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Abstract: In this study we describe a numerical algorithm which deduces 
characteristics of the bottom bathymetry given free surface elevation records dense in 
space but sparse in time. The method makes use of the Levenberg-Marquardt numerical 
optimization scheme in conjunction with a time-domain nonlinear model. Iteration 
occurs until the mismatch between the free surfaces of the data and model are 
minimized; the bathymetry is adjusted in order to achieve this minimum. The 
sensitivity measure is a by-product of the calculation, and determines the invertibility 
of the system. Due to robustness concerns, we limit ourselves to deduction of 
bathymetric profile parameters. Tests of the system using monochromatic, irregular and 
groupy waves show favorable results; the latter is particularly notable give the 
difficulty standard inversion methods have had with groupy waves. A two-stage system 
is also outlined, in which a simple parameterization for a nearshore bar is developed 
and utilized. The first stage determines the mean profile, while the second stage 
determines the bar characteristics using the first stage results as the initial iterate. To 
extend the method’s capabilities further, the use of phase speed records is discussed.  

 
 
Introduction  

Nearshore wave and circulation models have become much more sophisticated 
in both structure and physics. However, the accuracy of these models is highly 
dependent on the quality and resolution of the nearshore bathymetry. Direct 
measurement of the bathymetry is difficult under the most benign conditions. 
Additionally, the nearshore waves and currents obviously react to the changes in the 
bathymetry in deterministic ways. The physical relationships between free surface 
evolution and bathymetric variations (represented in numerical models of wave 
evolution) can be exploited to deduce the bathymetry given realizations of the free 
surface or other properties (e.g., phase speeds, etc.). 

 
Concurrently, remote sensing capabilities have also undergone significant 

development. Synthetic aperture radar (SAR), video, electro-optical sensors. and X-
band (marine) radar are capable of high resolution measurements of light intensity from 
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the free surface. Wave kinematics can thus be calculated by linking variations in 
intensity to phase lines of the waves. Direct sensing of the free surface or surface 
currents can be accomplished using airborne lidar (for a single snapshot of the free 
surface) or interferometric synthetic aperture radar (INSAR). These latter systems will 
give either a direct free surface measurement (lidar) or an inferred measurement from 
the currents (INSAR). The challenge, therefore, lies in incorporating these data into 
bathymetry deduction algorithms.  

 
The problem of bathymetry deduction from remotely-sensed wave characteristics is one 
that has been a military focus since World War II, but has received much attention 
recently. These recent developments can be roughly classified into two areas. The first 
approach focuses on gleaning wave kinematics and dynamics from the free surface 
imagery, then using the linear dispersion relation: 

 
khgk tanh2 =ω              (1) 

 
in which ω is the radian wave frequency, g is gravitational acceleration, and k is the 
wavenumber (=2π/L, where L is the wavelength). Bell (1999) used phase speeds 
calculated from X-band radar imagery and Equation (1) to infer the bathymetry, with 
favorable results. Holland (2001) performed a similar analysis using phase speeds from 
video data, while Dugan et al (2001) utilized kinematics from airborne electro-optical 
systems.  
 
 The second approach combines data and numerical models into a numerical 
optimization problem, in which the total mismatch between the data and the model 
results is iteratively minimized, with the bathymetry correspondingly adjusted. Kennedy 
et al. (2000) and Narayanan and Kaihatu (2000) are examples of this approach. We also 
note that Grilli (1997) created nomographs for direct calculation of the bathymetry from 
phase speeds based on results from his fully nonlinear boundary element model.  
 
 Our development uses the second approach, and is a refinement of that detailed 
in Narayanan and Kaihatu (2000) in that we are now able to “zoom in” on nearshore 
features such as sandbars. Additionally, we explicitly investigate the improvement of 
this model over direct inversion of Equation (1) with regards to wave groups. We 
conclude with considerations of future directions for this work. 
 
Numerical Models and Data 
 In the interest of computational efficiency during the initial development of the 
bathymetric deduction algorithm, we used the Korteweg-deVries (KdV) equation 
(Korteweg and deVries 1895) as the wave model. Throughout this study, we will be 
using output from the KdV model as synthetic data for system testing; any physical 
shortcomings contained in the wave model is therefore reflected in the data as well, and 
so thus is consistent. The modular nature of the completed algorithm is such that any 
wave model can be used instead of the KdV model.  
 
