needed. As with (5), the %,
revert to k, for 1D propagation.

Wide-Angle Parabolic Model

The parabolic approximation inherently limits the model ap-
plication to a small range of wave approach angles about the
offshore (x) coordinate. Several researchers have incorporated
wide-aperture corrections into parabolic models (Booij 1981:
Kirby 1986). Kirby (1986) investigated the scaling involved
in developing the higher-order parabolic approximation. He
determined that the appropriate dynamic balance between non-
linearity, bottom slope magnitude, and the modulation scale
for diffraction is entirely arbitrary. For his case, Kirby chose
the dynamic balance between the modulation length scale 9,
the nonlinearity €, and the bottom slope parameter p. to be
8 ~ & ~ w'"% He then noted that at O(3%) nonlinear terms
and bottom slope terms appear at the same order. Using this
choice of scales. he derived the wide-angle linear parabolic
model over a flat bottom, with bottom slope and nonlinear
terms simply added to the resulting equation. Employing the
same choice of scaling allows us to add the nonlinear triad
terms to the model of Kirby (1986) without currents. The re-
sulting model is

2U(kCC,),A,, — 2(kCC .k, — kDA, + i(kCC,),.A,

+
TN
MW

+

>[(CC)4 .

(kCC),..

[Z L 20k°CCy),

NIN

} [(CCQALL + T [CCIALL

N
RAA, P ka4 2 E SA;:(A”-JE'I(L"' 7k‘7knyd,:j]
=
(13)

N
4
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The correspondence to (4) is apparent. This model also utilizes
(10) as the higher-order correction.

PERMANENT FORM SOLUTIONS

In this section we investigate the ability of the models to
replicate properties of deep and shallow water periodic waves.
Different methods have been used in various studies to confirm
model behavior, particularly in deep water (Bryant 1974; Tang
and Ouelette 1997; Eldeberky and Madsen 1999). In this sec-
tion we examine asymptotic model behavior by developing
numerical permanent form solutions of the model equations,
following Kirby (1991). This is somewhat more convenient
than analytical means (Bryant 1974) because of the two-equa-
tion system implemented [(5) and (10)].

We formulate the permanent form solution by redefining the
time-harmonic velocity potential and free-surface elevation.
Thus we use

N

b(x, Y, 2, 0= Z z_i)gﬂ(z)&nei.rn(kmk)dx—w,x + CC (14)

n=1

N
NGy, 1) = D, bet"htheer 4 cC (15)

n=1

instead of (1) with (3), and (9), respectively. In this case %, is
the linear wave number for the base frequency w,, and k is
the distortion to the linear wave number due to nonlinear ef-
fects. This form of the phase function assumes that all har-
monics of the wave move at the same speed, and thus ampli-
tude dispersion is necessary.

Use of (14) and (15) in (5) and (10) requires the following
substitutions:

A, = &'nef[n(kl +k—k,) dx (16)

Bn - 5,.e”""“ +k)—k,] dx (17)

Substituting (16) and (17) into (5) and (10), respectively, and

assuming no change in energy flux (as would be the case for

a propagating permanent-form wave) we obtain the following

set of algebraic equations:

n—1 N-n
1 -~ -~
Raa,, + 2 Saa,.. | =

8(.0,,Cx,, <I=l a,a,-; ; a,a, 1) 0

(18)

n—1 N-n
- - 1 i -
b,=a, + — (2 Iaa,., + 2 2 Ja,a,,H) (19)
4g \45 =1

We wish to find a set of a, and a wave-number distortion k
that satisfies (18) for any specified wave height H, wave period
T, water depth A, and number of harmonics N. We need one
more equation. From the definition of wave height as being
the distance from crest to trough

[nk, + k) — kJla, +

N

N
H=2 > b=2

n=1.3.5... n=1,3.5...

n—1 N-—n
- 1 - - -~
la, + — E o+ E +
[a,. g (:=1 laa, , + 2 2 Jaa, ,)] 20)

Egs. (18) and (20) are solved via the Newton-Raphson method
to double precision. Eq. (19) is then used to convert a, to
b,. Finding the permanent-form solution without the second-
order effect in the ¢—m transformation would entail neglecting
the nonlinear summations in (20).

