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ABSTRACT:

We invert for the bathymetry under random shoaling waves using two
different inverse techniques: direct inversion using Levenberg-Marquardt
method and a variational inverse method. For both methods, we param-
eterize the bathymetry using the Bruun-Dean’s profile. For the direct in-
version, we first show that bathymeiric parameters can be obtained with
synthetic random wave data. Nezt, we perform the inversion to show that
the bathymetry is obtained ezactly using both the adjoint model and direct
inversion methods.

1 Introduction

The bottom topography strongly influences the wave field. Hence, the knowl-
edge of the variations of the bathymetry is very important for the proper under-
standing of the complex interactions between waves and currents. Typically, in
nearshore wave problems, water depth is assumed to be known. The nonlinear
wave propagation over known varying bathymetries can be determined by non-
linear time dependent Boussinesq model’s such as FUNWAVE (Wei et al., 1995).
The wave response due to changes in depth is thus determined. This we define
as the forward problem. Here, we are interested in the inverse problem. If some
information of the dynamics and/or kinematics is known, is it possible to obtain
the bathymetry ?
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The bathymetric inversion can be achieved in many ways. For all inversion
methods, a model is necessary. This model can be a phase-averaged or a phase-
resolving model. In this paper, we will restrict our attention to phase-resolving
numerical models. We use two different approaches to obtaining the bathymetry.
The first is to use a direct inversion method using a nonlinear least squares
technique. In this method, the model used is assumed to be perfect. i.e, if we
have exact initial and boundary conditions there will be no error in the model.
The second method is the variational inverse method. In this method, a positive
definite function is minimized subject to constraints imposed by the model and
the data. In this method, it is possible to weight the data and model so that the
model results are assumed to be imperfect.

Many people have conducted research using the direct inversion method.
Kennedy et al. (1999) used a fully nonlinear time-dependent Boussinesq model
as a tool for the inversion. They assume that time lagged spatial maps of both
synthetic surface wave height and orbital velocities are available as inputs to their
algorithm for inverting depth. They predict water-depths for various wave min-
imization conditions reliably. Misra et al. (2000) using only orbital velocities,
developed an inversion method to calculate the bathymetry and surface elevation.
Recently, Putrevu et al. (2000) deduced the nearshore bathymetry and currents
using remote measurements of the edge wave kinematics. Narayanan and Kai-
hatu (2000) (henceforth, NK00) studied the sensitivity of the collected data with
respect to the bathymetric parameters. Using a Kortweg-de Vries (KdV) wave
model they showed that parameterizing the water-depth using the Bruun/Dean’s
profile (Bruun, 1954; Dean, 1977) or an exponential profile (Bodge, 1992) are
most suitable for inversion. However, they restricted their attention to regular
waves. In this paper, we extend the analysis to include irregular waves.

One question that we attempt to answer in this paper is: Can the bathymetry
be obtained when random surface wave information is given ? In an approach
similar to NK0O, we develop a sensitivity matrix to determine if the bathymet-
ric parameters can be estimated for random surface data. Next, we invert for
the bathymetry and discuss the results. Another question is: Can the inverse
bathymetry be obtained using the forward and adjoint model ? Here, we develop
the Euler-Lagrange equations and solve the forward and backward equation sub-
ject to the of the cost function to obtain the bathymetry.

For both inversion techniques, we parameterize the bathymetry using the
Bruun-Dean’s profile (Bruun, 1954; Dean, 1977). The water-depth is described
as h(z) = Az™. Thus, there are undetermined two parameters: A and m.
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2 Direct Inversion using KdV model

In this section, we formulate the problem, discuss the methodology and show
results using the direct inversion technique.

2.1 Data and Model

Depth inversion involves collecting data in terms of time-series or snapshots of
surface elevations and/or particle velocities and then deducing the depth by es-
tablishing a relationship between the collected data and depth. In the present
context, we will define data as the free-surface data collected in terms of time-
series or free surface imagery. We need to obtain the bathymetry from the data
set that we have access to. The bathymetry is described by model parameters.
We assume there is a specific method (usually a mathematical theory or model)
for relating the model parameters to the data. In this work, we use the KdV
equation as the model that connects the data and model parameters. We assume
that the physics of shoaling is completely known and well described by the KdV
equation. Since the emphasis of this work is not to obtain the best model for
wave shoaling but to understand the dependence of the the model parameters to
the data, this approach is justified.