 We assume that the free surface imagery is in the form of “snapshots” of the free 
surface, dense in space but well-separated in time. This sort of free surface data stream 
would be akin to having a lidar-equipped aircraft make several sweeps over the same 
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area. This is in fact a severe test of the algorithm, since the time span between snapshots 
is greater than a dominant wave period. The likelihood is great that a more generous 
data set will yield better results for the bathymetry.  
 
Bathymetric Parameterizations and Optimization Techniques 
 The numerical optimization technique used herein is the Levenberg-Marquardt 
method, which is an overrelaxed nonlinear least squares technique (see Press et al. 1986 
for sample algorithms). This method has been used in many applications, and excels in 
the case of highly nonlinear optimization with multiple local minima and elongated, 
shallow error surfaces.  
 
 At the time of writing, the authors are preparing a journal manuscript on the 
topic at hand; the full technique is explained in an appendix of the manuscript. In the 
interest of brevity, we simply write the matrix equation to be solved: 
 

ηµ ∆+=∆ TTh AIAA )( 2     (2) 
 
 
where ∆h  is a vector containing the difference between the prior and new iterates of 
water depth; I is an identity matrix, ∆η is a matrix of the data-model mismatches, µ is 
an over-relaxation parameter, and the matrix A is known as the “sensitivity” matrix: 
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given m total parameters (water depths to be determined, in this case) and n total data 
points. These data could be distributed in space (as is the case for wave staffs measuring 
time series at discrete locations) or time (remotely sensed snapshots of the free surface 
taken at discrete times).  Multiplying by the transpose creates an mxm square matrix. 
The diagonal elements of this square matrix comprise an mx1 vector: 
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Each element of this vector is known as a sensitivity measure, and is a key to the 
solvability of the system. In general, the relative amplitudes of all the m sensitivity 
measures must be within three orders of magnitude in order for the system to be 
invertible and the parameters identifiable. This insures that the search for any one 
parameter does not dominate the iteration process. The sensitivity measures are not the 
only considerations present in the inversion process. However, the sensitivity measures 
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are also useful in other aspects of the inversion problem, such as array design and the 
formulation of data sampling strategies. We will discuss this aspect further in a later 
section.  
 
During the initial development of this system, we endeavored to be able to find an 
arbitrary number of water depths in our domain, at least as many as we had grid points 
in the wave model. However, difficulties with nonconvergence caused us to consider 
using various parameterized forms of the bathymetric cross-shore profile, with the 
various free parameters within the assumed forms (rather than the depths themselves) 
becoming the targets of the search. We considered several parameterized forms, 
including Dean’s equilibrium beach profile (Dean 1977), exponential forms (Bodge 
1992), and polynomial forms. We determined that both Dean’s equilibrium beach 
profile and exponential forms worked best with the inversion scheme detailed here. In a 
later section we describe how the ostensibly-limiting form for bathymetry can be used 
as an initial guess for more detailed inversions in the nearshore. 
 
Monochromatic and Random Waves 
 Our tests of the system with both monochromatic and irregular waves have been 
detailed in Narayanan and Kaihatu (2000). We used Dean’s equilibrium beach profile 
form h(x)=Axm , and use the method described in the previous section to determine the 
free parameters A and m. A set of free surface snapshots would be generated by 
propagating the waves over bathymetry for which the parameters are known, then 
sampling the modeled free surface elevations over the entire domain at three discrete 
points in time (t=16, 20 and 24 seconds). The domain was 35 meters long, and the wave 
had a peak period of 5 seconds. The bathymetric parameters were then varied and the 
iteration procedure begun; each step of the iteration yielded trial values for the 
bathymetric parameters A and m. Convergence of the system to the actual parameter 
values was highly dependent on initial guess. Plots of the results for the random wave 
case can be seen in Narayanan and Kaihatu (2000). An empirically-derived map of 
convergence as a function of initial position in parameter space is shown in Figure 1. 
The plot reveals that initial guesses which tend to overestimate the offshore depth (high 
values of A) tend to lead to convergence more than those parameter values which 
underestimate the offshore depth. 
 
Wave Groups 
 In our investigations into the applicability of direct inversion methods utilizing 
the linear dispersion relation (Equation 1), it was found that the case of wave groups 
required special treatment. Both monochromatic and random wave trains have free 
surface undulations which are more or less strongly coupled to variations in the 
bathymetry. Strong wave groups (those comprised of a small number of frequency 
components) have free surface characteristics which may be more due to the 
interference patterns inherent in the group rather than bathymetric variations. This 
feature tends to cause underestimation of wavenumbers and results in overprediction of 
the water depth. 
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Figure 1. Empirical convergence map, Dean’s equilibrium beach profile under 
random waves. Initial guesses of A and m corresponding to open circles will 
diverge, while those corresponding to asterisks will converge.   
 