We first compare the phase speeds from the permanent-form
solutions (both with and without the second-order correction)
with those from the Stokes third-order theory. The Stokes
third-order theory is the lowest-order Stokes theory to include

the effects of nonlinear amplitude dispersion, and as such
serves as a fair test of the nonlinear dispersion characteristics
of the model. Bryant (1974) suggested that the solutions to
equations sirnilar to those detailed here match the Stokes third-
order theory in deep water for small €. To show the effect of
the size of €, we use several initial wave heights in the per-
manent-form solution. For each fixed wave height, we vary
the water depth and calculate the associated permanent-form
solution. We use 7= 5 s and N = 10, and vary the water depth
from A = 20 m to 2 = 9 m. We used wave heights of 0.5, 1.0,
2.0, and 3.0 m. These correspond to € = 0.04, 0.08, 0.16, and
0.24 at & = 20 m. The resulting phase-speed comparisons (plot-
ted as a function of kh, where the k is from linear dispersion)
are shown in Fig. 1. It is evident that, in general, all solutions
compare very well to the third-order Stokes theory from deep
to intermediate water, with the smaller wave-height solutions
(smaller €) comparing best. Additionally, it appears that the
second-order correction has little effect on the phase speed.

1.02¢

0.94 . . *
15 2 2.5 3 3.5

k. h
linear

FIG. 1. Comparison of Phase Speed from Corrected and Un-
corrected Permanent-Form Solutions to Third-Order Stokes
Theory (T=5 s and N = 10 with H and kh Varying; Solid = Per-
manent-Form Solution of Model with Second-Order Correction;
Dashed = Permanent-Form Solution of Model without Second-
Order Correction)

Eo N
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FIG. 2. Comparison of Free Surface Profiles from Corrected
and Uncorrected Permanent-Form Solutions to Third-Order
Stokes Theory: (a) h=20m; (b) h=9m(T=5s, H=3m,and N=
10; Solid = Third-Order Stokes Theory; Dashed = Permanent-
Form Solution of Model with Second-Order Correction; Dash-
Dot = Permanent-Form Solution of Model without Second-Order
Correction)
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We also compare the free-surface realizations from the per-
manent-form solutions to the third-order Stokes theory at & =
20 m and # = 9 m. This comparison is shown in Fig. 2. The
h = 20 m case reveals that the permanent-form solution with
the second-order correction matches both Stokes third-order
theory quite well, while the solution without the correction
does not. Both solutions diverge somewhat from the Stokes
theory with 2 = 9 m. This is to be expected, as the Stokes
theory becomes invalid with decreasing kh (shallower water
depth). It is clear that inclusion of the second-order correction
is essential for the proper free-surface solution.

We now perform a similar analysis to the shallow water
behavior of the permanent-form solution. We use the stream
function theory (Dean 1965) as our baseline for comparison,
as it is a numerical solution of the full boundary value water
wave problem. We specifically employ 15th-order stream func-
tion theory, as this should retain enough terms in the Fourier
series solution to suppress Gibbs’ oscillations. We first inves-
tigate the accuracy of the phase-speed calculation. For the per-