In order to estimate if the parameters are identifiable, we develop a matrix R
which contain the gradients of the data with respect to the parameters ( see NK00
for more details). Here 7 is the collected data and A and m are the parameters.
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We can also form a RT R matrix (where RT is the transpose of the R matrix)
whose diagonal elements are 37 (2%)? and 3°0,(22)2. These two terms rep-
resent the sensitivity of A and m with respect to the data. If the two diagonal
elements are within three orders of magnitude, then the parameters are said to
be identifiable. Otherwise, the parameters cannot be identified. Note that even
if the parameters are identifiable, it is not necessarily true that inversion will be
possible. There may be problems associated with non-uniqueness and instability
which may not allow for the estimation of the bathymetry.

Now, the bathymetry is parameterized using the equation h(z) = A(1 —
(2/Tmaz))™. The two parameters that are to be identified are A and m. This
equation is similar to the Bruun/Dean’s profile but is normalized by Z,,.,. The
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Figure 1: The top figure shows the sensitivity for the Bruun/Dean’s profile as a
function of times at which data is collected. The bottom panel shows the relative
sensitivity for the Bruun/Dean’s profile as a function of times at which data is
collected.

numerical domain is 35 m long with the wavemaker at z = 0. There are 3500
points in the domain, Az = 0.0l m and At = 0.01s. At¢t =0, n =0 for all
z. At z = 0, we generate random waves using the TMA spectrum (Hughes,
1984) with the narrowness constant y = 3.3 (Cox et al., 1991). We collect the
free-surface data between times t = 5 s to ¢ = 24 s with an interval of 0.1 s.
Now the model is run again changing changing A and m one at a time to obtain
the gradients of the data with respect to the two parameters. Both the R and
RT R matrices are obtained. For each of these times, we run the KdV model
to obtain the sensitivity. Figure 1 (top) shows the sensitivity for A and m as a
function of the times at which the data was collected. The relative sensitivities
(defined as ratio of the sensitivity of A to the sensitivity of m) are also plotted as
a function of time (bottom of figure 1). The figures shows that for data collected
after t = 15 s, the ratio of the sensitivities for both A and m are within two orders
of magnitude. Hence, the necessary condition for the parameter identifiability is
satisfied. Therefore, for data collected at all times greater than ¢t = 15 s, it is
highly likely that the two parameters A and m can be identified.



COASTAL ENGINEERING 2000 499

2.2 Results

Since we have already established that the bathymetric parameters can be esti-
mated using the random wave data, the next step is to invert for the bathymetry.
The procedure for solving the inverse problem is as follows. A particular depth
profile is chosen (A = 0.4 and m = 0.66). The KAV model is run with the
boundary conditions and the chosen bathymetry. Data is obtained in the form of
snapshots at different times (¢ = 16, 20 and 24 s). With a different starting point
(A =0.8; m = 0.8) for the depth, the model is run again and data are collected
(We call this the observed data.). The aim now is to minimize the difference be-
tween the true data and the observed data to obtain reasonable estimates for the
parameters. Since this is a nonlinear problem, the simplest technique that we can
use is the nonlinear least-squares method with damping (Levenberg-Marquardt
technique, NK00).

The model converges to the true solution within 15 iterations. Figure 2 shows
the data collected at the three different times in the top panel. The middle
panel shows the bathymetry at different iterations. The bottom panel shows the
convergence plot as a function of A and m. We attempted other starting points
and obtained similar results. As in the case of regular waves, there are regions of
divergence; however, the primary outcome of this analysis is that the bathymetry
can be determined with random wave information.

3 Adjoint model

In the adjoint inverse problem , we look for the minimum of a cost function
J, while the dynamic equations F(n) = 0 describing the temporal evolution of
the models state variable (7) act as a set of strong constraints, i.e. they are
fulfilled exactly. The assimilation occurs between time periods ¢, to ;. Within
the assimilation period the evolution of the model variables is fully controlled by
the (discrete) model physics and the initial and boundary conditions. Variables
describing these conditions are commonly denoted control variables u.