Consideration of additional data in time could be expected to improve results. 
This is true of random waves, since the peak spectral values gleaned from the data and 
used in the linear dispersion relation for inversion would be more statistically 
representative of the actual wave field. However, this does not apply to strong wave 
groups. Figure 2 shows the results of a numerical experiment detailed in Kaihatu et al. 
(1999), in which a wave model was used to propagate random and groupy waves over a 
bathymetric cross-shore transect measured at the US Army Field Research Facility at 
Duck, NC. Over 2000 temporal realizations of the free surface (amounting to around 
200 seconds of time) were generated. A wavelet transform was used to glean 
wavenumbers for each point along the cross-shore transect for each temporal 
realization, then averaged across all realizations. This gave a statistically significant 
peak wavenumber for each point along the cross-shore transect. This, along with the 
peak frequency from the incident spectrum, was used with the linear dispersion relation 
to solve for the water depth. Figure 2a shows the case for random waves; despite the 
crudity of the inversion method, the depths match quite well. Figure 2b shows the result 
of the same analysis using wave groups. Despite the significant temporal averaging, the 
strong group signature is still apparent in the result.  
 

The inversion procedure described earlier was then applied to the case of wave 
groups. Results are shown in Figure 3. It is apparent that the procedure works quite 
well. Figure 3a shows the initial and true profiles under wave groups, while Figure 3b 
shows the empirical convergence map. There appears to be a cluster of convergence 
near the actual value of A and m within which initial guesses for A and m will lead to 
convergence. The success of the procedure for wave groups indicates that the benefit of 
this method is the lack of wave kinematics or other assumptive properties that require 
extraction from imagery.  
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Figure 2. Results of direct depth inversion using linear dispersion relations and 
wave kinematics gleaned from numerical results by wavelet transforms. Solid line: 
estimated bathymetry from analysis. Dashed line: actual bathymetry from Duck, 
NC. Left (a): Random waves. Right (b): Wave groups. 
 
   

   
 
Figure 3. Results of bathymetric inversion using wave groups. Left (a): Initial and 
final bathymetric profiles. Right (b): Empirical convergence map  
 
Two-Stage Inversion 
 We further refined the bathymetric inversion scheme by adding a second stage 
to the iteration routine. This second stage uses the estimation of the mean profile as the 
first guess for a second round of iterations.  
 
 As with the single stage inversions described earlier, we use a parameterized 
bathymetry for the second stage (as  with the previously-described inversion, we 
encountered convergence problems when we attempted to use every water depth in our 
numerical grid as a parameter for which to search). Our parameterization of this second 
stage bathymetry includes a simplistic formulation to account for the bar: 
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)(sin)( 02 xxxh −= βα     (5) 

 
where the subscript “2” denotes the results of the second stage searchm α and β are 
shape factors for the bar, and x0 is the location of the offshore edge of the bar. In theory 
one could search for all five parameters in one stage; however, a sensitivity analysis had 
determined that the search for the bar parameters must be performed over a much 
smaller section of the domain than that of the mean profile parameter search. Thus, the 
search takes place in two sets of iterations. The first set of iterations yields the mean 
profile parameters A and m, and the second search seeks the other three parameters. 
 
 We tested the two-stage inversion system with bathymetry at Duck, NC. This 
particular set of bathymetry was collected during the October 1990 DELILAH 
experiment, during which a bar was almost always present. A TMA-type wave 
spectrum was run over this bathymetry and the free surface information along a cross-
shore transect of the domain stored at t=16, 20 and 24 seconds. This data then seeded 
the inversion. Figure 4 shows the result of the two-stage inversion. The first stage 
parameters do well in replicating the mean profile at Duck for much of the domain, and 
even capture the mean of the bar fairly well. The second stage results (shown in the 
extreme nearshore area of the domain) captures some of the reverse curvature of the bar. 
As mentioned before, the sensitivity analysis for this scenario indicated that the offshore 
extent of the second stage iterations needed to be very close to shore if the inversion 
was to be sufficiently robust. This makes intuitive sense, since one would not expect 
information well offshore of the bar to be essential to the determination of bar 
parameters; however, it is reassuring that a quantitative sensitivity analysis confirms a 
qualitative observation.   
 