1.005
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0.995 : . . :
0.2 0.3 0.4 0.5 0.6 0.7

k. h
linear

FIG. 3. Comparison of Phase Speed from Corrected and Un-
corrected Permanent-Form Solutions to 15th-Order Stream
Function Theory (T=10s, H= 0.1 m, and N = 15 with varying
kh; Solid = Permanent-Form Solution of Model with Second-Or-
der Correction; Dashed = Permanent-Form Solution of Model
without Second-Order Correction)
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FIG. 4. Comparison of Permanent-Form Solutions to 15th-Or-
der Stream Function Theory: (a) h=10m; (b) h=1m(H=0.1m
and T = 10 s; Solid = 15th-Order Stream Function Theory;
Dashed = Permanent-Form Solution of Model with Second-Or-
der Correction; Dash-Dot = Permanent-Form Solution of Model
without Second-Order Correction)

manent-form solutions (with and without the second-order cor-
rection) we use 7 = 10 s, H = 0.1, and N = 15, and vary the
depth from # = 10 m to A = 1 m. This varies p* = 0.40 to
p?> = 0.04. The relevant nonlinear parameter in classical
weakly-dispersive shallow water wave theory is 3 (=a/h) rather
than €. The chosen wave conditions and range of water depths
lead to & = 0.005 at A = 10 m and & = 0.05 at # = 1 m. The
Ursell number U, = 8/u” thus ranges from 0.012 to 1.25, es-
sentially spanning the range from intermediate to shallow wa-
ter for weak nonlinearity. The resulting comparison of phase
speed from the permanent-form solutions to stream function
theory is shown in Fig. 3. The phase speeds from the perma-
nent-form solutions compare very well with those from stream
function theory. Additionally, the second-order correction has
little effect on the phase-speed calculation. Comparison of the
resulting free-surface profiles at # = 10 m and 2 = 1 m is
shown in Fig. 4. Agreement is excellent, with the second-order
correction again having little effect. This is in agreement with
Eldeberky and Madsen (1999), who suggested that the second-
order correction becomes less important as k2 — 0.

COMPARISON WITH LABORATORY DATA

In this section we conduct some comparisons to laboratory
data. This was also done by Kaihatu and Kirby (1995) but we
extend the range of testing to cases in greater relative depth.

Circular Shoal over Flat Bottom

Chawla (1995) conducted wave transformation experiments
in the directional wave basin of the Center for Applied Coastal
Research at the University of Delaware. The bathymetry con-
sisted of a flat bottom with a circular shoal. The experimental
layout with gauge transects is shown in Fig. 5. The constant
water depth away from the shoal is 2 = 0.45 m, and the depth
over the top of the shoal is 2 = 0.08 m. Both monochromatic
and irregular directional wave conditions were run in the tank;
we investigate the monochromatic case here. The experiment
was also described in Chawla et al. (1998).

We examine the case of a monochromatic wave with 7' = 1
s and H = 0.0233 m. A spatial resolution Ax = Ay = 0.06 m
was used; this is substantially finer than required for reliable
model results. We compare the nonlinear narrow-angle [(4)],
and nonlinear wide-angle [(13)] models to the data. We also
use a linear wide-angle model (Kirby 1986) to gauge the effect
of the inclusion of nonlinearity. For the nonlinear models we
use a permanent-form solution with the wave parameters
above. This wave condition has € = 0.049 and p*> = 3.58, a
deep water condition with very low nonlinearity. It was not

D C,B
15¢
=10
E T
5 GF E
D C' B
0
0 5 10 15
x (m)

FIG. 5. Layout of Experiment of Chawla (1995) (Letters Refer
to Gauge Transects; Waves Propagate from Left to Right)

116 / JOURNAL OF WATERWAY, PORT, COASTAL, AND OCEAN ENGINEERING / MARCH/APRIL 2001



clear initially what the proper value of N should be for best 3.5 y T T T
simulating this experiment. To investigate this, data from a

gauge located in the focal region of the experiment (the area 3t
of greatest wave height, near x = 7 m and y = 9 m) were
analyzed. This region is where the energy exchange, if present, 25}

would be greatest. The analysis (not shown) revealed that the
amplitudes of the second and third harmonics are one and two
orders of magnitude smaller, respectively, than that of the pri-
mary harmonic. Using N = 2 kept 92% of the variance at this
gauge. Subsequent tests with N = 3 revealed little difference.

