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ABSTRACT

A 1/16° Pacific Ocean model north of 20°S and a 1/4° global ocean model are used to assimilate
satellite altimeter data and then to perform month-long forecasts initialized from the data assimila-
tive states. The results constitute a feasibility demonstration of ocean model eddy-resolving nowcast/
forecast skill using satellite altimeter data. In particular they demonstrate (1) that satellite altimetry
is an effective observing system for mesoscale oceanic features, (2) that an ocean model with high
enough resolution can be a skillful dynamical interpolator for satellite altimeter data in depicting
mesoscale oceanic variability, and (3) that the high resolution ocean model can provide skillful
forecasts of mesoscale variability for at least a month, when model assimilation of the altimeter
data is used to define the initial state.



1. Research questions addressed by the demonstration
The figures in this report are designed to address the following questions:

1. Can satellite altimeter data be used to constrain an eddy-resolving ocean model so that it depicts
the evolution of mesoscale features, such as individual current/frontal meanders and eddies?

2. Can an ocean model show skill as a dynamical interpolator for satellite altimeter data in depict-
ing mesoscale features? Do we see a dependence on model resolution/simulation skill?

3. Can an ocean model show skill in forecasting the evolution of mesoscale features, when assimi-
lation of altimeter data was used to define the initial state? For how long? And again what depen-
dence do we see on model resolution/simulation skill?

2. Results of the demonstration

The remainder of this discussion is a commentary on the results in the figures used to address these
questions. There are two groups of results; the first uses simulated altimeter data, the second real
altimeter data. The simulated data are used to address the first question because the “truth” is
precisely known, including the nonsteric mode and subsurface fields to the bottom of the model
ocean. In addition, the simulated data are useful for observing system simulation experiments
where the number and combination of satellite altimeters are varied. The real-data experiments are
used to address questions 2 and 3.

2.1 Response to Question 1

Altimeter data were simulated by a 1/16° six-layer Pacific Ocean model which covers the Pacific
north of 20°S (Hurlburt et al., 1996b). The NRL Layered Ocean Model (NLOM) (Hurlburt and
Thompson, 1980; Wallcraft, 1991; Wallcraft and Moore, 1997; Moore and Wallcraft, 1998) was
used for this purpose. The 1/16° Pacific model realistically simulates a strongly meandering Kuroshio
current system and numerous eddies. The model was spun up to statistical equilibrium, then run
1990 - present forced by 12 hrly Navy Operational Global Atmospheric Prediction System (NOGAPS)
winds (Hogan and Rosmond, 1991) from the Fleet Numerical Meteorology and Oceanography
Center (FNMOC). The 8/90-7/97 temporal mean of these winds was replaced by the annual mean
from the Hellerman and Rosenstein (1983) wind stress climatology. Then simulated altimeter data
from 80 days in model year 1994 were assimilated into model year 1997, a time when the Kuroshio
pathway was quite different. The corresponding 1994 winds were used during the assimilation.

Figures 1 and 2 show results 75 days into the assimilation experiment: (Fig. 1 top) the model truth
field, (Fig. 1 bottom) the model with correct wind forcing for the last 75 days but no assimilation of
altimeter data, (Fig. 2 top), the model with assimilation of simulated sea surface height (SSH) along
Geosat 17-day repeat tracks, and (Fig. 2 bottom) with assimilation of simulated SSH along TOPEX/
POSEIDON (10-day repeat), ERS-2 (35-day repeat) and Geosat ground tracks.



Figure 3 shows the rms SSH error over the whole domain and in the Kuroshio region as a function
of the number of altimetric satellites available, 0 to 5 because 5 is a possibility for a period of time
around the year 2001. Even one altimeter is quite effective, with the Geosat and ERS orbits giving
lower error than TOPEX/POSEIDON (T/P). Reduced error is also found by having up to 3 satel-
lites, but little further improvement is obtained by having 5 of them in this test.

Figures 4-7 show that the assimilation can constrain subsurface fields (model pressure fields for
each of the six model layers), including the abyssal layer pressure field, which is only weakly
correlated with the SSH field. However, the normalized rms error increases with depth.

The assimilation procedure consisted of calculating the deviations between the data along altimeter
tracks that were sampled during the most recent 2 or 3 days, then performing an OI analysis once a
day on this deviation data using covariance functions calculated from T/P, ERS-1/2 and GEOSAT
data by Jacobs et al. (1999). For any given update much of the domain is outside the influence
radius of any data and the resulting deviation analysis in those regions is zero. Next a statistical
inference technique (Hurlburt et al., 1990) was used to project the deviation analysis downward
(including to the abyssal layer) and geostrophy was used as a dynamical constraint away from the
equator. The 1/16° Pacific grid is 2048 x 1344 x 6. Thus, it was necessary to use an efficient data
assimilation technique (nudging). Related discussion can be found in Smedstad and Fox (1994),
Carnes et al. (1996), Hurlburt et al. (1996a) and Smedstad et al. (1997, 1999).