 
Figure 4. Results of two-stage inversion process: comparison to Duck bathymetry.  
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Phase speed 
 Though the overall approach described herein is powerful and has wide potential 
applications, there are several obvious disadvantages with our specific application. The 
reliance on bathymetric parameterization is a severe limitation, and would hamper an 
extension to longshore variations of bathymetry. Additionally, the use of temporally 
sparse, spatially dense free surface elevations as data limits potential applicability of the 
system to a small range of remote sensing instrumentation (interefereometric SAR, 
lidar). Adaptation of the inversion algorithm to phase speed measurements would 
greatly expand the possible remote sensing platforms which can be used in tandem, as 
mentioned earlier.  
 
 It can be somewhat cumbersome to calculate phase speeds from a free surface 
time domain wave model, though correlation algorithms such as those used by Bell 
(1999) and Holland et al. (2001) can be used. However, it is more expedient to use a 
frequency-domain model for this application, since it is simpler to calculate phase 
speed, even with nonlinear effects.  
 To investigate the efficacy of calculating phase speed from a frequency domain 
model, we use the model of Kaihatu and Kirby (1995), with extensions by Kaihatu 
(2001), to evolve a wave spectrum over a planar bathymetry. This model is developed 
in terms of the complex amplitude of the free surface, with resonant triad interactions 
representing the shallow water wave nonlinearity. The particular advantages of this 
model are addressed in Kaihatu and Kirby (1995). Substituting a real-valued amplitude 
and phase in place of the complex amplitude, then retaining the imaginary part of the 
resulting equation, yields a direct expression for the phase speed. We initialize the 
model with a TMA-type spectrum (peak period of X seconds and a gamma of Y), and 
run the spectrum over a sloping bathymetry with an offshore depth of 8 meters and a 
bottom slope of 0.0005.  Figure 5 shows the nonlinear phase speed calculation from the 
model (using the peak frequency), with a corresponding calculation for linear phase 
speed. The nonlinear phase speed is greater than that from linear theory for the offshore 
part of the domain. As breaking begins to dominate, the waveheight at the peak 
frequency becomes smaller and nonlinear effects are reduced. If video data is utilized, 
the temporal statistics (due to the long measurement time) can approach those of the 
model, thus allowing a one-to-one correspondence (in theory) between average 
characteristics from the model and those from the data. Thus phase speed estimates 
would be representative of the same amount of time, lending confidence to our use of 
phase speed for depth inversion.  
 
Summary 
 We have outlined a method for determining water depth characteristics from 
remotely sensed data. In contrast to earlier data-intensive methods, we use numerical 
optimization and a numerical wave model to obtain water depth estimates. The 
numerical technique used (Levenberg-Marquardt optimization) is well-suited to the 
potential nonuniqueness of the inversion process.  
 
 Difficulties with convergence compelled us to utilize bottom profile 
parameterization as a means for obtaining bathymetric characteristics. We obtained 
excellent results using free surface elevations gleaned from the wave model as “data,” 
and using the numerical algorithms to iterate on the bathymetric parameters. This was 
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true for monochromatic, random, and groupy waves. The latter case is notable in that 
straightforward depth inversion using the linear dispersion relation (Equation 1) proved 
to be problematic since the free surface characteristics are more a function of the 
interference patterns of the waves in the group than the bathymetry variations.  
 

 
 
Figure 5. Phase speed estimates from the nonlinear frequency domain model of 
Kaihatu and Kirby (1995). Phase speed calculated from the peak frequency of a 
wave spectrum shoaled over a sloping bottom. Solid line: linear phase speed. 
Dashed line: nonlinear phase speed. 
 
 We then also investigated the parameterization of a nearshore bar in order to 
extend the original algorithm by implementing a two-stage process. The mean profile 
parameters would be obtained from the first stage, and then used as an initial iterate for 
the second stage, which would yield the bar parameters. We tested this two-stage 
system using a bathymetric transect from Duck, NC. Both the mean profile and the 
nearshore bar parameters matched the actual profile fairly closely.  
 
 In the algorithm testing we assumed that our data consisted of spatially dense 
snapshots of the free surface elevations at discrete points in time. This focus limits the 
applicability of the system to a small set of remote sensing instrumentation. In order to 
overcome this limitation, we intend to focus on the use of phase speeds from both the 
model and data to perform the inversion. Phase speed estimates are obtainable from 
many more remote sensing platforms than free surface elevations, and also exhibit less 
variability than free surface elevations; thus we can expect a more flexible and robust 
algorithm. This will be the focus of the next phase of this research. 
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