Figs. 6 and 7 show the comparison of wave heights (nor-
malized by the incident wave height) from the uncorrected
nonlinear models and the linear model to data at four gauge
transects. Addition of the second-order correction had virtually
no effect, and so those results are not shown. In general, the
addition of nonlinearity improved the fit between data and
model. Amplitude dispersion effects are evident over the top (a)
of the shoal (transect A-A in Fig. 6); the linear model over-
predicts the wave height along that transect. The addition of
the wide-angle propagation correction does have a significant
effect, perhaps more so than nonlinearity. This is most evident
along transects B-B, C-C, and D-D (Figs. 6 and 7). Both the
linear and nonlinear wide-angle models capture the diffraction
fringes seen in the data, while the narrow-angle nonlinear
model does not appear to move energy sufficiently fast along
the longshore (y) axis. To better quantify the fit to data we
make use of the “index of agreement” (Wilmott 1981) for
each transect

H/Ho

H/Ho

3.5 y -

3

(b) y (m)

FIG. 7. Comparison of Models to Data of Chawla (1995): (a)
Gauge Transect C-C; (b) Gauge Transect D-D [Solid Line = Eq.
(4); Dashed Line = Eq. (13); Dash-Dot = Linear Wide-Angle Par-
abolic Model; Open Circles = Data of Chawla (1995)]

H/Ho

Z [y(j) — x()F

L=1- (21

J
> Uy = 7 + |x() = 5P
j=1
where J = total number of data points in each transect; x(j) =
data; y(j) = predicted values from the models; and x = data
averaged along each transect. The index I, varies from 0 (com-
plete disagreement) to 1 (complete agreement). The resulting
values of I, are shown in Table 1. Of the seven transects, the
nonlinear model with wide-angle terms [(13)] does best along
four (A-A, B-B, C-C, and E-E) and thus best overall. The
linear wide-angle model does best along one transect (G-G)
and second-best along two (C-C and E-E). The narrow-angle
nonlinear model [(4)] does best along transects D-D and F-F.

H/Ho

TABLE 1. Index of Agreement /, for Model Comparisons to
Data of Chawla (1995)

Transect Linear wide-angle model Eq. (4) Eq. (13)
(1) (2) (3) (4)

A-A 0.9700 0.9892 0.9948
B-B 0.8908 0.7816 0.9755

(b) y (m) c-C 0.8453 0.6891 0.9325
FIG. 6. Comparison of Models to Data of Chawla (1995): (a) EDII.:) ggg}g ggggg 8332
Gauge Transect A-A; (b) Gauge Transect B-B [Solid Line = Eq. F-F 0.9550 0.9614 0.9564
(4); Dashed Line = Eq. (1 3); Dash-Dot = Linear Wide-Angle Par- G-G 0.6469 0.6209 0.6259
abolic Model; Open Circles = Data of Chawla (1995)]
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The relatively poor agreement exhibited by the wide-angle
models along D-D may be due to the error exhibited in the
prediction of the diffraction pattern. Slight misplacement of
the diffraction patterns relative to those in the data may be
penalized heavily in the I, metric. On the other hand, the nar-
row-angle model exhibits significantly less oscillation, which
appears to yield better values of I, along this transect. Nev-
ertheless, the wide-angle models overall do qualitatively rep-
licate the diffraction lobes seen in the data along D-D, while
the narrow-angle model does not.

Random Wave Shoaling

Mase and Kirby (1993) performed an experiment in which
irregular waves were transformed over a sloping bottom. One
of the cases run used a Pierson-Moskowitz-type spectrum with
a peak frequency f, = 1 Hz in water depth of 0.47 m, leading
to a kh at the peak of almost two. This is a demanding test
for most nonlinear wave models; shallow water Boussinesq
models overshoal most of the frequency range. The offshore
root-mean-square wave height H,,, is 0.0454 m. The experi-
mental setup and gauge placement is shown in Fig. 8.