We choose control variables A and m (denoted as u) such that the least square
distance between model and data, cost function J, is minimized. That is solved
by applying a iterative procedure. First the gradient of the cost function with
respect to the control variables is calculated. This gradient is then passed to a
general unconstrained minimization algorithm such as quasi-Newton or conjugate
gradient, which will iteratively give better and better estimates for the control
variables u. This optimization procedure is called the adjoint method, because
the adjoint model equations offer a sophisticated but relatively cheap way to
calculate the gradient .
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Figure 2: The data collected at the three different times in shown in the top
panel. The middle panel shows the bathymetry at different stages. The bottom
panel shows the convergence plot as a function of A and m.

Following the formalism of the variational method the Lagrange function

L T
L=J+)Y_ > AE(nzt)dtdz (1)

=1 t=1

is introduced. Hence the problem, which is a constrained minimization in
the space of model variables, is transformed into a unconstrained problem in the
space of control variables u. The Euler-Lagrange equations describe a stationary
point (saddle point) of L. Partial differentiation with respect to the Lagrange
multipliers , also denoted as adjoint variables, returns the model equations. This
can be expressed as

Ly=E()=0 (2

The differentiation with respect to the model variable (1) yields (after partial
integration) the adjoint model equation, which describe the temporal evolution
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of the Lagrange multipliers. The partial integration also yields the boundary
conditions for A.
L,=0 ®3)

The third condition

L,=0 (4)
ensures that the optimal choice of the control variables u has been found.

Our Euler-Lagrange system of equations is:

e Model Equation

con® _ hPnae, _
e+ (con)s + (=7 g =0 (5)
e Euler-Lagrange Equation
3 2, ,
At @)z + SRz = (Fe2), = Kyln = 1) (6)

Here 7' is the data at any particular iteration. The third condition is too
complex and hence we did not use it. Instead, we used a simpler criterion for the
convergence. We know that the minimum occurs when (7 —7') is minimal. This
also corresponds to A(z,t) being small. Hence, we used the criterion to obtain
the best solution.

L t2
S =0 (7)

z=1 t=tl

Of these three equations (5,6,7) only the model equations (5) can be solved
by integrating them from ¢, to t. The second (i.e. the adjoint equations) is
integrated backward in time from ¢, to ¢;. In general, the first guess for A and
m will not be optimal.

We perform the inverse for the model and adjoint equations described above.
The methodology is as follows. The KdV model is run with A = 0.4 and m =
0.66. Snapshots of the free-surface () is stored at times ¢t = 16, 20 and 24 s. We
choose A = 0.8 and m = 0.8, run the model again and collect data (7). The
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adjoint equations are driven by the mismatch (7 —1n'). We then use the criterion
in equation 7 and solve the model and adjoint equations iteratively to converge to
the true solution. The true solution is obtained within 20 iterations. We also run
the forward-backward equations for other starting points (i.e., different A and m).
Figure 3 shows the convergence plot as a function of the control variables A and
m for different model runs. The figure shows regions of convergence (* symbols)
and divergence (+ symbols). So, clearly the solution depends on the initial guess
for the control variables. The primary advantage of the adjoint model approach
is that we can assign weights to the data and model based on our certainty.
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Figure 3: The figure shows the convergence plot as a function of the control
variables A and m. The figure shows regions of convergence (* symbols) and
divergence (+ symbols).

4 Discussion

Narayanan and Kaihatu (2000) performed a feasibility study to show that bathymetry
can be determined using inverse methods. They also discussed the conditions
under which the bathymetry can be determined. However, their analysis was
restricted to regular waves using direct inversion techniques. In this paper, we
extend their analysis by studying irregular waves using two different techniques:
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direct inversion using Levenberg-Marquardt technique and the adjoint model as-
similation technique. We show that inversion for the bathymetry is possible for
irregular waves using both the techniques.

We have an excellent idea of where and how to collect data for inversion to
be possible. This can be determined using sensitivity analysis discussed in both
this work and NK00. The next step is to use real data obtained from the field
to obtain the bathymetry. All the analysis conducted so far have used synthetic
data. Due to the strongly nonlinear nature of the problem, it is difficult to use
the inversion techniques directly to obtain the bathymetry using real data. Other
methods (e.g., simulated annealing, neural networks, etc.) may prove to be more
fruitful.
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