2.2 Response to Question 2

This question is addressed by assimilating real T/P and ERS-2 altimeter data into (1) the same 1/16°
Pacific model and (2) a 1/4° global model (Metzger et al., 1998). The assimilation was initialized
from the model forced by FNMOC winds up to that time, at least 2 mo before 1 Jan 99. The results
of the assimilation experiments are compared to 1/8° SST analyses and purely statistical analyses
of the altimeter data. The SST color scheme was chosen to highlight the Kuroshio pathway.

In two of the three experiments, the altimeter data are assimilated using the assimilative model state
as the first guess for the updates with new altimeter data (which will be termed “direct assimila-
tion” by the model). The statistical SSH analyses are independent analyses of the altimeter data
which use a previous statistical analysis as the first guess. In the second 1/4° global experiment
(run by FNMOC) the daily statistical analyses were assimilated into the model. Because the earth’s
geoid is not adequately known, only the altimetric deviations from their own mean are used in the
assimilation. In the model assimilations a slightly modified 1993-1997 model mean is added to
these deviations. The statistical analyses use a 1993-1997 mean surface dynamic height from the
MODAS oceanic climatology developed at NRL. When appropriately compared, these means
agree closely, but the 1/16° model mean gives a sharper depiction of mean currents.



Figures 8-12: Each figure shows panels for 1 Jan, 15 Jan and 1 Feb 1999. First compare the SSH
from the data-assimilative 1/16° Pacific model (Fig. 8) with the statistical SSH analyses (Fig. 9)
and the SST analyses (Fig. 10). If given each analysis by itself, one might doubt its accuracy in
depicting the mesoscale features. One might doubt the SST analyses because of data gaps due to
periods of cloudiness or false fronts due to compositing of IR data over a period of time, and one
would expect differences in pattern from the SSH fields because some mesoscale features lack an
SST signature and because there are differences in the dynamical processes that produce SST and
SSH patterns. One might doubt the accuracy of the altimetric analyses because of concerns about
the space-time resolution and accuracy of the altimeter data, the mean SSH added to the altimetric
deviations from their mean, and the techniques used to analyze and assimilate the data. In this case
the altimeter data were analyzed by very different techniques, direct assimilation by a numerical
model vs a purely statistical technique, optimum interpolation (OI). If the different analyses show
agreement for mesoscale features, then each enhances the credibility of the other because it is
extremely unlikely that complex agreement would occur by chance.

There are a large number of features that can be compared. Particularly noteworthy are (1) the
sharp meander between 155°E and 160°E on January 1 which pinches off an eddy on 15 January in
a distinctive fashion, an eddy which begins to interact with the Kuroshio farther to the west by 1
Feb. This sequence is captured with striking agreement in all three sets of analyses. (2) A second
noteworthy feature is the pinch off of a large eddy immediately east of Japan (centered near 36°N,
143°E) by Feb 1st, starting from a state (see 1 January) where there is a cold eddy south of the
Kuroshio just east of Japan (centered near 33.5°N, 144°E). That event is not evident in the SST
analysis, but it is a feature of the operational SST analyses performed independently by the Naval
Oceanographic Office (Fig. 13).

Figures 11 and 12 show corresponding results from the 1/4° global model. In figure 11 altimeter
data were assimilated directly in exactly the same manner (including the same covariance func-
tions) as the 1/16° Pacific model. In figure 12 the “MODAS” OI SSH analyses were assimilated
into the model. While figures 11 and 12 capture most of the main features seen in figures 8 and 9,
the features are not as sharp. The broadening of the Kuroshio means the current speeds are lower
and dynamically the current is not as inertial, which could have a substantial impact on model
forecast skill and skill as a dynamical interpolator. Comparison of figures 8 and 11 clearly shows
that the 1/4° model is not nearly as skillful a dynamical interpolator as the 1/16° model. This is
consistent with the much greater simulation skill found in purely atmospherically-forced simula-
tions for this region using a 1/16° vs a 1/4° model (Hurlburt et al., 1997; Hurlburt and Metzger,
1998).