There is significant wave breaking in this experiment; the
highest waves break near the wave gauge at 2 = 0.175 m. To
simulate energy loss due to wave breaking in this experiment,
Kaihatu and Kirby (1995) augmented the 1D model [(5)] with
a dissipation term (Mase and Kirby 1993); the completed
model is

(KCC)r i
et o — = A, A=
2(kCC,), ¢ 8(kCC,),
n=1 N=n
. RAA,_ e f kit knsi—kydx 4 D SAFA,. eif(k,m'h'kn)d‘]
|3 raa S sata .
where «, = frequency-weighted dissipation distribution
2
a, = o, + <—L) Ay (23)
peak
a,0 = FR(X) (24)
N
S ek E 4.1

ay =[BX) — ) v (25

N
> Al
n=1
where f,.. = peak frequency; and B(x) = probabilistic function
of Thornton and Guza (1983). The free parameter F in (24)
serves as a weighting that determines the split between an f 2
weighted dissipation and a frequency-independent dissipation.
Kirby and Kaihatu (1997) and Chen et al. (1997) provide the-
oretical and experimental support for F = 0, which allows only
f2-weighted dissipation.
Kaihatu and Kirby (1995) demonstrated that the model with
dissipation [(22)] agreed very well with the data of Mase and
Kirby (1993). They used N = 300 for the calculations (up to

Wave Gauges

Wave Paddle
-
1 2 3 12
- 7/ ' T TS
“hiem 1:20
%
[ 10m =

FIG. 8. Layout of Experiment of Mase and Kirby (1992)

~3 Hz), retaining around 93% of the total variance in the
wavefield. Best results for the spectral comparisons were ob-
tained with F = 0.5. Later, Kaihatu and Kirby (1997) inves-
tigated comparisons between model and the data of Mase and
Kirby (1993) using higher-order moments (skewness, asym-
metry) as metrics. In a shoaling wavefield, skewness would be
expected to increase (as nonlinearity increases) and asymmetry
become more negative (as wave crests become pitched for-
ward). They noted that these higher-order moments were often
underpredicted, even though the spectra comparisons revealed
excellent agreement. They found that retaining more frequency
components (up to the Nyquist limit) increased the accuracy
of these predictions. Since skewness and asymmetry are mea-
sures that involve the surface shape, inclusion of higher-fre-
quency components tend to improve the details of the free
surface (flatter troughs, more peaked crests) even if little en-
ergy is present.

Eldeberky and Madsen (1999) demonstrated the effect of
the retained second-order terms in the ¢—mn transformation by
comparing their model with the Mase and Kirby (1993) data.
They showed model-data comparisons of wave spectra from
their stochastic model [augmented by the frequency-indepen-
dent dissipation mechanism of Eldeberky and Battjes (1996)]
to those from the model of Agnon and Sheremet (1997), with
improved results. Eldeberky and Madsen (1999) also showed
that skewness of the wave field was better predicted in the
nonbreaking region than that from the model of Agnon and
Sheremet (1997). However, predictions of asymmetry were
quite poor; they were in fact positive for most of the domain.
This lack of negative asymmetry is likely more a consequence
of the dissipation distribution used in their breaking model
than the exact form of the nonlinearity. Kaihatu and Kirby
(1997) showed that neglecting frequency weighting of the dis-
sipation (a choice equivalent to F = 1) leads to asymmetry
predictions that almost never become negative inside the do-
main, a clear indication that the waves are not attaining a
“pitched forward” shape characteristic of surf zone waves.

In this study, we investigate the effect of the second-order
transformation correction on the evolution of the spectra and
the higher-order moments (skewness, asymmetry) in the ex-
periment of Mase and Kirby (1993). We first run the model
[(22)], using N = 300. This was done both with and without
the second-order correction [(10)]. We use F = 0.5 for the
uncorrected model, and F = 0.5 and F = 0 for the corrected
model; this latter step is done to investigate the effect of the
full f2 weighting on the results. Fig. 9 shows comparisons at
a few locations in the domain; they are typical of the com-
parisons at the other gauges. It is clear that the correction has
almost no effect on the evolution of the spectral density for
frequencies <1.7 Hz, a limit that corresponds to k2 = 5.8 at
the wavemaker. In the frequency range beyond f = 1.7 Hz,
there is some (though little) improvement from the second-
order correction. Additionally, the use of F = 0 affects the
resulting spectra predictions only slightly.

Fig. 10 shows comparisons of skewness and asymmetry
from the models to the data (also truncated at 300 frequency
components). Here the effect of the second-order correction is
clear. The uncorrected model greatly underpredicts the skew-
ness in the unbroken region (2 > 0.175 m) but climbs upward
in the breaking region. The corrected model with F = 0.5 ex-
hibits the opposite trend: skewness is better resolved in the
nonbreaking region but drops off dramatically in accuracy in
the breaking region. However, this model appears to do best
overall for skewness. The corrected model with F = 0 has a
skewness prediction trend similar to that of F = 0.5 for the
nonbreaking region, with a greater falloff in accuracy in the
breaking region. Asymmetry is somewhat poorly predicted by
all models in the breaking zone, though improved over that of
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FIG. 10. Comparison of Skewness and (Negative) Asymmetry,
N = 300: (a) Skewness; (b) Negative Asymmetry [Open Circles =
Data of Mase and Kirby (1992); Solid Line = Eq. (22) with Sec-
ond-Order Correction, Eq. (10), and F = 0.5; Dashed Line = Eq.
(22) and F = 0.5; Dash-x = Eq. (22) with Second-Order Correc-
tion, Eq. (10) and F=0]

Eldeberky and Madsen (1999) in that negative values of asym-
metry do result. The corrected model with F = O fares best in
asymmetry prediction with the sole exception of the shallowest
gauge. Generally, the lack of better agreement in asymmetry
may be due to the form (rather than just the frequency distri-
bution) of the breaking model than the nonlinearity. Kirby and
Kaihatu (1997) showed that the steepness-triggered eddy vis-
cosity dissipation model included in the time-domain extended
Boussinesq model of Wei et al. (1995) predicted the skewness
and asymmetry values of the Mase and Kirby (1993) data set
very well, including the final gauge. This eddy viscosity for-
mulation is equivalent to F = 0, and thus difficulty at the final
gauge is not an indictment of this value of F. Incorporating a
frequency-domain version of this dissipation into the present
model may improve the asymmetry values relative to that pre-
dicted by a bulk energy dissipation model such as that used
here. We note that asymmetry is reliably modeled for depths
>h = 0.15 m.

To investigate the effect of higher values of N on the third-
moment statistics, we rerun the simulations using N = 500

skew.

60
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FIG. 11. Comparison of Skewness and (Negative) Asymmetry,
N = 500: (a) Skewness; (b) Negative Asymmetry [Open Circles =
Data of Mase and Kirby (1992); Solid Line = Eq. (22) with Sec-
ond-Order Correction, Eq. (10) and F = 0.5; Dashed Line = Eq.
(22) and F = 0.5; Dash-x = Eq. (22) with Second-Order Correc-
tion, Eq. (10) and F=0]

(maximum frequency of 5 Hz). Fig. 11 shows the skewness
and asymmetry results with N = 500 for both data and models.
Here again it is clear that the second-order correction does
improve the skewness. Fig. 11(a) shows the skewness reliably
modeled up to # = 0.15 m with the corrected model. Again,
as with N = 300, the corrected model with F = 0.5 fares best.
On the other hand, asymmetry [shown in Fig. 10(b)] is again
not helped by retention of the second-order correction, though
good agreement with data is evidenced up to 2 = 0.15 m and
negative asymmetries do result in the surf zone. Additionally,
the corrected model with F = O shows the best comparison,
again with the exception of the shallowest gauge. It is also
apparent that skewness and (negative) asymmetry values for
both model and data are increased relative to the N = 300 case.
Overall, it appears that the effect of the second-order correc-
tion is more evident in calculation of higher-order moments
(particularly skewness) than in comparisons of spectra except
for the highest frequencies. The inclusion of the second-order
correction is generally an improvement for third moment sta-
tistics for any given N, with further improvements evident as
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N increases. Using F = 0 generally aids the asymmetry cal-
culations.