2.3 Response to Question 3

Figures 14-17 show the results of 14 and 31-day forecasts from 1 Jan 1999 which correspond to
the analyses shown in figures 8-12. It should be noted that these are the very first forecasts
performed using these models (not the best of many forecasts). Figure 14 shows the forecast
from the 1/16° Pacific model, figure 15 from the 1/4° global model with direct assimilation of the
altimeter data and figure 16 from the 1/4° model with “MODAS” OI analysis assimilation.
Between 155°E and 160°E the 1/16° model is able to forecast the distinctive eddy pinch off (15
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Jan) and subsequent interaction with the stream (1 Feb) in detail. It is also able to forecast the large
eddy pinch off just east of Japan seen on 1 Feb. Neither of the 1/4° forecasts succeeds in forecasting
these events. Figure 17 shows three 1/16° Pacific model forecast verifications against the model
with assimilation. All show 1/16° model forecast skill better than climatology or persistence (a
forecast of no change from the initial state) for at least a month.

In these forecasts the FNMOC winds were used for the duration of the forecast, when they would
not be available for a real-time forecast. In the simulated data tests (response to question 1) the
model evolution in the Kuroshio region shows low sensitivity to the details of the atmospheric
forcing on this time scale (because the variability in this region is largely not a deterministic re-
sponse to atmospheric forcing on the forecast time scale), but obviously the effects of atmospheric
forcing on oceanic forecast skill must be a subject of future testing.

3. Summary

In this study we have addressed three issues: (1) the capability of satellite altimetry as an observ-
ing system for mesoscale oceanic variability, (2) ocean model skill as a dynamical interpolator
for satellite altimeter data in depicting mesoscale oceanic variability, and (3) the potential for
skillful forecasting of mesoscale variability using models with assimilation of satellite altimeter
data as the initial state. In particular, we addressed three specific questions:

1. Can satellite altimeter data be used to constrain an eddy-resolving ocean model so that it depicts
the evolution of mesoscale features such as individual current/frontal meanders and eddies?

Obviously the answer to question 1 is yes. Substantial skill at the mesoscale is obtained using even
one altimeter with the Geosat and ERS orbits preferable to the T/P orbit, but errors can be reduced
significantly by using up to three satellites.

2. Can an ocean model show skill as a dynamical interpolator for satellite altimeter data in mapping
mesoscale features? Do we see a dependence on model resolution/simulation skill?

Clearly the answer to question 2 is yes for the 1/16° Pacific model which shows substantially
greater skill for mesoscale features than the 1/4° model. In general, the 1/16° Pacific model shows
much greater simulation skill for mesoscale variability and inertial currents like the Kuroshio, when
the model is spun up for many years to statistical equilibrium with atmospheric forcing only.

3. Can an ocean model show skill in forecasting the evolution of mesoscale features when the
model assimilates altimeter data to define the initial state for the forecast? What is the time scale
for forecast skill? And again what dependence do we see on model resolution/simulation skill?

The answer to question 3 is yes for the 1/16° Pacific model with mesoscale forecast skill for at
least a month, and much greater mesoscale forecast skill than the 1/4° model.



The results presented here should be regarded as preliminary. The forecasts shown here are the
very first performed by these models (not the best of many) and there is ample opportunity to
improve the data assimilation.
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Ability of Altimetry SSH to Constrain Highly Eddy-resolving Ocean Model

Tested by assimilation of error free SSH into the NRL 1/16° Pacific Ocean Model
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Ability of Altimetry SSH to Constrain Highly Eddy-resolving Ocean Models

Tested by assimilation of error free SSH into the NRL 1/16° Pacific Ocean Model
ONSSH snapshot, Geosat assimilation
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Normalized RMS pressure error as a function of time
Assimilation of simulated Geosat data into
the NRL 1/16° Pacific Ocean Model
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1/16° Pacific NLOM SSH with Direct Assimilation
of TOPEX + ERS-2 Altimeter Data
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1/8° MODAS SSH Analyses of TOPEX + ERS-2

Altimeter Data
NMean SSH from MODAS surface dynamic height climatolog
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1/8° MODAS Sea Surface Temperature Analyses
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1/4° Global NLOM SSH with MODAS SSH Analyses
Assimilation of TOPEX + ERS-2 Altimeter Data
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NAVOCEANO WSC Frontal Analyses for Kuroshio
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1/16° Pacific NLOM SSH 14 and 31 day Forecasts in the

Kuroshio Region
Initialized from direct TOPEX + ERS-2 Assimilation
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1/4° Global NLOM SSH 14 and 31 day Forecasts in the
Kuroshio Region
Initialized from dlrect TOPEX + ERS 2 Assimilation
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1/4° Global NLOM SSH 14 and 31 day Forecasts in the
Kuroshio Region

Initialized from MODAS SSH Analyses Assimilation
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