CONCLUSIONS

In this study we develop two improvements to the nonlinear
parabolic mild-slope equation model of Kaihatu and Kirby
(1995), shown here in (4). The first is a second-order correc-
tion to a transformation used in the original model to move
between amplitudes of ¢ and those of n [(10)]. The lack of
consideration of this second-order correction was noted by
Eldeberky and Madsen (1999) as being potentially damaging
to accurate energy transfer at high frequencies. The second
improvement is the addition of wide-angle propagation terms
to the original model, using the formalism of Kirby (1986) to
develop the final wide-angle parabolic model [(13)].

Investigation of the model behavior at deep and shallow
water asymptotes was done by development and analysis of a
permanent-form solution to the model. The permanent-form
solution was developed from the evolution equations, resulting
in (18) and (20), with the nonlinear terms in (20) deactivated
to simulate neglect of the second-order correction [(10)]. The
phase speeds from the permanent-form solutions compare fa-
vorably with the Stokes third-order theory, particularly for
small values of wave height (small €), with the second-order
correction not affecting the results significantly. However, the
free-surface comparisons showed that the second-order correc-
tion is necessary for a good match to the Stokes theory in deep
water. The shallow water asymptotic behavior of the perma-
nent-form solutions was compared with stream function theory
(Dean 1965), with favorable results for both free surface in
shallow water, and phase speed over a range of kh. In this
asymptotic case, the second-order correction had almost neg-
ligible effect.

Comparisons with two laboratory data sets were then per-
formed. The wide-angle linear model and the narrow- and
wide-angle nonlinear models [(4) and (13), respectively] were
first compared with the circular shoal experiment data of
Chawla (1995). The effect of the inclusion of the wide-angle
propagation terms are evident, more so than the inclusion of
nonlinearity. To help sort out model performance, the ‘“‘index
of agreement” (Wilmott 1981) was used. This confirmed the
superior performance of the wide-angle nonlinear model [(13)]
relative to the other models.

The final test was a comparison to the irregular wave shoal-
ing experiment of Mase and Kirby (1993). A dissipation mech-
anism was included in the model. The frequency dependence
of this mechanism is split into an f2-weighted distribution and
a frequency-independent portion. The parameter F controlled
the split, with F = O being entirely f. weighted and F = 1
entirely frequency independent. The model with dissipation
[(22)] was run with F = 0.5 [determined by Kaihatu and Kirby
(1995) as the best fit to the data] and F = 0O, both with and
without the second-order correction. The effects of the inclu-
sion of this correction and the value of F became more obvious
when calculating third moments (skewness, asymmetry). Us-
ing N = 300, we showed that the skewness is better predicted
in the nonbreaking (k > 0.175 m) portion of the experiment
with the correction applied. Wave asymmetry, on the other
hand, does not show any improvement with the correction,
though applying both the correction and F = 0 aids consider-
ably. Negative values of asymmetry (corresponding to a for-
ward-pitched wave train) do result, however, an improvement
over Eldeberky and Madsen (1999), who used the equivalent
of F = 1. Simulations with N = 500, along with the inclusion
of the second-order correction, greatly improves the accuracy
of the skewness results relative to N = 300. Asymmetry, how-
ever, is still poorly predicted. Again, the model with the cor-
rection and F = O helps with asymmetry predictions. Further

improvement of third moment calculations would probably re-
quire new formulations of the dissipation model.
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